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Adaptive Spatial and Difference Learning
for Change Detection
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Abstract—Change detection refers to revealing the surface
changes from multitemporal images of a given scene, where
changed regions of different size and shape may appear anywhere.
Convolutional neural network, as one of the most widely used deep
learning architectures, has shown good performance in change
detection task recently. However, due to multiple convolution and
pooling operators in deep architectures, it often happens that small
changes are missed and sharp edges are blurred. In this article,
an adaptive spatial and difference learning method is proposed
to tackle this problem, which mainly contains a feature-adapted
difference learning (FADL) module and a difference recalibration
(DR) module. In FADL, a kernel-adapted spatial learning part is
constructed to capture varying spatial information, which selects
proper kernels to adapt different shape and size of changed regions;
a joint feature refinement part is employed to learn comprehensive
features between bitemporal data, which are further enhanced by
difference information. In addition, DR with shallow features is
designed to recalibrate spatial and difference details further. From
the experiments on three public datasets, our proposed method
can relieve the spatial ambiguity problem and obtains the optimal
results among the compared change detection methods.

Index Terms—Adaptive spatial, change detection, difference
recalibration (DR), feature-adapted difference learning (FADL).

I. INTRODUCTION

CHANGE detection is an increasingly important technique
to identify changed and unchanged regions by analyzing

multitemporal images acquired at different times. It is widely

Manuscript received 6 April 2023; revised 29 June 2023; accepted 14 July
2023. Date of publication 24 July 2023; date of current version 15 August 2023.
This work was supported in part by the National Nature Science Foundations
of China under Grant 61802190, Grant 62276133, Grant 62171332, Grant
61871226, Grant 62071233, and Grant 62001226), in part by the Fundamental
Research Funds for the Central Universities under Grant JSGP202101 and Grant
JSGP202204, in part by the Nature Science Foundations of Jiangsu Province,
China under Grant BK20190451, and in part by the Open Research Fund
Program of LIESMARS Under Grant 22R04. (Corresponding author: Fang
Liu.)

Yangguang Liu, Jia Liu, and Liang Xiao are with the Jiangsu Key Laboratory
of Spectral Imaging & Intelligent Sense, the School of Computer Science
and Engineering, Nanjing University of Science and Technology, Nanjing,
Jiangsu 210094, China (e-mail: 207099533@qq.com; omegaliuj@gmail.com;
xiaoliang@mail.njust.edu.cn).

Fang Liu is with the Nanjing University of Science and Technology, Nanjing
210094, China, and also with the State Key Laboratory of Information Engi-
neering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan
430079, China (e-mail: fayliu77@163.com).

Xu Tang is with the Key Laboratory of Intelligent Perception and Image
Understanding of Ministry of Education, International Research Center for
Intelligent Perception and Computation, Xidian University, Xi’an, Shaanxi
710071, China (e-mail: tangxu128@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2023.3298097

used in urban planning [1], [2], disaster assessment [3], forest
monitoring [4], [5], and environmental monitoring [6].

In recent years, with the development of satellite sensors, the
temporal and spatial resolution has gradually improved, provid-
ing a rich source of data for the development of change detection.
High-resolution images contain more spatial information and
more detailed surface information, which is beneficial for the
development of change detection. At the same time, it also brings
many new challenges due to the increased variability within
ground objects caused by the increased resolution. First of all,
because the images taken in different periods cause imaging
differences due to light changes and seasonal changes, the first
difficulty in change detection is how to eliminate the effect of
“nonsemantic changes.” Second, in the change detection task,
since the size variance between the unchanged and changed re-
gions is usually large, it is necessary to eliminate class imbalance
problem. Third, the sizes of changed regions in different images
are different, and how to adapt to size of changes still needs to be
considered more deeply. Therefore, how to reduce “nonsemantic
changes,” extract useful features from remote sensing images,
and accurately detect changes of interest is an important problem
to be solved in the task of change detection.

Due to the importance of change detection techniques in many
applications, many methods have been proposed in the field of
change detection in recent years to meet different needs. The
simplest of these is the pixel-based method, which takes a single
pixel as the smallest unit of image processing and generates a
difference image (DI) by comparing spectral information be-
tween pixel pairs of bitemporal images. Finally, the final change
map (CM) is generated from the DI via image segmentation.
Pixel-based methods include image difference [7], regression
analysis [8], change vector analysis (CVA) [9], principal com-
ponent analysis (PCA) [10], [11], independent component anal-
ysis [12], and Kauth–Thomas transformation [13]. The object-
based method takes the set of pixels as the smallest unit of
image processing, namely the image object, which segments
the image into disjoint objects based on their shape, spectral
and texture features, and compares the classification results to
obtain the CM [14]. Moreover, compared to pixel-based change
detection that focuses on pixel-level changes and object-based
change detection that focuses on object-level changes, scene
change detection [15], [16] takes into account the changes of
the whole scene in a comprehensive manner. It compares and
analyzes multitemporal remote sensing images to determine the
type, scale, and spatial distribution of changes.
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As deep learning techniques emerge, the application of con-
volutional neural network (CNN)-led deep learning techniques
in the field of change detection becomes popular. Compared
with traditional models, CNN-based models have powerful non-
linear mapping capabilities, enabling them to capture detailed
image information and complex texture features. According
to the fusion strategy, CNN-based change detection networks
are divided into early fusion [17], [18], [19], [20] and late
fusion [21], [22], [23], [24] networks. The early fusion networks
input multitemporal images as a whole to the deep CNN. The
late fusion networks use Siamese networks to extract bitemporal
features first, and then, fuse them.

While deep learning techniques are driving the rapid develop-
ment of change detection, they are also facing some new prob-
lems. Since the receptive fields corresponding to different sizes
of convolutional kernels are different, and the sizes of change
regions in images usually vary widely, how to capture features of
varying sizes is especially important in the change detection task.
To address the aforementioned problems, many scholars have
proposed different solutions. InceptionNets [25], [26], [27], [28]
use multiple groups to capture multiscale features, each with a
different receptive field. UNet [29] captures multiscale features
by building a top-down architecture. Res2Net [30] extracts mul-
tiscale features by constructing hierarchical residual-style con-
nections using rich-scale blocks within a single residual block.
Furthermore, spatial and channel attention mechanisms [17],
[31], [32] are proposed for feature refinement. Although these
change detection methods have some effectiveness in extract-
ing multiscale features, a common problem they face is that
they cannot adaptively select the proper size convolution kernel
according to the different size and shape of changed regions,
which leads to small changes being missed and sharp edges
being blurred. Since objects of different size and shape have
different spatial information, how to choose proper convolution
kernels according to the changed regions of different size and
shape is still a problem to be considered.

