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Abstract—Since the introduction of pansharpening, quality as-
sessment has played a pivotal role in related remote sensing re-
search to ensure the overall system’s reliability. Full-resolution
(FR) quality assessment is a debated research topic for applications.
However, FR assessment faces challenges due to the absence of
reference compared to reduced-resolution assessment. Moreover,
the lack of ground truth makes measuring quality metrics even
more challenging. To summarize the current measures for these two
challenges, this article presents a comprehensive study of FR meth-
ods. We review various FR techniques and analyze how they extract
spatial and spectral features from pansharpened images without
reference to high-resolution multispectral images. A classification
approach is proposed to group these methods based on their shared
characteristics, making it easier for researchers and practitioners
to compare and select the most appropriate FR method for specific
applications. Furthermore, we provide a summary of strategies for
measuring FR performance in the absence of ground truth. These
strategies are classified into subjective and objective approaches.
In addition, we conduct a board analysis on a large-scale public
pansharpened database with unified measuring criteria. This uni-
fied analysis allows us to present experiments from a statistical
perspective, measure FR protocols’ performance, and provide a
broad qualitative and quantitative analysis. Overall, this study
contributes to the development of pansharpening and provides
guidance for selecting appropriate FR methods, as well as strategies
for measuring FR performance.

Index Terms—Full-resolution quality assessment, image quality
assessment (IQA), pansharpening, remote sensing.

I. INTRODUCTION

DUE to limitations in remote sensing satellite sensors and
systems, such as restricted incoming radiation energy,

onboard storage capacity, and data transmission, remote sensing
images obtained must make a tradeoff between spatial and
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spectral resolutions [1]. Whereas most satellites provide high-
resolution (HR) panchromatic (PAN) images alongside low-
resolution (LR) multispectral (MS) images, rather than HR-MS
imagery. The combination of an MS image with a fine spatial
resolution PAN image, called PAN sharpening (pansharpening),
can overcome the limitation by incorporating complementary
spatial and spectral advantages from HR-PAN and LR-MS im-
ages [2], [3]. An effective PAN method can increase the avail-
ability of remote sensing images and be highly advantageous
for subsequent remote sensing tasks such as change and target
detection.

Numerous pansharpening methods have been developed over
the years. Vivone et al. [4] categorized these methods into two
groups: component substitution (CS) and multiresolution analy-
sis (MRA). CS-based methods use forward spectral transforma-
tion to replace a specific spatial part of MS with PAN, followed
by an inverse spectral transformation to obtain the HR-MS im-
age [5], [6], [7], [8], [9], [10], [11], [12]. This category includes
classical methods such as principal component analysis [13],
intensity–hue–saturation [14], and Gram–Schmidt (GS) meth-
ods [9], [15]. MRA-based methods use different MRA tools,
such as wavelet transform [16] and Laplacian pyramid [17], to
split the input images into low- and high-frequency components.
A specific method is then employed to regenerate the HR-MS
pansharpened image by fusing the low- and high-frequency
components. Well-known techniques in this category include ad-
ditive wavelet luminance proportional (AWLP) and generalized
Laplacian pyramid (GLP)-based methods [18], [19], [20], [21],
[22], [23]. Variational optimization (VO)-based pansharpening
methods have also been proposed, which are based on variational
theory and rely on energy function optimization [24], [25], [26],
[27], [28], [29], [30], [31]. Deep learning (DL)-based methods
establish a complex mapping between the original images and
the pansharpening images based on the deep neural network
(DNN). With the supervision of large-scale paired images, the
networks learn to generate the HR-MS image [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41].

Since the topic of pansharpening was put forward, qual-
ity assessment has been pivotal in related research. The con-
struction of a rational mathematical model can facilitate the
swift and efficient evaluation of fused HR-MS images, thereby
contributing to the control and optimization of the remote sens-
ing system. First, due to the inherent absence of HR-MS images,
the applicability of the pansharpened images is essential for fu-
ture processing. Pansharpening often performs as a preliminary
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Fig. 1. Comparison of (a) reduced-resolution and (b) full-resolution pansharp-
ening quality assessment.

step for other remote sensing tasks, such as change detec-
tion [42], [43], segmentation [44], scene classification [45], and
so forth. HR-MS images obtained by effective pansharpening
methods are highly desirable. Hence, the quality assessment of
pansharpening HR-MS images should be given much attention.
Second, from the perspective of a satellite system, an efficient
quality assessment method can optimize system efficiency under
constraints such as bandwidth. In [42], it was noted that although
pansharpened images result in higher quality change detection
maps, the presence of pansharpening artifacts adversely affects
the detection process. As a result, an appropriate pansharpening
method is critical to the efficient functioning of the entire re-
mote sensing system. For this purpose, specialized and targeted
quality assessment methods must be developed.

In a word, accurate quality evaluation is crucial to ensure the
reliability of remote sensing systems. However, assessing the
quality of HR-MS images remains challenging due to the com-
plexity of multimodal fusion and the absence of HR reference
images. To address this issue, Wald et al. [46], [47] proposed two
characteristics that pansharpened image evaluation should meet:
1) consistency: any HR-MS image when degraded to its original
resolution should be as identical as possible to the original MS
data; and 2) synthesis: the fusion product should be as identical
as possible to the MS imagery that the corresponding sensor
would observe at the highest resolution.

