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mRMR-Tri-ConcaveHull Detector for Floating
Small Targets in Sea Clutter

Yanling Shi and Yuefeng Hu

Abstract—For the feature-based detector of small targets in
sea clutter, on the one hand, the three-dimensional convex hull-
based detector deviates from the distribution of sea clutter vec-
tors in the feature space and only combines the information of
low-dimensional features. On the other hand, the redundancy and
correlation between high-dimensional features are high. Conse-
quently, we propose a detector for detecting small floating tar-
gets in sea clutter in high-dimensional feature space (HDFS) in
this article. First, the maximum relevance-minimum redundancy
(mRMR) algorithm to choose the low-relatedness features from the
HDFS is proposed. For the mRMR algorithm, we choose the target
features and sea clutter features from the eight-dimensional feature
space (8-DFS), where the target features and sea clutter features
have the highest degree of discrimination in the 3-DFS. Second, the
distribution of sea clutter in the 3-DFS is concave or convex, which
depends on the selection of features. In most cases, the distribution
is concave. Using the traditional convex hull to match the concave
distribution of sea clutter inevitably enlarges the judgment area
and considerably decreases the detection probability. Due to the
concave distribution of sea clutter in the 3-DFS, we propose a new
false alarm controllable three-dimensional concave hull detector
based on the mRMR (mRMR-Tri-ConcaveHull detector). In the
mRMR-Tri-ConcaveHull detector, the feature vectors in the 3-DFS,
which are selected by mRMR, form a concave area that is more
suitable for the Concave Hull detector. Through the experimental
analysis of the measured data, we find that the proposed mRMR-
Tri-ConcaveHull in this article can significantly enhance the de-
tection performance compared with the three-feature convex hull
detector.

Index Terms—Concave hull detector, maximum relevance-
minimum redundancy (mRMR), radar, sea clutter, target
detection.

I. INTRODUCTION

THE detection of small floating targets in sea clutter has
been a recent focus in the radar detection field. Due to

the small radar cross section (RCS) and weak energy of small
floating targets, traditional energy-based detectors often have a
low detection probability [1], [2], [3], [4], [5], [6]. The nonenergy
feature detector is an efficient alternative to the low signal-to-
clutter ratio [7], [8].
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By using a single feature, numerous feature-based detectors
have considered the various features in several transform do-
mains to distinguish targets from sea clutter. For example, due
to the irregularity and coarseness of the amplitude of sea clutter
in the time domain, sea clutter exhibits multifractal behavior
[9], [10]. Hu et al. [9] proposed the Hurst exponent detector in
the time domain , and Chen et al. [11] proposed a fractal-based
detector for moving targets in the fractional Fourier transform
domain. In addition, Li and Shui [12] proposed the normalized
Doppler power spectrum detector in the frequency domain,
which is superior to fractal-based detectors in terms of detecting
small floating targets in sea clutter. Jin et al. [13] proposed
the spectral kurtosis detector, which has demonstrated good
performance when the target’s Doppler frequency is outside the
strong clutter area. However, the abovementioned fractal-based
and feature-based detectors not only require a long time series
but also ignore the nonstationary characteristics of sea clutter. To
mitigate this nonstationarity, Shi et al. [14] proposed a speckle
consistency factor detector that has good performance over
feature-based detectors. However, single feature-based detec-
tors have restricted detection probability because of the limited
number of features utilized when dealing with different sea
conditions.

Subsequently, an increasing number of features have been
developed, and feature joints have been considered as candidates
to improve detection performance. Shui et al. [15] proposed
the convex hull detector in the three-dimensional feature space
(3-DFS) based on the amplitude and Doppler spectrum, and it
creates a precedent for convex hull detection. On the heels of the
convex hull detector in the time and frequency domain, Shi and
Shui [16] proposed another convex hull detector based on ridge
integration (RI), maximum size of connected regions (MS), and
number of connected regions (NR) in the time-frequency space.
By comparing the detection results of [15] and [16], it is found
that the three features in [16] perform well on most datasets
except in a very few datasets. To further improve the detection
performance, high-dimensional feature joint detection is an in-
evitable trend. However, it is painful to break through the 3-DFS,
and for the convex hull, it is difficult to design the convex hull
detector in a high-dimensional feature space (HDFS). Therefore,
both Shui et al. [17] proposed feature compression based on the
Bhattacharyya distance, and Gu [18] used principal component
analysis by converting from a HDFS to 3-DFS. Compared with
previous detectors based on a single feature or three features,
the detectors in [17] and [18] have achieved a better detection
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performance with an inevitable compression loss. In order to
achieve fast learning and decision and strong generalizability,
Guo et al. [19] proposed a fast feature-fusion-based detector,
which combines the nonlinear transformations to normalize
the features of sea clutter with the optimal feature fusion. In
addition, the distribution of sea clutter in the 3-DFS is concave
or convex, which depends on the selection of features. In most
cases, the distribution is concave. Using the traditional convex
hull to match the concave distribution of sea clutter in the 3-DFS
necessarily enlarges the judgment area and greatly drops the
detection probability.