To this end, we propose an adaptive spatial and difference
learning method. It follows an encoder–decoder structure, where
the encoder is used to capture multilevel features from bitem-
poral images. The feature-adapted difference learning (FADL)
module is constructed to acquire adaptive spatial knowledge
and perform difference learning. In detail, it selects proper
convolutional kernels according to the size and shape of changed
regions to capture the varying spatial information, which al-
lows some small changed regions of spatial information to be
retained. Then, difference learning is performed to make the
changed regions of different size and shape to be enhanced in the
comprehensive feature. At the same time, the distinguishability
between the changed and unchanged regions is further enhanced
by difference learning, which facilitates the formation of sharp
edges. In addition, to better highlight the changed features, a
difference recalibration (DR) module with shallow features is
introduced in the decoder to further recalibrate the spatial and
difference details. To summarize, the contributions of this article
are described as follows.

1) Aiming at the problems of missing of small changes and
blurring of sharp edges caused by traditional convolution

kernels when dealing with changed regions of different
size and shape, an adaptive spatial and difference learning
method is proposed, which mainly contains FADL module
and DR module.

2) In FADL, a kernel-adapted spatial learning (KASL) part is
constructed to capture varying spatial information, which
selects proper convolution kernels to adapt different size
and shape of changed regions; a joint feature refinement
(JFR) part is employed to learn comprehensive features
between bitemporal data, which are further enhanced by
difference information.

3) The proposed DR uses the precise location information of
the shallow features to weight the deep difference features
to further recalibrate the spatial and difference details.

The rest of this article is organized as follows. Section II
reviews related work. Section III describes our proposed adap-
tive spatial and difference learning method in detail. Section IV
conducts comparison experiments and ablation experiments on
three public datasets. Section V discusses the model efficiency
and the comparison between different loss functions. Finally,
Section VI concludes this article.

II. RELATED WORKS

Remote sensing image change detection is usually divided
into two processes. The first process is feature extraction of
multitemporal images, and the other process is to identify
changed regions in the images. The target of the first process
is to extract meaningful features in multitemporal images, such
as texture features and contextual information. The target of the
second process is to detect changes of interest by analyzing the
extracted multitemporal image features using change detection
techniques. Depending on the change detection techniques used,
they are divided into traditional change detection and deep
learning-based change detection.

A. Traditional Change Detection

Traditional change detection methods have been extensively
studied since the early stages of change detection. Depending on
the size of the processing unit, traditional methods are usually
divided into two categories: pixel based and object based. The
pixel-based methods are mainly classified as arithmetic based,
transformation based, and classification based. The simplest
of these pixel-based methods are arithmetic-based methods,
such as image difference [7]. Image transformation-based meth-
ods enhance spectral differences by mapping image spectral
information into other spectral spaces. CVA [33] obtains the
changes of the corresponding pixel pairs in each waveband by
spectral measurement and calculation of the bitemporal images,
forming change vectors and using threshold segmentation to
obtain the final CM. PCA [34] first extracts the effective in-
formation of the bitemporal image frequency band to gener-
ate DI, then compares it to the first principal component to
get the difference, and finally, obtains the final CM by im-
age segmentation. Classification-based methods use existing
image classification algorithms that first classify images, and
then, perform change detection, like decision tree (DT) [35]
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and support vector machine (SVM) [36]. There are also some
other algorithms. Multivariate change detection (MAD) [37]
highlights the features of change by performing variance on
the DI. Slow feature snalysis (SFA) [38] extracts time-invariant
features from bitemporal images and improves the separability
of changed pixels by suppressing the radiometric difference of
unchanged pixels. Pixel-based methods are simple in principle
and easy to implement, but they only focus on the spectral
variation of single pixels and ignore the spatial context infor-
mation, resulting in noisy outputs, isolated changing pixels,
and jagged boundaries. The advantage of object-based methods
over these pixel-based methods is that they exploit the spatial
context information of bitemporal images. Chen et al. [39]
propose a spatial contrast-enhanced change detection method
based on image objects to identify change regions by shape
differences between bitemporal images. In [40], a statistical
object-based method for forest monitoring is proposed, which
identifies changed objects by a chi-square test during an iterative
trimming process. Although object-based methods have some
advantages in delineating object boundaries, their accuracy is
very sensitive to the segmentation algorithm [41] employed,
which leads to instability in their detection results. Moreover,
these traditional change detection methods rely on handcrafted
features of remote sensing images and are susceptible to sensor
and lighting conditions, which limits their application in the field
of change detection.

B. Deep Learning-Based Change Detection

With the successful application of deep learning techniques
in other vision fields, it has been gradually extended to the
field of change detection and become a mainstream method
in recent years. After full convolutional networks (FCNs) [42]
are proposed, many scholars apply FCNs to change detection
tasks. U-Net [43] is first proposed for change detection, and
then, Siamese network is constructed for extracting bitemporal
features. Due to the inherent advantages of Siamese networks in
extracting bitemporal features, they are widely used in change
detection tasks [29], [31], [44]. Daudt et al. [29] propose three
different networks for the change detection task, namely FE-EF,
FC-Siam-diff and FC-Siam-conc. FE-EF takes the bitemporal
images as a whole, and then, inputs them into change detec-
tion networks. Both FC-Siam-diff and FC-Siam-conc construct
Siamese networks with shared weights to extract bitemporal
features, the difference being that the former fuses bitemporal
information through feature differences, while the latter does
so through feature concatenation. Since different layers of the
CNN contain different information, the shallow layer contains
precise location information and the deep layer contains rich
semantic information, a feature fusion strategy is proposed for
combining multilevel features of images. Peng et al. [45] pro-
pose U-Net++, which adopts a multiside output fusion strategy
to combine CMs containing different semantic information to
generate the final CM. In [32], Qian et al. combine multilevel
features extracted from different convolution stages to adapt to
scale changes of changing regions in the labels. The complexity
of remote sensing image scenes is increased by factors such as