The two characteristics mentioned above give rise to two kinds
of pansharpened image quality assessment (PIQA) approach:
reduced-resolution (RR) evaluation and full-resolution (FR)
evaluation. RR evaluation is based on the synthesis principle, as
depicted in Fig. 1(a). The original HR-PAN and LR-MS images
are spatially degraded by ideal filters (e.g., modulation trans-
fer function-matched filters) based on their spatial resolution

Fig. 2. Comparison between measurements of general IQA and FR-PIQA.
The top is the measurements of general IQA, and the bottom is the FR-PIQA.

ratio. Then, the degraded MS images are pansharpened by the
degraded PAN images, and the original MS image serves as the
reference image for quality assessment. Accordingly, several RR
quality assessment metrics with reference are developed, includ-
ing spectral angle mapper (SAM) [48], peak signal-to-noise ratio
(PSNR) [49], structural similarity (SSIM) [50], erreur relative
globale adimensionnelle de synthése (ERGAS) [51], correlation
coefficient (CC) [52], universal image quality index (UIQI) [53],
the UIQI of pansharpened MS imagery Q4 [54], and Q2n that
could be regarded as the multiband extended version of Q4 [55].

Although LR-MS is available as a reference in RR evaluation,
degradation poses constraints on the entire procedure. As Selva
et al. [56] pointed out, the scale-invariant hypothesis may be in-
valid, making it difficult to guarantee the quality of the degraded
pansharpened images to be the same as that of pristine ones.
Due to the inherent flaws, applying RR evaluation in remote
sensing systems can be challenging. To achieve a more precise
quality evaluation, several studies focus on FR evaluation. This
approach evaluates the quality of the pansharpened image at
HR-PAN resolution without the HR-MS reference image or any
degradation in the fusion process, as depicted in Fig. 1(b).

However, due to such a direct evaluation process, the FR qual-
ity assessment approach faces two major challenges in imple-
mentation: 1) how to evaluate the image quality when a reference
image is absent and 2) how to measure the effectiveness of the
FR methods when ground truth is absent, as depicted by the red
cross in Fig. 1(b). In the RR approach, researchers evaluated the
dissimilarity between pansharpened images and the original MS
images to predict image quality. To address reference-absence
evaluation, researchers developed hand-crafted and learning fea-
tures on spatial and spectral domains to abstract image features
for FR quality evaluation without comparison.

When it comes to measuring the effectiveness of quality
assessment methods, as Fig. 2 revealed, the general image
quality assessment (IQA) is done by comparing the subjective
(human-rated) data and predicting quality scores to measure the
effectiveness of the IQA techniques. This enables an accurate
measurement how well IQA techniques perform in comparison
to human visual perception. However, for the task of PIQA,
it is challenging to obtain a large number of satellite images
due to professional issues. In addition, remote sensing data
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Fig. 3. Framework of the study, containing the solution to the absence of
ground truth and reference, corresponding to Sections II and III. And the board
experiments are in Section IV.

possess distinct properties essential for professional use, mak-
ing it difficult to rely on human grading and create a sizable
subjective database. To overcome these challenges, researchers
have employed two strategies to measure the efficiency of FR
methods: 1) objective strategy based on RR and 2) subjective
strategy based on the human visual system (HVS). The objective
strategy regards the RR evaluation as a benchmark and adopts the
RR predicting results as the proxy ground truth to evaluate the FR
methods. On the other hand, the subjective strategy adheres to the
implementation of general IQA and utilizes human-rated data
to complete the HVS-related measurement of the FR method.
By utilizing these two kinds of approaches, researchers can
achieve a quantitative comprehension of the effectiveness of
FR methods. Such a measuring approach can be valuable for
uncovering potential limitations or issues with FR algorithms
and can ultimately lead to improvements in method design and
implementation.

To systematically understand how current researchers solve
the challenges of FR (absence of reference and ground truth),
we provide a summary and comparison of current FR methods.
While there is an existing survey on FR quality assessment [57],
the work focuses on contrasting four FR methods and highlight-
ing the methodologies. In this article, we give an overview of
how the FR methods address the aforementioned challenges by
synthesizing and comparing various FR methods. In summary,
the major contributions are as follows, and the framework is
depicted in Fig. 3.

1) A classification approach for FR methods based on feature
extraction: In this study, we reviewed various FR methods
and analyzed how they extract spatial and spectral features
from pansharpened images without reference to HR-MS
images. We also presented a classification approach for FR
methods based on the measure of feature extraction. For
practitioners, grouping these methods can help to compare
and select the most appropriate FR method for specific
requirements, which are considered with multiple factors
such as spatial and dynamic range, data type, and the level
of complexity.

2) The summary of strategies for FR method measuring:
Facing the absence of ground truth, we concluded the
strategy on how to generate the proxy ground truth for
performance measurements. The strategies are classified

into subjective and objective ones, and the two kinds of
strategies are qualitatively analyzed.

3) Unified board analysis on a large-scale public database:
A board analysis is conducted on a large-scale public
pansharpened database with unified measuring criteria.
Experiments from a perspective of statistical analysis are
presented to support the theoretical analysis of the FR
protocols and to evaluate their performance, providing a
wide qualitative and quantitative analysis.

The rest of this article is organized as follows. Section I
presents the introduction of the whole work. Section II concludes
the strategies for FR method measuring, while the summary
and classification of FR methods are provided in Section III.
Experimental results and statistical discussion are presented in
Section IV. Finally, Section V concludes this article.