In recent years, scholars have tried to combine radar target
detection with machine learning. Li et al. [20] extracted three
features, the time information entropy, the time Hurst index, and
the frequency peak-to-average ratio, built a 3-DFS, and used the
support vector machine (SVM) to achieve the desired false alarm
controllable (FAC) detector. To combine more features, Guo and
Shui [21] proposed the K nearest neighbor (KNN) with FAC
to detect small surface targets in sea clutter, which effectively
improves the detection performance in HDFS. However, KNN-
FAC is coarse when selecting the number of nearest neighbors,
and its detection performance is limited [21]. Convolutional
neural networks (CNNs) have a wide range of applications in
image recognition and classification. They can make full use of
the local features of datasets, have strong generalization ability,
and share the available weights to simplify the network structure
[22], [23], [24]. Bringing the CNN into the target detection field,
Shi et al. [25] proposed the CNN-FAC by using recursive plots of
sea clutter and targets and noted the direction of target detection
with the CNN.

The distribution of sea clutter vectors in the feature space can
be convex or concave. If the distribution is concave, the concave
hull can wrap the feature vectors more compactly than the convex
hull. In this way, the concave judgment area is more in line with
the actual situation, and the detection probability is successfully
enhanced. With an N-dimensional concave hull (N-D concave
hull) algorithm, Li and Niggemann [26] converted a convex hull
into a concave hull in any dimension space and applied the N-D
concave hull to fan fault diagnosis. Inspired by Peng’s idea,
we apply the idea of concave hulls to the target detector based
on the three features. However, we also face three problems
concurrently: first, before forming the judgment area, we need
to delete the false alarm points according to the principle of
maximum volume loss of concave hulls. However, deleting the
false alarm points using the concave hull of [26] can result in high
algorithm complexity. To solve this problem, we introduce the
fast FAC alpha concave hull. Based on the principle of maximum
volume loss of concave hulls, the false alarm points are deleted
one by one according to the false alarm rate. Therefore, we
achieve accurate control of the false alarm rate. Second, the
execution efficiency of the N-D concave hull in [26] is not high.
Instead, we choose to change the selection method of internal
digging points to accelerate. Third, some internal points may be
located outside the concave hull after internal digging, which
leads to the failure of the constant false alarm rate (CFAR) in
the final judgment area. To solve this problem, we introduce

the external filling algorithm in [27] after each internal digging
operation. Therefore, we propose a Tri-ConcaveHull detector
with a controllable false alarm.

In the age of big data, the volume and dimensions of data are
increasing, and extracting features with large gaps from HDFS
is a crucial problem. Feature selection is currently an effective
dimensionality reduction technology. It reduces the dimension
by removing the relevant and redundant features while retaining
the irrelevant features to form the optimal feature set [28], [29],
[30], [31]. Peng et al. [32] proposed the maximum relevance-
minimum redundancy (mRMR) algorithm by calculating mutual
information (MI), which is an optimal feature selection method
based on MI theory. The mRMR is relatively simple and has
the advantages of low data requirements and high computing
efficiency [33], [34]. Therefore, we use mRMR to select the
three optimal features from HDFS. Combining the mRMR with
the Tri-ConcaveHull detector, the proposed detector is called
the mRMR-Tri-ConcaveHull detector with a controllable false
alarm.

Because in most cases, the distribution of sea clutter in the
3-DFS is concave, using the traditional convex hull to match the
concave distribution of sea clutter inevitably enlarges the judg-
ment area and considerably decreases the detection probability.
In addition, utilizing high-dimensional feature information is
the current and future trend in the detection of floating small
targets in sea clutter. In conclusion, the motivation of this article
is to fit the concave distribution of sea clutter and to reduce the
dimension in the high dimensional space. On the one hand, the
use of FAC Tri-ConcaveHull detector matches the concave dis-
tribution of sea clutter more closely than the traditional convex
hull, thus reducing the area of judgment. On the other hand,
we use the mRMR to select 3-D features from 8-DFS as the
input of the FAC Tri-ConcaveHull detector, so that the target
features and sea clutter features have the highest recognition in
3-DFS.