sensors, lighting, and seasonal changes, so context modeling is
important to identify real changes in the images. To expand the
receptive field and capture more levels of features, scholars have
proposed several strategies, including the use of deeper network
models [31], [46], [47], the use of dilated convolutions [47],
and attention mechanisms [17], [31], [46]. Zhang et al. [47] use
deeper Siamese networks for feature extraction and multiple
dilation convolutions with different rates to expand the receptive
field. Since the attention mechanism can highlight the effective
information in the features, it is widely introduced to refine the
extracted bitemporal features, such as spatial attention [17], [48],
[49], channel attention [17], [48], [49], [50], self-attention [46],
and dual attention [31]. Chen et al. [31] use spatial-channel
attention on the extracted features to emphasize the changed
information in the images, resulting in a better feature represen-
tation. Chen and Shi [46] integrate the self-attention module into
the network model to strengthen the spatiotemporal relationship
of bitemporal features to generate more discriminative features.
Although deep learning-based methods achieve good results due
to their excellent modeling ability, traditional convolution ker-
nels in CNNs reduce spatial details when dealing with changed
regions of different size and shape, resulting in the missing of
small changes and blurring of sharp edges.

III. METHODOLOGY

In this section, the overall framework of the proposed method
is introduced, and detailed descriptions are given for the FADL
and DR modules.

A. Framework

Fig. 1 shows the overall framework of the adaptive spatial
and difference learning method. The proposed change detection
method consists of encoder and decoder. Specifically, ResNet-18
with four residual blocks is extended to a Siam structure as the
encoder part to extract shallow and deep features. T1 and T2 are
bitemporal images that serve as inputs to the ResNet-18 network.
The bitemporal features output by each residual block are used
as the input of the FADL module. Consisting of KASL part and
JFR part, the FADL module is used to acquire adaptive spatial
knowledge and perform difference learning. Finally, the four
multiscale difference features output by the four FADL modules
are used as the input of the decoder.

The decoder mainly contains a multilayer perceptron (MLP),
a classifier, and a DR module. The DR module further recali-
brates spatial and difference details using shallow features. The
classifier is used to generate the final DI. The weighted batch
contrastive loss (WBCL) function is used to train the network
model. Finally, the final CM is obtained from the DI by threshold
segmentation.

B. FADL Module

The FADL module is used to acquire adaptive spatial knowl-
edge and perform difference learning. In FADL, a KASL part is
constructed to capture varying spatial information, which selects
proper kernels to adapt different size and shape of changed
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Fig. 1. Framework of adaptive spatial and difference learning.

regions; a JFR part is employed to learn comprehensive fea-
tures between bitemporal data, which are further enhanced by
difference information.

Fig. 2 shows the structure of FADL. Features F1 and F2 are
bitemporal features obtained from each residual block in the
ResNet-18 network. First, the features F1 and F2 are input to
the KASL part to obtain the adaptive features A1, B1, and C1

of the feature F1, and the adaptive features A2, B2, and C2 of
the feature F2, respectively.

A1, B1, C1 = KASL (F1)

A2, B2, C2 = KASL (F2) .
(1)

With KASL, the varying spatial information can be captured,
which alleviates the situation of missing small changes due to
the loss of useful information. Then, calculate the Euclidean
distances ofA1 andA2,B1 andB2, andC1 andC2, respectively,
to get the DIs D1, D2, and D3.

At the same time, F1 and F2 are input into the JFR part
to get the refined feature F3. Here, F3 contains both changed
and unchanged features, and the changed features are enhanced
after refinement by JFR. F3 is multiplied by D1, D2, and D3,
respectively, for difference learning to obtain D′

1, D′
2, and D′

3,
as shown by the orange arrow in Fig. 2. Difference learning
further enhances the changed regions of different size and shape
in D′

1, D′
2, and D′

3, and also enhances the distinguishability

Fig. 2. FADL module.

between the changed and unchanged regions, which facilitates
the formation of sharp edges. Concatenate D′

1, D′
2, and D′

3 in
the channel dimension, and then, obtain Fd through two 1× 1
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Fig. 3. KASL part.

convolutions, shown as follows:

Fd = δ
(B (

f1×1
(
δ
(B (

f1×1 ([D′
1, D

′
2, D

′
3])

)))))
(2)

where δ denotes the ReLU function,B denotes the batch normal-
ization, f1×1(·) represents a convolution operation with 1× 1,
and [·] represents the concatenation operation. Fd is used as the
output of FADL.

As illustrated in the framework shown in Fig. 1, FADL module
is introduced in the encoder and follows each residual block
of the ResNet-18 network. Four pairs of bitemporal features
extracted by residual blocks are, respectively, put into the FADL
module, and then, four multiscale difference features F 1

d , F 2
d ,

F 3
d , and F 4

d are obtained and serve as the input of the decoder.
1) KASL Part: As shown in Fig. 3, the receptive fields corre-

sponding to different sizes of convolution kernels are different,
the extracted spatial information is also different when convo-
lution operations are performed on the same object. In order to
capture varying spatial information, the proposed KASL part
selects proper convolution kernels to adapt different size and
shape of changed regions, which is achieved by weighting the
convolution kernels of different sizes.

Fig. 3 shows the structure of KASL. The featureF is obtained
from each residual block. The F ∈ RC×H×W , where C, H , and
W denote the channel, height, and width of F , respectively. F
is passed through 3× 3, 5× 5 and 7× 7 convolution layers to
obtain three new sets of features with different spatial informa-
tion, named Fa, Fb, and Fc, where {Fa, Fb, Fc} ∈ RC×H×W .
In order to reduce the number of parameters, the traditional
5× 5 and 7× 7 convolutional kernels are replaced with 3× 3
dilated convolutions with dilation sizes of 2 and 3, respectively.
Concatenate Fa, Fb, and Fc to obtain the feature Fu, where
Fu ∈ R3C×H×W . Fu contains the spatial information of Fa,
Fb, and Fc. The feature Fn is obtained by passing Fu through
two 1× 1 convolutional layers, where Fn ∈ RC×H×W . Note
that after each convolution operation, the batch normalization
and ReLU functions are performed accordingly.