II. SOLUTION TO ABSENCE OF GROUND TRUTH: OBJECTIVE

AND SUBJECTIVE

As mentioned in Section I, due to the lack of ground truth,
measuring of the FR methods is ambiguous, which may hinder
the development of FR methods. Currently, researchers em-
ploy two kinds of strategies to face and solve the challenge:
1) objective strategy based on RR and 2) subjective strategy
based on the HVS.

A. Objective Strategy

Since the RR methods can refer to the original MS images
and predict the pansharpened image quality by comparing the
corresponding data in the spatial and spectral domains, some
researchers consider that the prediction of RR is more reliable
and reasonable. Therefore, most studies regard the well-known
RR protocols as a benchmark and adopt the RR predicting
results as the proxy ground truth to measure the FR methods.
By comparing the prediction of FR methods with the proxy
ground truth, the effectiveness of the FR methods is measured.
The mainly adopted measuring criteria are global quality rank
and root-mean-square error (RMSE). Specifically, QNR [58],
FQNR [59], RQNR [60], HQNR [61], quality estimation by
fitting (QEF) [62], and joint quality measure (JQM) [63] are
compared with SAM [48], ERGAS [51], and Q4 [54] on the
global quality rank. Besides the rank comparison, researchers
also compute the RMSE with Q2n prediction to measure the
performance of Kalman QEF (KQEF) [64], CQE [65], and ODA
analyzer [66].

The objective strategy relies on proxy ground truth, which can
be accessed easily via the public RR protocols. However, this
strategy has some flaws. First, as was said in Section I, due to the
inherent degradation process, the prediction of the RR protocols
may not always be precise and consistent with the pristine
pansharpened images. This can affect the accuracy of measuring
results. Second, the performance of different RR methods is not
always robust. In our work, we selected six images from public
datasets and compute the SAM [48], ERGAS [51], and Q2n

[55] metrics of the images with the aid of AWLP [67] in the
RR approach, as depicted in Fig. 4. As shown in Table I, the
predicting results vary among different RR methods, and the
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Fig. 4. Six pairs of LR-MS, HR-PAN, and HR-MS images. (a) Captured by IKONOS, with a spatial dimension of 1 and 4 m, and a spectral dimension of one and
four bands. (b) Captured by QuickBird, with a spatial dimension of 0.61 and 2.44 m, and a spectral dimension of one and four bands. (c) Captured by GaoFen-1,
with a spatial dimension of 2 and 8 m, and a spectral dimension of one and four bands. (d) Captured by WorldView-4, with a spatial dimension of 0.31 and 1.24 m,
and a spectral dimension of one and four bands. (e) Captured by WorldView-2, with a spatial dimension of 0.5 and 2 m, and a spectral dimension of one and
eight bands. (f) Captured by WorldView-3, with a spatial dimension of 0.31 and 1.24 m, and a spectral dimension of one and eight bands. The HR-MS images are
generated by AWLP [67].

TABLE I
DIFFERENT RR PREDICTING RESULTS OF SIX IMAGES FROM PUBLIC DATASETS

predicted rank of the example images is not consistent. The error
may be attributable to the various computational approaches and
mathematical tools in different RR protocols. However, given
the difficulty in obtaining ground truth, the advantage of the
objective strategy lies in its efficiency and convenience. With
such high efficiency, occasional errors and instability can also
be tolerated.

B. Subjective Strategy

Confined with the inconsistency of the RR protocols, some
researchers worked to build large-scale datasets that will pro-
vide uniform subjective data based on the HVS as the ground
truth [66], [68]. The subjective dataset in [68] was established on
the human rating of 13 620 pansharpened images acquired from
IKONOS, QuickBird, GaoFen-1, WorldView-2, WorldView-3,
and WorldView-4 satellite sensors by 28 participants. Before the

formal subjective test, all the participants were asked to view
60 testing data and gave corresponding scores to understand
the rating criteria. In the formal test, each participant tested
300 data items at each time. Furthermore, original subjective
scores were further processed by excluding unreliable subjects
and normalized to obtain the difference mean opinion scores.
And the subjective dataset in [66] containing 135 images from
IKONOS was established based on 33 participants’ ratings.
Especially, the subjects were asked to rate the distortion present
in the images such as artifacts, insufficient color representation,
lack of sharpness, and over-/underexposure.

Based on the subjective dataset, some FR methods are
measured with the HVS-related ground truth, including [66],
[69], [70], [71]. For these methods based on the subjective
strategy, the measuring metrics, Spearman rank-order correla-
tion coefficient (SROCC), Pearson linear correlation coefficient
(PLCC), Kendall rank-order correlation coefficient (KROCC),
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and RMSE, are the same as those used in general IQA. These
metrics are intended to calculate the correlation between pre-
dicted results and ground truth.

As for the subjective strategy, it takes human perception as the
standard and involves perception by numerous volunteers and
data preprocessing. This makes the subjective ground truth more
robust than the proxy labels generated by the objective strategy
based on RR protocols. However, there are some drawbacks
to consider. First, the acquisition of remote sensing images is
expensive, and building such a large database is time consuming
and labor intensive. Second, pansharpening is primarily used
for machine analysis rather than human viewing. Therefore, the
ground truth generated by human observation and perception
may be misleading to machine-related tasks. Third, the subjec-
tive ground truth may lag behind the developing pansharpening
method. We can only adopt the existing pansharpening methods
to process the MS and PAN images and then conduct a subjective
study to get the reliable ground truth. The problem is that
advanced pansharpening methods in the future might not have
corresponding ground truth available, and this issue cannot be
solved completely. In summary, the subjective strategy is more
robust but has limitations due to the high cost of acquiring
images, the subjective nature of human perception, and potential
issues with keeping pace with advancements in pansharpening
methods.