Then, global average pooling is performed on Fn to ob-
tain global information to generate M , where M ∈ RC . N is
obtained by M reducing its number of channels through the
first fully connected layer, where N ∈ Rd. d is the number of
channels of N , expressed as

d = max(C/r, L) (3)

where r is the reduction rate andL represents the minimum value
of d; in our experiment, r = 16, L = 32. Pass N through the

Fig. 4. SAM structure.

second fully connected layer, increase its number of channels,
and then, divide it into three blocks in the channel dimension to
obtain A, B, and C, where {A,B,C} ∈ RC , shown as follows:

[A,B,C] = Ffc2(N). (4)

The softmax operations are performed at the corresponding
positions of A, B, and C to obtain the weights of the branches
of the convolution kernel of different sizes

ai =
eAi

eAi + eBi + eCi

bi =
eBi

eAi + eBi + eCi

ci =
eCi

eAi + eBi + eCi
(5)

where a, b, and c denote the attention weights of Fa, Fb, and Fc,
respectively, ai is the ith element of a, likewise bi and ci, and
Ai is the ith row of A, likewise Bi and Ci. Note that ai + bi +
ci = 1. Attention weights a, b, and c can be adaptively adjusted
to different size and shape of objects, allowing varying spatial
information to be captured.

In addition to strengthen the attention to feature spatial infor-
mation, Fa, Fb, and Fc are input to the spatial attention module
(SAM) separately. Fig. 4 shows the structure of the SAM. The
max pooling and average pooling operations are performed on
the feature F , respectively, concatenated in the channel dimen-
sion, and then, the spatial attention weights are obtained by 1× 1
convolution and sigmoid function. Finally, the original features
F are multiplied with the spatial attention weights to obtain more
discriminative features. The SAM process is as follows:

SAM(F ) = σ
(
f1×1([AvgPool(F );MaxPool(F )])

) ∗ F
(6)

where σ represents the sigmoid function. After Fa passes
through SAM, it is multiplied by a to get the adaptive spatial
feature map F ′

a, likewise Fb and Fc, shown as follows:

F ′
a = a ∗ SAM (Fa)

F ′
b = b ∗ SAM (Fb)

F ′
c = c ∗ SAM (Fc) . (7)

By applying different weights to the three convolutional
branches, objects of different size and shape in F ′

a, F ′
b, and F ′

c

are made to be captured.
2) JFR Part: The JFR part aims to refine the combined

bitemporal features, highlighting representative features through
increased attention to space and channels.
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Fig. 5. JFR part.

The structure of JFR is shown in Fig. 5. F1 and F2 rep-
resent bitemporal features acquired after each residual block,
where {F1, F2} ∈ RC×H×W . F1 and F2 are concatenated in
the channel dimension, and then, feature F3 is obtained through
a 3× 3 convolutional layer, where F3 ∈ RC×H×W . Here, the
concatenation operation is used to preserve bitemporal infor-
mation in order to prevent the loss of useful information. Since
feature concatenation tends to cause information redundancy, the
change features are subsequently enhanced by adding spatial as
well as channel attention.

Global average pooling is performed on F3 to obtain global
information and generate channel-wise statisticsS1, whereS1 ∈
RC . S1 is passed through two 1× 1 convolutional layers to
obtain S2, where S2 ∈ RC . The channel attention weight Z of
feature F3 is obtained by performing the sigmoid operation on
S2. Its process is as follows:

Z = σ
(
f1×1

(
δ
(B (

f1×1 (Fgp (F3))
))))

(8)

where Fgp(·) represents the global average pooling operation.
Finally, feature F3 is passed through SAM to increase spatial

attention, and then multiplied by Z to obtain F ′
3, where F ′

3 ∈
RC , shown as follows:

F ′
3 = Z ∗ SAM (F3) . (9)

Note that F ′
3 is the refined feature of F1 and F2 and is used as

the output of the JFR part.

C. DR Module

The DR module uses the precise location information of the
shallow features to further recalibrate the spatial and difference
details of the deep difference features.

As shown in Fig. 1, before introducing the DR module, four
multiscale difference features F 1

d , F 2
d , F 3

d , and F 4
d are first pro-

cessed. The number of their channels is adjusted toCd by a 1× 1
convolutional layer, where Cd = 96. Then, F 2

d , F 3
d , and F 4

d are
upsampled to the same size as F 1

d by bilinear interpolation. The
four processed multiscale difference features are concatenated,
and then, put into two MLPs, adjusting the number of channels
to Cm to obtain Fm, where Cm = 32, shown as follows:

Fm = MLP
(
MLP

([
Up

(
f1×1 (Fn

d )
)]))

, n = 1, 2, 3, 4 (10)

where Up(·) represents the upsampling operation. MLP is com-
posed of two convolutional layers with a kernel size of 3× 3,
with batch normalization and ReLU activation functions after
each 3× 3 convolutional operation.

Fig. 6. DR module.

Fig. 6 shows the structure of DR. Features Fs1 and Fs2 are
obtained from the first 7× 7 convolutional layer of ResNet-18.
The fusion feature Fs is obtained by element-wise summation
of Fs1 and Fs2. Global average pooling is executed for Fs, and
then, the channel attention weights W1 of the feature Fs are
obtained by 1× 3 1-D convolution and sigmoid function, shown
as follows:

W1 = σ
(
f1×3 (Fgp (Fs1 + Fs2))

)
. (11)

The output W1 learns features of interest in shallow features.
Calculate the Euclidean distance of Fs1 and Fs2 to obtain W2

as follows:

W2 = E (Fs1, Fs2) (12)

where E(·) represents Euclidean distance and W2 learns differ-
ence information in shallow features. W1 and W2 are multiplied
with Fs and then F ′

s is obtained by 1× 1 convolutional layer
and max pooling, shown as follows:

F ′
s = MaxPool

(
f1×1 (Fs ∗W1 ∗W2)

)
. (13)

The weighting of W1 and W2 makes the difference information
in the shallow features enhanced. Finally, the shallow feature
F ′
s and the deep difference feature Fm are multiplied to get

Fi n, which acts as the input of the classifier. By using the
precise location information of the shallow features, it makes the
difference details in the deep difference features complementary,
and also further enhances the distinguishability between the
changed and unchanged regions.

D. Classifier and Loss Function

The classifier is used to produce a one-channel DI as the final
result. The classifier is composed of two convolutional layers,
one with a kernel size of 3× 3 and the other with 1× 1. After
Fin passes the classifier, it is upsampled to a size of 256× 256
to obtain the DI Fout. The final CM is obtained by performing
threshold segmentation on the Fout.

Because of the class imbalance between the changed and
unchanged regions, the WBCL is used as the loss function to
minimize the distance between the unchanged regions and max-
imize the distance between the changed regions. The expression
of the loss function is as follows:

LossCD =

M∑

i,j=0

1

2

[
x1 (1− gti,j) dt

2
i,j

+ x2gti,jmax (m− dti,j , 0)
2] (14)
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x1 =
1

pu
, x2 =

1

pc
(15)

where M denotes the size of dt; x1 and x2 denote the weights
of unchanged pixels and changed pixels, respectively; gt(i,j)
and dt(i,j) denote the ground truth and DI values at point (i, j),
where i, j ∈ [0,M); m denotes the margin, which is used to
filter pixels whose value exceeds it and is set to 1.5; and pu and
pc denote unchanged and changed pixel counts, respectively.

IV. EXPERIMENTS

In this section, three public datasets, evaluation metrics, some
settings of the experiments, and the eight comparison methods
chosen are first presented. Then, the experimental analysis is
performed.

A. Datasets

To validate the effectiveness of our proposed change detection
method, experiments are conducted on three public change
detection datasets: synthetic images and real season-varying
change detection dataset (CDD) [51], Sun Yat-sen University
change detection dataset (SYSU-CD) [32], and Learning Vi-
sion and Remote Sensing Laboratory building change detection
dataset (LEVIR-CD) [46].

1) CDD Dataset: The CDD dataset is taken by Google Earth
and consists of 11 pairs of multispectral (composed of R, G, and
B) images, of which seven pairs have a size of 4725×2200 pixels
and four pairs have a size of 1900 × 1000 pixels. Its spatial
resolution ranges from 3 to 100 cm/pixel. The CDD dataset
contains change information of objects such as buildings, cars,
and roads. This places a higher demand on the change detection
algorithm by ignoring the changes caused by seasonal factors.
The 11 pairs of original images are rotated and cropped to obtain
16000 pairs of 256 × 256 pixel images, which are classified into
10 000/3000/3000 pairs of images for training, validation, and
testing, respectively.

2) SYSU-CD Dataset: The SYSU-CD dataset consists of
20 000 pairs of 256 × 256 pixel aerial images taken in Hong
Kong between 2007 and 2014. Its spatial resolution is 0.5 m and
the band number is 3. The dataset contains change information
of objects such as vegetation, buildings, roads, water, and ships.
In our experiments, the 20 000 pairs of images in the SYSU-CD
dataset are classified into 12 000/4000/4000 pairs of images for
training, validation, and testing, respectively.

3) LEVIR-CD Dataset: The LEVIR-CD dataset consists of
637 pairs of 1024 × 1024 pixel high-resolution images. The
dataset is taken by Google Earth and has a spatial resolution of
0.5 m. The images, taken between 2002 and 2018, show land-use
change in 20 different areas across multiple cities in Texas, USA.
It focuses on buildings and contains information on the changes
in buildings such as high-rise apartments, villa houses, large
warehouses, and small garages. In our experiments, images of
1024 × 1024 pixels are cropped into 256 × 256 pixel nonover-
lapping patches, resulting in 7120/1024/2048 pairs of images
that are used for training, validation, and testing, respectively.

B. Evaluation Metrics

To validate the performance of the proposed method, we
employ four evaluation metrics, namely precision (Pre), recall
(Rec), F1-score (F1), and intersection over union (IoU) to eval-
uate the change detection results. The expressions of Pre, Rec,
F1, and IoU are shown as follows:

Pre =
TP

TP + FP

Rec =
TP

TP + FN

F1 =
2Pre · Rec
Pre + Rec

IoU =
TP

TP + FP + FN
(16)

where TP is true positive, FP is false positive, and FN is false neg-
ative, and they denote the number of pixels correctly predicted
as changed, incorrectly predicted as changed, and incorrectly
predicted as unchanged, respectively. Notably, we focus more
on F1 and IoU values in the experiments since they better reflect
the performance of the model.

C. Implementation Details

Our proposed change detection model is implemented under
the Pytoch framework, using an NVIDIA Titan V for training
and testing. In the training phase, some important parameters
in the experiments are set as follows: Adam [52] is used as the
optimizer, the learning rate is setup to 0.0001 and the batch size
is setup to 8. The same training and testing settings are adopted
for all datasets. After each training epoch, the IoU values are
computed on the validation set. After training is completed, the
model which has the highest IoU value is selected to evaluate
the test set.

D. Comparative Methods

To validate the effectiveness of our method, eight repre-
sentative change detection algorithms are selected for com-
parison. Namely, fully convolutional Siamese-concatenation
(FC-Siam-Conc) [29], fully convolutional Siamese-difference
(FC-Siam-Diff) [29], super-resolution-based change detection
network (SRCDNet) [53], deeply supervised attention metric-
based network (DSAMNet) [32], bitemporal image transformer
(BIT) [54], CNN-transformer network with multiscale context
aggregation (MSCANet) [55], difference-enhancement dense-
attention convolutional neural network (DDCNN) [17], and
dual-branch multilevel intertemporal network (DMINet) [56].
A brief description of the aforementioned eight algorithms is
given as follows.

1) FC-Siam-Conc [29]: A Siamese structure-based fully
convolutional network that extracts multilevel features of bitem-
poral images and fuses bitemporal information using feature
concatenation.

2) FC-Siam-Diff [29]: FC-Siam-Diff has the same feature
extractor as FC-Siam-Conc, with the difference that it uses
feature differences to fuse bitemporal information.
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TABLE I
QUANTITATIVE RESULTS ON THE CDD DATASET

TABLE II
QUANTITATIVE RESULTS ON THE SYSU-CD DATASET

3) SRCDNet [53]: SRCDNet integrates five convolutional
block attention modules (CBAMs) into the feature extractor to
obtain more discriminative features.

4) DSAMNet [32]: A deeply supervised attention metric-
based network that uses a metric module to learn CM and intro-
duces a deeply supervised module to strengthen the supervision
of the hidden layer to generate more useful features.

5) BIT [54]: A transformer-based network that uses a trans-
former encoder–decoder that efficiently models the context in
the spatial-temporal domain, and then, obtains the CM by feature
differencing.

6) MSCANet [55]: MSCANet is also a transformer-based
method that utilizes the CNN to extract rich multiscale features
and employs transformers to aggregate contextual information.
Additionally, it adopts a multibranch prediction strategy to add
supervision to deep layers.