III. SOLUTION TO FR QUALITY ASSESSMENT

From a practical perspective, the use of FR assessment is
advantageous as it allows for direct validation on a large scale.
However, FR presents a greater scientific challenge compared
to RR, primarily due to the need for a suitable strategy to
overcome the lack of a reference image without resorting to
spatial degradation. The process of FR methods involves ex-
tracting both spectral and spatial information to represent the
pansharpened image and then assessing its quality. Based on
feature acquisition, FR methods can be divided into two main
categories: hand-crafted and learning features. The following
are descriptions of each category.

A. Methods Based on Hand-Crafted Features

During the early stages of FR methods, the primary approach
to assessment was based on hand-crafted features of spatial and
spectral distortions. Researchers developed specific parameters
to represent the features that differentiate distortions. These
methods can be divided into two groups based on whether the
features are filtered to obtain a partial proxy reference or not.

1) Quality Assessment With Pristine Features: One of the
earliest FR evaluation methods was proposed by Zhou et al. [72].
This method employed the high-pass Laplacian filter to separate
the high-spatial-frequency components. The spatial CC was
then extracted as the spatial feature by using the CC between
the spatial details of the pansharpened image and those of the
original PAN image. In addition, the spectral distortion was cal-
culated band by band by utilizing the average absolute difference
between the pansharpened band and the interpolated MS band.

The spatial and spectral distortion are calculated as follows:

Ds = CC(FH , PH) (1)

Dλ,b =
1

I × J

∑
i

∑
j

∣∣∣Fi,j,b − M̃i,j,b

∣∣∣ (2)

where F is the pansharpened HR-MS image, P is the original
HR-PAN image, M is the original LR-MS image, and M̃ is the
MS image upsampled to PAN scale. FH and PH indicate the
high-pass components of F and P , respectively. CC denotes the
CC computing. Besides, i and j are the pixel locations, I and J
denote the spatial dimension sizes, and b denotes the bth spectral
band.

The most widespread FR assessment method to date is the
QNR protocol [58]. It determines the quality of the pansharpened
image by evaluating the preservation of the original relationships
of the input pansharpening data. Changes in intrarelationships
between MS bands are regarded as spectral distortions, while
changes in interrelationships between MS and PAN are regarded
as spatial distortions. And the difference operator UIQI is used to
assess the similarity of the relationship. The spatial and spectral
distortion of QNR is calculated as follows:

Ds =
1

B

B∑
b=1

|Q(Fb, P )−Q(Mb, PL)| (3)

Dλ =
1

B × (B − 1)

B∑
b=1

B∑
c=1,c �=b

∣∣∣Q(Fb, Fc)−Q(M̃b, M̃c)
∣∣∣
(4)

QNR = (1−Dλ)
α(1−Ds)

β (5)

where PL is the downsampled PAN image.
The QNR protocol has been a widely used FR assessment

method for evaluating the quality of pansharpened images. Sev-
eral variations of QNR have been developed, including the gen-
eral QNR (GQNR) [73], which is a QNR-like protocol without
filtering. The GQNR approach addresses the issue of inaccurate
spatial distortion prediction caused by spectral overlap between
the PAN and short-wave infrared bands in WorldView-3 images.
To overcome this issue, the GQNR protocol applies the natural
image quality evaluator (NIQE) [74] model to characterize spa-
tial distortion and then integrates the spectral distortion index
in the QNR to obtain the final quality prediction, calculated as
follows:

DG
s = NIQE(F ) (6)

DG
λ = Dλ (7)

GQNR = DG
s ·DG

λ (8)

where NIQE denotes the natural image quality evaluator model
proposed in [74].

The methods that do not involve filtering are the most straight-
forward means of evaluation and offer direct calculation. How-
ever, they may not provide an accurate assessment of spectral
quality. This is because when such methods measure spectral
distortion, the image with the least spectral distortion will be
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one that has no spatial features combined, such as a simple
interpolated MS image. To address this paradox, some methods
incorporate spectral degradation to assess quality.

2) Quality Assessment With Filtered Features: The FQNR
protocol [59] was the first to significantly modify the original
QNR from the perspective of spectral distortion. It is widely
accepted that any color difference between the pansharpened MS
and the original MS data is an indicator of spectral distortions.
However, direct evaluation is impossible as there is no-reference
(NR) MS image. The FQNR protocol has introduced an innova-
tive approach to assess the spectral preservation of the pansharp-
ened images by applying Wald’s protocol’s consistency property.
MTF-matched filters are utilized to execute the degradation of
the MS bands, and a nearly ideal filter is used for the PAN
images’ consistency property evaluation. For spectral distortion,
each fused MS band is spatially filtered and decimated with a
specific MTF-matched filter, and the Q2n index between the
original MS data and the degraded pansharpened MS images is
calculated. After that, a unit complementary value is employed
to compute the spectral distortion index, calculated as follows:

DF
λ = 1−Q2n(FL↓,M) (9)

where FL↓ indicates the decimated fused images by MTF filter-
ing.