7) DDCNN [17]: A difference-enhancement dense-
attention convolutional neural network that uses dense attention
to model correlations between features at different levels, while
introducing a difference-enhancement unit that weights each
pixel to highlight representative features.

8) DMINet [56]: A dual-branch multilevel intertemporal
network, which implements interactions between bitemporal
features by combining self-attention and cross attention. In ad-
dition, an incremental aggregation strategy is used to implement
multilevel feature aggregation.

E. Comparative Experiments

The CDD, SYSU-CD, and LEVIR-CD datasets are detected
using the proposed method, and the results are compared with
selected eight representative change detection algorithms. The
quantitative comparison of the three datasets is shown in

TABLE III
QUANTITATIVE RESULTS ON THE LEVIR-CD DATASET

Tables I–III, and the visualization comparison is shown in Figs.
7–9.

1) Comparisons on the CDD Dataset: Table I summarizes
the quantitative results of Pre, Rec, F1, and IoU for all methods
on the CDD dataset. As shown in Table I, F1 and IoU of
FC-Siam-Conc are the lowest with 82.96% and 70.88%, respec-
tively, followed by FC-Siam-Diff with F1 and IoU of 83.50% and
71.68%, respectively. The F1 and IoU of DSAMNet are 93.12%
and 87.12%, respectively, which are 0.34% and 0.58% higher
than those of SRCDNet, verifying the effectiveness of increasing
supervision on the hidden layer. BIT and MSCANet outper-
form the aforementioned four methods on the CDD dataset,
indicating the effectiveness of enhancing the contextual infor-
mation of the bitemporal features through the transformer. The
DDCNN is ranked second among the eight compared methods,
which indicates that guiding the learning of low-level features by
high-level features is helpful to improve the detection accuracy.
DMINet is second only to our method, and its F1 and IoU are
lower than our method by 1.2% and 2.24%, respectively, which
indicates that the interaction between the bitemporal features is
feasible before obtaining the difference features. Our method
outperform the eight contrasting methods, obtaining the highest
Rec, F1, and IoU of 96.91%, 96.94%, and 94.06%, respectively.

The visualization comparison further validates that our
method obtains the best results on the CDD dataset. As shown
in Fig. 7, our method achieves the best visualization in detect-
ing changes in roads, vehicles, and buildings. FC-Siam-Diff
and FC-Siam-Conc can only detect some large and obvious
changes. For some small changes, they have many false de-
tections and missed detections. SRCDNet and DSAMNet can
detect some small changes such as vehicles, but the generated
edges are blurred and there are missed detections. MSCANet
also suffers from edge blurring, but its missed detection is
lower than that of SRCDNet and DSAMNet. The remaining
three methods improve the edge blur problem, but still have
the problem of missed detection. When detecting snow-covered
roads, FC-Siam-Diff and FC-Siam-Conc can only detect some
obvious road changes. BIT, MSCANet, and DMINet can detect
some narrow road changes, but the detected changes are not
continuous. DDCNN has the problem of misdetected roads.
The road changes detected by SRCDNet and DSAMNet are
more continuous, but the detected road are larger than the actual
ones. When detecting vehicle changes, for obvious vehicles,
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Fig. 7. Visualization results on the CDD dataset. (a) Image T1. (b) Image T2. (c) Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-Diff. (f) SRCDNet. (g) DSAMNet.
(h) BIT. (i) MSCANet. (j) DDCNN. (k) DMINet. (l) Ours.

Fig. 8. Visualization results on the SYSU-CD dataset. (a) Image T1. (b) Image T2. (c) Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-Diff. (f) SRCDNet.
(g) DSAMNet. (h) BIT. (i) MSCANet. (j) DDCNN. (k) DMINet. (l) Ours.

all eight contrasting methods can detect them, but for nonob-
vious vehicles, only our method can detect vehicle changes
completely, as shown in the third row of Fig. 7. For building
detection, our method is the only one that can detect building
changes intact and maintain sharp edges, as shown in the fifth

row of Fig. 7. Due to the ability of the FADL module to capture
varying spatial information, their changes can be completely
detected and produce sharp edges when detecting changed re-
gions of different size and shape, such as roads, vehicles, and
buildings.
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Fig. 9. Visualization results on the LEVIR-CD dataset. (a) Image T1. (b) Image T2. (c) Ground truth. (d) FC-Siam-Conc. (e) FC-Siam-Diff. (f) SRCDNet.
(g) DSAMNet. (h) BIT. (i) MSCANet. (j) DDCNN. (k) DMINet. (l) Ours.

2) Comparisons on the SYSU-CD Dataset: Compared to the
eight contrasting methods, our method also achieves the best
results on the SYSU-CD dataset. As shown in Table II, our
method obtains the highest Rec, F1, and IoU scores of 82.71%,
82.41%, and 70.08%, respectively. Among the eight contrasting
methods, DMINet performs the best with an F1 of 81.89% and
an IoU of 69.33%, and DDCNN is second only to DMINet
with an F1 of 79.17% and an IoU of 65.52%. The performance
of FC-Siam-Conc and MSCANet on the SYSU-CD dataset is
similar, with a difference of 0.08% in their F1 values and 0.12%
in their IoU values. The F1 and IoU of DSAMNet are 78.35%
and 64.41%, which are 2.26% and 3.01% higher than BIT,
respectively. The Pre of BIT is the highest at 88.33%. SRCDNet
has an F1 of 76.00% and an IoU of 61.29%, which is only better
than FC-Siam-Diff. The F1 and IoU of FC-Siam-Diff are the
lowest with 71.15% and 55.22%, respectively, which may be
due to feature differences that cause loss of useful information
during the feature fusion process.

Fig. 8 further presents the visualization comparison on the
SYSU-CD dataset. Our method also achieves optimal visual-
ization results compared to the eight contrasting methods. As
shown in the first row of Fig. 8, when detecting changes before
and after construction, all eight contrasting methods have false
detections, and DDCNN has the most serious false detection, and
the changes detected by FC-Siam-Diff are incomplete. When
detecting ship changes, MSCANet’s visualization is second only
to our method, FC-Siam-Diff misses some ship changes, and the
remaining six contrasting methods suffer from false detection
problems, incorrectly detecting docks as changes, as shown
in the second row of Fig. 8. The eight contrasting methods
underperform in complex scenes, while our method is able to

extract relatively complete changes, as shown in the fourth row
of Fig. 8. For the detection of sea construction, among the eight
contrasting methods, FC-Siam-Diff, DSAMNet, and DMINet
have more serious false detection problems, FC-Siam-Conc has
edge blur problem, and the edges generated by SRCDNet, BIT,
and DDCNN are rough. MSCANet is able to produce a relatively
good visualization, but it does not do well in terms of edge
detail, as shown in the sixth row of Fig. 8. As shown in the fifth
row of Fig. 8, compared with the eight contrasting methods,
only our method can detect all changes relatively completely
and maintain sharp edges, and DMINet is second only to our
method.

3) Comparisons on the LEVIR-CD Dataset: The quantitative
comparison of the different methods on the LEVIR-CD dataset
is displayed in Table III. F1 and IoU of DSAMNet are the lowest
with 84.43% and 73.05%, respectively, followed by FC-Siam-
Conc with F1 of 84.44% and IoU of 73.08%. FC-Siam-Conc
achieves the highest Rec of 95.44%. FC-Siam-Diff has an F1 of
85.59% and an IoU of 74.81%, which suggests that difference
holds more useful information and transfers it to the decoder
compared to concatenation. SRCDNet has an F1 of 85.85% and
IoU of 75.21%. The F1 and IoU values of MSCANet are slightly
higher than the BIT, which indicates that it is feasible to add
supervision to the deeper layers. DDCNN ranks second among
the eight contrasting methods, obtaining the highest Pre of
93.19% with an F1 of 90.17% and an IoU of 82.10%, indicating
that using high-level features to guide low-level feature learning
is effective. Likely to the results on the first two datasets, DMINet
performs second only to our method on the LEVIR-CD dataset
with 90.78% and 83.12% F1 and IoU, respectively. Compared
with the eight contrasting methods, our method performs the
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best, obtaining the highest F1 and IoU of 91.57% and 84.45%,
respectively, which are 0.79% and 1.33% higher than the figures
obtained by DMINet.

Fig. 9 provides a more intuitive comparison of different meth-
ods on the LEVIR-CD dataset. In terms of detecting changes in
large buildings, except our method, the buildings detected by the
eight contrasting methods are incomplete. FC-Siam-Conc and
FC-Siam-Diff have false detection and edge blurring problems;
SRCDNet and DSAMNet also have edge blurring problems, and
BIT; DDCNN and DMINet are affected by noise. MSCANet
is the method that can detect the building outline relatively
completely in addition to our method, as shown in the first row
of Fig. 9. In terms of detecting changes in small buildings, our
method is the only one that can detect nearly all changes and gen-
erate sharp edges. Several other methods have different degrees
of false detections, missed detections, and edge blurring prob-
lems. As shown in Fig. 9(d)–(g), FC-Siam-Conc, FC-Siam-Diff,
SRCDNet, and DSAMNet all suffer from edge blurring and false
detection problems. The false detection problem is more serious
for SRCDNet and DSAMNet compared to FC-Siam-Conc and
FC-Siam-Diff, as shown in the second, fourth, and sixth rows of
Fig. 9. Although BIT and DDCNN can generate relatively sharp
edges, but there are missed detections and false detections, as
shown in the fourth and fifth rows of Fig. 9. MSCANet has fewer
false detection problems, but misses some unobvious buildings,
as shown in Fig. 9(i). DMINet does a relatively good job of
maintaining the details of the building edges, but also has the
problem of missing some unobvious buildings, as shown in
Fig. 9(k). For unobvious building changes, all eight contrasting
methods perform poorly except our method, as shown in the
second row of Fig. 9. In conclusion, compared to the eight
contrasting methods, our method is the only one that can detect
all changes more completely and maintain sharp edges, whether
for larger or smaller buildings, obvious or not.

F. Ablation Study

Ablation experiments are performed on the CDD, SYSU-CD,
and LEVIR-CD datasets to validate the effectiveness of FADL
module and DR module. In detail, five sets of experiments are set
up to validate the effectiveness of each individual module and the
effectiveness of combinations between different modules. The
“Base” baseline means that the FADL module and DR module
are not included, and the multiscale difference features acquired
from each residual block are fed directly to the decoder. In the
“Base” model, KASL, JFR, and DR are introduced. The “Base +
KASL” model is used as the second baseline, the “Base + JFR”
model is used as the third baseline, the “Base + DR” model is
used as the fourth baseline, and the “Base + FADL (KASL +
JFR)” model is used as the fifth baseline. The “Base + FADL +
DR” model is our proposed method.

1) Ablation Study on the CDD Dataset: The quantitative
results of the ablation study on the CDD dataset are presented
in Table IV. The “Base” model has an F1 of 95.32% and an
IoU of 91.06% on the CDD dataset. The “Base + KASL” model
improves F1 from 95.32% to 95.41% and IoU from 91.06%
to 91.23%, validating the effectiveness of KASL in capturing

TABLE IV
ABLATION STUDY ON THE CDD DATASET

TABLE V
ABLATION STUDY ON THE SYSU-CD DATASET

varying spatial information. The “Base + JFR” model improves
F1 from 95.32% to 96.40% and IoU from 91.06% to 93.05%,
validating the effectiveness of JFR in learning comprehensive
features between bitemporal data. Compared to introducing JFR
alone in the “Base” model, the “Base + FADL” model improves
F1 from 96.40% to 96.82% and IoU from 93.05% to 93.83%,
which demonstrates that the combination of KASL and JFR
can achieve a gain effect. Compared to the “Base” model, the
“Base + DR” model improves F1 from 95.32% to 95.57% and
IoU from 91.06% to 91.51%, which validates the effectiveness
of using shallow features to recalibrate spatial and difference
details. F1 and IoU of the “Base + FADL + DR” model are the
highest with 96.94% and 94.06%, respectively, demonstrating
that combining FADL and DR is feasible.