For spatial distortion, the QNR measures spatial distortions
by computing changes in the relationships between the PAN and
MS bands. The FQNR differs from the QNR in that it compares
the relationships between the high-frequency components of the
PAN and those of the MS bands across scales. PAN and MS
are computed at each scale and compared in terms of the UIQI
before their absolute difference is measured and averaged for
the number of spectral bands. The spatial distortion and FQNR
are calculated as follows:

DF
s =

1

B

B∑
b=1

|Q(Mb,H , PL↓H)−Q(Fb,H , PH)| (10)

FQNR = (1−DF
λ )α(1−DF

s )
β (11)

whereMb,H ,Fb,H , andPH indicate the high-pass LR-MS, fused
HR-MS, and HR-PAN image by MTF filtering, respectively, and
PL↓H is the high-pass decimated LR-PAN image.

The HQNR, proposed in [61], combines the advantages of
both the FQNR and the QNR. It utilizes the successful consis-
tency approach of the FQNR for assessing spectral quality. In
addition, the HQNR uses the spatial distortion technique of the
QNR to evaluate spatial quality. The HQNR is calculated as
follows:

HQNR = (1−DF
λ )α(1−Ds)

β . (12)

The RQNR provides a further QNR variation [60]. The FQNR’s
spectral consistency approach is adopted. The innovation of
the RQNR is in the spatial quality assessment. According to
the reasoning, the MS bands after being pansharpened should
match the PAN band. Therefore, the PAN can be described as
a linear combination of the MS bands as a linear combination.
Therefore, the RQNR leverages the coefficient of determination
of the multivariate linear regression (MLR) between the fused
MS and the FR PAN image to assess spatial fidelity.

According to [60], the RQNR is a variation of QNR that adopts
the spectral consistency approach used by the FQNR but also
includes the spatial quality assessment. The method involves
calculating a MLR between the fused MS and the FR PAN image,
where the PAN can be described as a linear combination of the
MS bands. The coefficient of determination from this MLR is
then used to assess spatial fidelity. This innovation in the RQNR
allows for a more comprehensive evaluation of image fusion
quality.

Besides the QNR-like protocols, other methods are also pro-
posed. In [62], a multiscale approach-based quality assessment
framework called QEF was proposed. QEF recasts the FR as-
sessment as a regression problem, where the metrics computed
at several degraded resolution scales are independent variables
and the metrics computed at the full scale are dependent vari-
ables. QEF iteratively performs the spatial degradation of Wald’s
protocol to generate quality/distortion metric functions of the
ground sample distance (GSD). The quality at the full scale is
then inferred through proper interpolation techniques. However,
the fundamental drawback of this method is the absence of FR
measurements in the quality estimation procedure.

The KQEF was developed based on the QEF method to
address the lack of an FR index in the framework [64]. To over-
come this flaw, a sequential Bayesian framework methodology
using Kalman filters was proposed. The KQEF integrates the
QEF multiresolution framework without the use of RR indices.
At each scale of degraded resolution, the HQNR index and
the Q2n index are generated, and two sequences of quality
measurements, which are a function of the GSD, are used for
the Kalman filter to infer quality prediction at the full scale. A
less computationally demanding version of KQEF is proposed
in [65], where the degradation iteration of reproducing fusion at
multiple coarser resolutions and evaluation of an index without
reference is required at each scale.

The JQM was proposed as another procedure for evaluating
quality in [63] and [75]. Unlike QNR, the JQM calculates a
weighted sum of two terms. The first term is the spatial quality,
which is determined by comparing a low-pass filtered pansharp-
ened image and the original MS image at an LR/RR scale.
The second term is the spectral quality, which is determined by
measuring the intensity estimated from the spectrally weighted
pansharpened MS image and the original PAN image at an HR
scale. The JQM differs from other QNR-like protocols by using
SSIM metrics and a composite similarity measure based on
means, standard deviations, and correlation coefficient (CMSC),
rather than the conventional UIQI. The author contends that the
CMSC’s offering of translation invariance is more relevant for
distant sensing applications like clustering and change detection
than the UIQI. And the SSIM version of JQM can be calculated
as

DJQM
s = SSIM

(
P,

1

B

B∑
b=1

Fb

)
(13)

DJQM
λ =

1

B

B∑
b=1

SSIM(Mb, FL↓). (14)
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This kind of methods utilizing filtering rely on Wald’s pro-
tocols’ consistency property to assess quality. However, it is
important to note that filtering/degradation cannot be ignored
as it may have significant impacts, similar to the RR methods.
Furthermore, these methods often use simple hand-crafted fea-
tures, which may not be able to adequately represent complex
structures and both spectral and spatial distortions, as opposed
to just their interrelationships.

B. Methods Based on Learning Features

With the development of machine learning (ML) and DL
strategies, researchers are also focusing on extracting learning-
based features for FR evaluation.

Unlike the stepwise evaluation of the spectral, spatial, and
final overall quality score using a weighted combination, which
can introduce inconsistent results, Meng et al. [70] directly
analyze the quality of fused images. To increase the robustness of
the evaluation model, the proposed method is patch based rather
than relying on a single pixel. The evaluation model considers
all the spatial and spectral features that are sensitive to spatial
and spectral distortions of the fused image. These features are
simultaneously trained based on online benchmark multivariate
Gaussian (MVG) fitting. Assuming that the spectral relations
between the ideal pansharpened and original MS images should
not be changed, a pristine benchmark assessment model is
first created using the spatial characteristics extracted from the
original HR-PAN image and the spectral features. The spatial
information from the fused picture and the spectral features from
the spectral variation between the fused and MS images serve
as the foundation for a testing assessment model. The distance
between the benchmark and testing models is the final metric
used to evaluate the quality of the fused image.

Similarly, Zhou et al. [71] proposed an opinion-aware method
to evaluate quality. The method extracts features from the spec-
tral bands and typical information indices of the MS images that
comprehensively reflect spatial distortion, spectral distortion,
and the effects of pansharpening on applications. Using the fea-
tures extracted from the pristine MS image training dataset, an
MVG model is learned to evaluate image quality. This approach
enables the model to capture both the objective and subjective
aspects of image fusion evaluation.

With the continuous development of techniques, DNNs have
become capable of automatically extracting more deep features
relevant to quality assessment and optimizing these features
using the backpropagation method to improve prediction per-
formance. As a result, the DNN has been applied to various
IQA and video quality assessment methods and provides a
promising option for addressing the challenging FR task. Bao
et al. [69] designed a Siamese framework to collaboratively learn
the spatial, spectral, and overall quality of the fused image.
The feature extraction layer’s parameters in the spatial and
spectral evaluation models are frozen for the overall evalua-
tion model, which improves accuracy and convergence speed.
This approach effectively captures spatial–spectral features from
different sources and results in more robust and representative
metrics for evaluating FR performance.

Fig. 5. Framework of the kind of methods that are based on learning features.

Badal et al. [76] proposed a learning-based NR approach
to assess the quality of pansharpened images. This approach
can predict state-of-the-art reference-based measures such as
Q2n and SAM without requiring a reference image. They then
designed an end-to-end deep pansharpening IQA network that
computes the similarity of deep features fused from the PAN and
input LR MS images with similar features extracted from the
given pansharpened image. By leveraging the power of DL, this
method can automatically learn discriminative spatial–spectral
features and accurately evaluate the quality of a pansharpened
image without relying on a reference image. Furthermore, the
proposed NR evaluation approach is beneficial for applications
where a ground truth reference image may not be available.

This kind of learning-based method in IQA can extract more
effective and targeted features for quality evaluation and can
be depicted in Fig. 5. However, they may face challenges when
ground truth is not available, which is a common issue in various
research areas. Breaking through the limit of ground truth can en-
able the DL method to make more significant progress in PIQA.
By synthesizing large-scale training datasets with well-designed
subjective experiments, DNNs can learn to assess image quality
using visual cues that are similar to human perception. In ad-
dition, transfer learning and self-supervised learning techniques
can also be leveraged to reduce the dependence on large amounts
of labeled data and customize the network for specific tasks.
Therefore, there is great potential for DL to make strides in
PIQA.

IV. EXPERIMENTS

A. Experimental Setup

1) Databases: We chose a large-scale benchmark dataset
for pansharpening performance evaluation for a comprehensive
comparison [77]. The dataset consists of 2270 pairs of HR-PAN
and LR-MS images, and the details are shown in Table II.
The dataset was grouped by remote sensing satellite types,
consisting of 200 pairs of IKONOS PAN/MS images, 500 pairs
of QuickBird PAN/MS images, 410 pairs of GaoFen-1 PAN/MS
images, 500 pairs of WorldView-2 PAN/MS images, 500 pairs of
WorldView-4 PAN/MS images, and 160 pairs of WorldView-3
PAN/MS images. The PAN images have a spatial dimension of
1024 × 024, and the MS images have a spatial dimension of 256
× 256. In the spectral dimension, the MS images from IKONOS,
QuickBird, GaoFen-1, and WorldView-4 have four bands, and
the WorldView-2 and WorldView-3 MS images have eight.
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TABLE II
DETAILS OF THE LARGE-SCALE BENCHMARK PANSHARPENING DATASET

2) Implementation Details: The experimental validation re-
lies on 25 pansharpening methods belonging to the four main
categories recalled in Section I: CS-based [5], [6], [7], [8],
[9], [10], [11], [12], MRA-based [11], [18], [19], [20], [21],
[22], [23], [67], VO-based [26], [27], [28], [29], [30], [31], and
DL-based [40], [41], with an ideal interpolator (EXP). Among
the FR quality assessment described in Section III, we adopt
four pubic metrics: QNR [58], FQNR [59], HQNR [61], and
RQNR [60] with their spatial and spectral distortion indices for
quantitative and qualitative comparison.

We employed the above 25 pansharpening methods to gener-
ate the HR-MS images, where a total of 56 750 images based
on 2270 pairs of PAN/MS images are obtained. The codes we
used are from the public MATLAB toolbox proposed in [78].
After that, we assess the quality of 56 750 images based on
four FR methods. All the experiments are conducted on MAT-
LAB2022R.

3) Performance Criteria: To face the absence of ground
truth, we adopted the objective strategy: RR protocol Q2n as
the reference. Besides the global numerical comparison, we
also measure the FR methods’ performance using the SROCC,
PLCC, KROCC, and RMSE between the predicted quality
scores and ground truth generated by Q2n in Table III.

Given N distorted images, the ground truth and predicted
quality is represented by yi and ŷi, respectively. The SROCC is
calculated as follows:

SROCC = 1− 6
∑N

i−1(vi − pi)
2

N(N2 − 1)
(15)

where vi is the rank of the ground truth yi, and pi is the rank of
the predicted quality ui of all N images.

The PLCC is calculated as follows:

PLCC =

∑n
i=1(yi − ȳ)(ŷi − ¯̂y)√∑n

i=1(yi − ȳ)2
√∑n

i=1(ŷi − ¯̂y)2
(16)

where ȳ and ¯̂y are the means of y and yi, respectively.
The KROCC is calculated as follows:

KROCC =
Nc −Nd

1
2N(N − 1)

(17)

where Nc is the number of concordant pairs in the observations,
and Nd is the number of discordant pairs.