2) Ablation Study on the SYSU-CD Dataset: The quantita-
tive results of the ablation study on the SYSU-CD dataset are
presented in Table V. The introduction of KASL, JFR, and
DR in the “Base” model, respectively, all increase F1 and IoU
values, verifying the effectiveness of each individual part on the
SYSU-CD dataset. The “Base” model has an F1 of 81.36% and
an IoU of 68.57%. The “Base + KASL” model improves F1 from
81.36% to 82.04% and IoU from 68.57% to 69.55%. The “Base +
JFR” model improves F1 from 81.36% to 81.74% and IoU from
68.57% to 69.12%. The “Base + DR” model improves F1 from
81.36% to 81.95% and IoU from 68.57% to 69.42%. Compared
to introducing KASL and JFR alone in the “Base” model, F1
and IoU of the “Base + FADL” model are the highest with
82.19% and 69.77%, respectively, validating the effectiveness
of the combination of KASL and JFR. Compared with other
baselines, F1 and IoU of the “Base + FADL + DR” model are
the highest with 82.41% and 70.08%, respectively, which further
illustrates the gain effect of the combination of FADL and DR.

3) Ablation Study on the LEVIR-CD Dataset: As shown in
Table VI, the results are similar to those of the ablation experi-
ments on the first two datasets. The introduction of KASL, JFR,
and DR in the “Base” model, respectively, all increase F1 and
IoU values, validating the effectiveness of each individual part on
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Fig. 10. Learning curve visualization results. (a) F1 value of CDD validation set. (b) IoU value of CDD validation set.

TABLE VI
ABLATION STUDY ON THE LEVIR-CD DATASET

the LEVIR-CD dataset. The “Base” model has an F1 of 91.15%
and an IoU of 83.73%. Compared with the “Base” model, F1 and
IoU increase by 0.22% and 0.39% for the “Base + KASL” model,
0.31% and 0.54% for the “Base + JFR” model, and 0.17% and
0.3% for the “Base + DR” model, respectively. Compared with
introducing KASL, JFR, and DR alone in the “Base” model, the
“Base + FADL” model and “Base + FADL + DR” model further
improve the F1 and IoU values, which validates the effectiveness
of combining KASL, JFR, and DR. The F1 and IoU of the “Base
+ FADL” model are 91.52% and 84.37%, respectively. The F1
and IoU of the “Base + FADL + DR” model are the highest with
91.57% and 84.45%, respectively.

G. Learning Curve Comparison

Fig. 10 compares the learning curve visualization results of
our method with DMINet, DDCNN, MSCANet, and BIT on the
CDD validation set. The figure shows the F1 and IoU values
for 200 epochs. Through the comparison of F1 and IoU, our
method achieves good performance in terms of model stability
and convergence speed, and obtains the highest accuracy rate.
DMINet has the best model stability and its F1 and IoU values
are second only to our method. Both DDCNN and BIT have
weak model stability. In addition, DDCNN has the slowest
convergence speed, but its final F1 and IoU values are higher
than those of MSCANet and BIT. BIT performs well in terms of
convergence speed, with slightly higher F1 and IoU values than
MSCANet. MSCANet performs well in terms of model stability
and convergence speed, but its F1 and IoU values are the lowest
among these methods.

V. DISCUSSION

In this section, we discuss both the model efficiency and the
comparison between different loss functions.

A. Model Efficiency

To understand the practical application requirements of dif-
ferent methods, this article evaluates model efficiency from
three aspects: parameters (Params), floating-point operations
(FLOPs), and inference time. Params represents the number of
parameters that need to be learned in a model. It is commonly
used to measure the complexity of a model, and its unit is
106 (M). FLOPs represents the total number of addition and
multiplication operations performed by a model. It is commonly
used to measure the computational requirements of a model, and
its unit is 109 (G). Inference time represents the time taken by a
model to generate output given a specific input. It is commonly
used to measure the speed and real-time performance of a model
and is typically measured in seconds (s).

Table VII shows a quantitative comparison of the Params,
FLOPs, and inference time for the different methods, with the
image size used being 3 × 256 × 256. As can be seen from
Table VII, FC-Siam-Conc and FC-Siam-Diff have lower Params,
FLOPs, and inference time. DDCNN achieves the highest values
in all three metrics. DMINet has relatively low Params and
FLOPs, and has a performance second only to our method.
SRCDNet and DSAMNet have relatively high FLOPs, and the
performance gains they bring are not outstanding. BIT and
MSCANet have relatively low inference time and the perfor-
mance gains they bring are appreciable. Although our method
has relatively high values for these three metrics, our method
is able to deliver substantial performance improvements. As
shown in the fourth and ninth rows of Table VII, the differences
between our method and DSAMNet in terms of FLOPs and
inference time are not significant, but the F1 and IoU values
achieved by our method on the CDD dataset are 3.82% and
6.94% higher than those of DSAMNet, respectively. Therefore,
although our method has relatively high values for these three
metrics, it achieves the best performance, which is worthwhile.
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TABLE VII
COMPARISON OF MODEL EFFICIENCY ACROSS DIFFERENT METHODS

Fig. 11. Comparison between different loss functions. (a) F1 value. (b) IoU value.

B. Comparison of Loss Functions

We compare the weighted cross-entropy (WCE) loss with the
WBCL used in this article. Fig. 11 shows the F1 and IoU values
of the two loss functions on the three public datasets. As can be
seen from the figure, WBCL achieves the best performance on
all three datasets. On the CDD dataset, the F1 and IoU values
of WBCL are 0.32% and 0.59% higher than those of WCE,
respectively. Similar results are found on the other two datasets,
which indicates the validity of the used WBCL. The role of
WBCL is reflected in two aspects. One of them alleviates the
category imbalance problem by applying different weights to
the changed and unchanged pixels. The second is to enhance
the separability between the changed and unchanged regions by
increasing the distance of the changed regions and decreasing
the distance of the unchanged regions.

VI. CONCLUSION

In this article, an adaptive spatial and difference learning
method is proposed for the change detection task, which mainly
contains two parts: FADL module and DR module. In FADL, a
KASL part is constructed to capture varying spatial information;
a JFR part is employed to learn comprehensive features between
bitemporal data, which are further enhanced by difference in-
formation. The DR module further recalibrates the spatial and
difference details by exploiting the precise location information
of shallow features. Experimental results on three public datasets
suggest that our proposed method is superior to the selected

eight contrasting algorithms. Our method relieves the spatial
ambiguity problem caused by traditional convolution kernels
when dealing with changed regions of different size and shape.
In change detection tasks, “nonsemantic changes” induced by
light and seasonal changes can lead to pseudochange, which
can affect the detection accuracy. Therefore, we will explore
feature alignment methods to relieve the effects of “nonsemantic
changes” in future studies.
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