The RMSE is calculated as follows:

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)2. (18)

Higher SROCC, PLCC, and KROCC values and lower RMSE
values represent a quality assessment method closer to Q2n.

B. Performance of the FR Methods

To evaluate the effectiveness of the four FR quality evaluation
metrics, we conducted a large-scale macroscopic quality evalu-
ation with results in Table III. We assessed the FR quality of all
56 750 HR-MS images generated in the six individual databases.
The FR quality prediction results were compared with the Q2n

proxy ground truth for statistical evaluation.
As indicated in Table III, the evaluation of different algorithms

for spatial distortion has shown relatively promising results.
Among the algorithms considered, FQNR [59], HQNR [61], and
RQNR [60] exhibit excellent performance and robustness across
all the datasets. These metrics outperform the spatial distortion
index in QNR and demonstrate more consistent performance
across multiple datasets. Specifically, while the Dλ of QNR
performs well on the WorldView-2 database, it shows poor
performance on other databases. In contrast, DF

λ , DH
λ , and DR

λ

show superior performance on each respective database. This
improved performance can be attributed to their tailored feature
extraction strategy based on MTF filtering. The MTF filtering
approach provides more informative and reference-based mea-
surements compared to QNR’s simple distance computation,
resulting in better performance.

In terms of spectral distortion evaluation, Ds and DH
s show

better performance compared to other spectral distortion indices.
However, these metrics still have room for improvement. One
of the challenges in measuring spectral distortion is that it is not
as apparent as spatial distortion in PAN sharpening. Exploring
spectral distortion requires considering information from multi-
ple frequency bands, making it more complex and challenging.
In addition, the use of Q2n as a proxy ground truth may not
provide a sufficient measurement of spectral distortion infor-
mation, leading to generally lower performance of the spectral
indicator. In summary, the feature extraction and measurement
of spectral distortion are still key and challenging points of
pansharpening.

Overall, among the four algorithms considered, the HQNR
algorithm demonstrates the best performance. This is because it
combines indicators that exhibit superior performance in both
spatial and spectral domains. The FQNR and RQNR algorithms
also show competitive performance and relative stability. In
contrast, the QNR algorithm performs poorly and is unstable,
particularly showing high performance on WorldView-2 and
WorldView-3 datasets but extremely poor performance on the
GaoFen-1 dataset. This discrepancy can be attributed to the
relatively simple measurement method used in QNR, which may
not effectively capture the complexity of the data.

However, there is still room for improvement in the mea-
surement of spectral distortion in all the methods. Enhancing
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TABLE III
STATISTICAL RESULTS OF THE FOUR PUBLIC FR METHODS WITH THEIR SUBCOMPONENTS

the measurement of spectral distortion is a crucial and chal-
lenging aspect of PIQA. Future developments in FR algorithms
can greatly benefit from innovations that substantially improve
the performance of spectral distortion measurement. Further
advancements in spectral distortion extraction and evaluation
methods are needed to enhance the overall performance of FR
algorithms.

C. Numerical Comparison of Pansharpening Methods on
Individual Datasets

This section is dedicated to presenting the experimental re-
sults obtained at FR. We compute the average value of the
HR-MS image quality score for the specific pansharpening
method. Tables IV–IX report the numerical scores in the six
individual datasets for all of the QNR, FQNR, HQNR, RQNR,
and their subindices. And Figs. 6 and 7 show the outcomes of
26 pansharpening methods generated from two pairs of example
images in IKONOS and WorldView-3, while the quality scores
predicted by QNR are attached. The comparison of the results

will be conducted by dividing the section into four subsections,
each representing a class of pansharpening methods.

1) CS-Based Methods: In the CS-based class, BDSD-PC,
C-GSA, and PRACS have been shown to provide high numerical
scores. Moreover, C-BDSD and C-GSA outperform the original
BDSD and GSA methods. The segmentation algorithm helps to
constrain the range of spatial distortion generation, leading to a
considerable reduction in distortion. This reduction in distortion
is reflected in the high numerical scores achieved by BDSD-PC,
C-GSA, and PRACS, while C-BDSD and C-GSA outperform
their original versions. Among the methods in this class, the
PRACS method stands out as the most effective pansharpening
method, as it obtains the best results in terms of the chosen qual-
ity indexes without reference. This method rewards the balance
between detail enhancement and consistency with respect to the
original images.

2) MRA-Based Methods: The MRA class comprises high-
performance methods, including AWLP, MTF-GLP-HPM-H,
and C-MTF-GLP-CBD. The MTF-GLP-HPM-H method is par-
ticularly effective in excluding haze from the pansharpening
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TABLE IV
FR NUMERICAL SCORES FOR THE IKONOS DATASET

TABLE V
FR NUMERICAL SCORES FOR THE QUICKBIRD DATASET
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TABLE VI
FR NUMERICAL SCORES FOR THE GAOFEN-1 DATASET

TABLE VII
FR NUMERICAL SCORES FOR THE WORLDVIEW-2 DATASET
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TABLE VIII
FR NUMERICAL SCORES FOR THE WORLDVIEW-4 DATASET

TABLE IX
FR NUMERICAL SCORES FOR THE WORLDVIEW-3 DATASET
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Fig. 6. FR fusion outcomes of a close-up view of the IKONOS exampled image, using a true-color representation. The LR-MS has a dimension size of 256×256×4,
the HR-PAN is 1024 × 1024, while the outcomes are 1024×1024×4. The images and the quality predicted by QNR are as follows: BT-H: 0.7292; BDSD: 0.8217;
C-BDSD: 0.9019; BDSD-PC: 0.8156; GS: 0.7788; GSA: 0.6703; C-GSA: 0.7110; PRACS: 0.8574; AWLP: 0.6543; MTF-GLP: 0.6417; MTF-GLP-FS: 0.6895;
MTF-GLP-HPM: 0.6456; MTF-GLP-HPM-H: 0.7196; MTF-GLP-HPM-R: 0.6936; MTF-GLP-CBD: 0.6893; C-MTF-GLP-CBD: 0.7441; MF: 0.8441; FE-HPM:
0.7022; SR-D: 0.7973; PWMBF: 0.6509; TV: 0.9385; RR: 0.7186; PNN: 0.8335; PNN-IDX: 0.8374; A-PNN: 0.8668; and A-PNN-FT: 0.8649.

Fig. 7. FR fusion outcomes of a close-up view of the WorldView-3 exampled image, using a true-color representation. The LR-MS has a dimension size
of 256×256×8, the HR-PAN is 1024 × 1024, while the outcomes are 1024×1024×8. The images and the quality predicted by QNR are as follows: BT-H:
0.5797; BDSD: 0.7973; C-BDSD: 0.9033; BDSD-PC: 0.7410; GS: 0.8109; GSA: 0.8081; C-GSA: 0.7880; PRACS: 0.8769; AWLP: 0.6990; MTF-GLP: 0.6972;
MTF-GLP-FS: 0.8033; MTF-GLP-HPM: 0.7084; MTF-GLP-HPM-H: 0.6772; MTF-GLP-HPM-R: 0.8019; MTF-GLP-CBD: 0.8078; C-MTF-GLP-CBD: 0.7661;
MF: 0.7637; FE-HPM: 0.7693; SR-D: 0.9086; PWMBF: 0.7141; TV: 0.7384; RR: 0.6220; PNN: 0.6704; PNN-IDX: 0.7742; A-PNN: 0.7890; and A-PNN-FT:
0.7938.
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process, resulting in significant noise reduction. On the other
hand, the C-MTF-GLP-CBD method leverages a context-based
decision with a regression-based injection model that utilizes lo-
cal parameter estimation and clustering. The effective learning-
based techniques employed in C-MTF-GLP-CBD contribute to
reducing distortion in the pansharpening process.

3) VO-Based Methods: The VO-based class includes high-
performance methods, with SR-D demonstrating superior per-
formance over all other VO techniques for six datasets. The TV
method is particularly effective for the WorldView-3 dataset,
thanks to its spatial regularization strategy. However, since
GaoFen-1 and QuickBird lack TV and RR model parameters,
no experiments were conducted for these datasets. The FE-HPM
and PWMBF techniques generally fall behind these algorithms
in terms of performance. In comparison to the other class,
VO-based methods exhibit less robustness.

4) ML-Based Methods: The performance of ML-based
methods at FR is also satisfactory, especially when consider-
ing the HQNR metric, which summarizes optimal spatial and
spectral quality. However, lower performance is observed on
the WorldView-3 dataset. When analyzing the IKONOS data,
a progressive performance gain is observed when moving from
the basic model PNN to the most advanced model, A-PNN-FT.
PNN, PNN-IDX, and A-PNN show a performance drop in
WorldView-3, which may be due to a larger statistical shift
between the training and test datasets in this case. The significant
performance gain of A-PNN-FT over A-PNN on WorldView-3
confirms this intuition.

However, the good performance of A-PNN-FT comes at
the cost of additional computational efforts required for a
supplemental training phase. Due to the lack of model pa-
rameters, experiments were only conducted on IKONOS and
WorldView-3.

Based on our analysis of each database, the VO-based
methods, particularly the SR-D method, demonstrate the best
and most stable performance, with outstanding results on
WorldView-2, WorldView-3, WorldView-4, QuickBird, and
GaoFen-1. Although we only conducted experiments on
IKONOS due to the lack of model parameters, we predict that the
ML method can also perform well using effective DL methods.
In addition, the MRA-based and CS-based methods exhibit
strong performance on these databases. Moreover, the overall
performance for the eight-band WorldView-2 and WorldView-3
satellite images is relatively poorer than that of the four-band
IKONOS, QuickBird, GaoFen-1, and WorldView-4 satellite im-
ages. The lower performance of the eight-band WorldView-2 and
WorldView-3 satellite images may indicate that the increased
spectral diversity poses a challenge to PAN sharpening and
increases the likelihood of distortion.

V. CONCLUSION

This article presented a comprehensive study of FR-PIQA
methods. We proposed a classification approach for FR
methods based on feature extraction and analyzed how different
techniques extract spatial and spectral features from pansharp-
ened images without reference to HR-MS images. In addition,
we provided a summary of strategies to measure FR performance

in the absence of ground truth data, including both subjective
and objective strategies. Furthermore, we conducted a board
analysis on a large-scale public pansharpened database with uni-
fied measuring criteria. This analysis demonstrated the strengths
and limitations of different FR protocols through qualitative and
quantitative analysis from a statistical perspective. Looking to
the future, we anticipate the development of ground truth gener-
ation methods that should neither be limited to RR indicators nor
dependent on human perception. We believe that techniques such
as transfer learning and unsupervised learning can facilitate the
creation of fair ground truth data. By leveraging DL technology
and more reliable ground truth, it is possible to develop better
FR-PIQA methods that are more effective at feature extraction
and generalization.
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