The innovation of this article is that we first propose a new
FAC Tri-ConcaveHull detector for floating small targets in sea
clutter, which not only meets the requirements of the controllable
false alarm but also wraps the feature vectors more compactly
than the convex hull. To further improve the detection prob-
ability, the mRMR is used to obtain the optimal feature set
with the minimum redundancy between internal features and the
maximum relevance between internal features and stability label
vectors. The feature set is input to the FAC Tri-ConcaveHull
detector to achieve high detection performance. The experimen-
tal results show that the detection performance of the proposed
mRMR-Tri-ConcaveHull detector is significantly improved.

This article is organized as follows: Section II introduces the
signal detection model and eight features; Section III introduces
the feature selection algorithm, including the mRMR; Section IV
introduces the target detection algorithm, including the 3-D
FAC convex hull learning algorithm and 3-D FAC concave hull
learning algorithm, and proposes the mRMR-Tri-ConcaveHull
detector; Section V verifies the effectiveness of the proposed
mRMR-Tri-ConcaveHull detector through experiments; and
Section VI concludes the article.
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II. SIGNAL DETECTION MODEL AND EIGHT FEATURES

The following binary hypothesis test model [35] can be used
to judge whether the radar received echo contains targets⎧⎪⎪⎨

⎪⎪⎩
H0 :

{
x = c
x̃k = ck, k = 1, . . . ,K

H1 :

{
x = s+ c
x̃k = ck, k = 1, . . . ,K

. (1)

In formula (1), under the null hypothesis H0, the received
N−dimensionalpulse-echo data, x ∈ CN×1, x = {x1, x2, . . .

, xN}T ,consist of only clutter c, which means that there is no
target at the cell under test (CUT). Under the alternative hypoth-
esisH1, the receivedN -dimensional pulse-echo datax contains
not only clutter c but also target signal s, and s is statistically
independent of c. x̃k ∈ CN×1, x̃k = {x̃1,k, x̃2,k, . . . , x̃N,k} is
the N -dimensional pulse-echo data of the kth reference cell
around the CUT, consisting of only clutter, and K is the number
of reference cells.

The received radar echo data contain some rich information
that can be characterized using several features to distinguish sea
clutter and targets. Next, we introduce eight features used in the
field of small target detection in sea clutter. The eight features
are the normalized Hurst exponent (NHE) [36], relative average
amplitude (RAA), relative Doppler peak height (RDPH), relative
vector entropy (RVE) [15], RI, maximum size of connected
regions (MS), number of connected regions (NR) [16], the
normalized sample covariance matrix and the generalized likeli-
hood ratio test (NSCM-GLRT) [37]. Among them, the NHE and
RAA are amplitude features, the RDPH and RVE are Doppler
features, the RI, MS, and NR are time-frequency features, and
the NSCM-GLRT is a statistical feature.

The above eight-dimensional (8-D) features are extracted
from the received echo to form the 8-D feature vector μ. The
8-D clutter feature vector and the 8-D feature vector at the CUT
are defined as follows:

ς = μ(x |H0 ) (2)

κ = μ(x |H1 ). (3)

Next, we use feature selection on the extracted 8-D feature
vectors for the conversion from HDFS to 3-DFS.

III. ALGORITHM OF OPTIMAL FEATURE SELECTION: MRMR

To select the optimal 3-D feature vectors with the largest gaps
between the target and sea clutter from the multidimensional
feature vectors, the mRMR is used to obtain the optimal feature
set with the minimum redundancy between the internal features
and the maximum relevance between the internal features and
stability label vectors [32], [33], [34].

The mRMR is based on MI defined as follows:

MI(A;B) =
∑
A∈A

∑
B∈B

p(A,B)log2
p(A,B)

p(A)p(B)
(4)

whereA is an element belonging toA,B is an element belonging
to B, p(A,B) is the joint probability density function of A and
B, and p(A) and p(B) are the probability density functions of A

and B, respectively. When two random variables are completely
independent, the MI is 0.

In this article, the mRMR is used to select the optimal 3-D
feature vectors. First, the set {ς1; . . . ; ςQ} of 8-D clutter feature
vectors and the set {κ1; . . . ;κT } of 8-D feature vectors at the
CUT are spliced into a matrix, as shown in the following formula:

RG = [ς1; . . . ; ςQ;κ1; . . . ;κT ] (5)

where Q is the total number of sea clutter samples, and T is the
total number of samples at the CUT.

Formula (5) is also equivalent to a set of 1-D feature vectors
and is defined as follows:

RG = {a1, . . . ,aj , . . . ,a8} (6)

where aj is the 1-D feature vector that contains Q+ T samples
in set RG.

Suppose G is a subset of RG and is defined as follows:

G =
{
g1, . . . , gi, . . . , g|G|

}
(7)

where gi is the 1-D feature vector containing Q+ T samples in
set G, |G| is the number of 1-D feature vectors contained in G.

The incremental search is used in the mRMR to sort all feature
vectors, as shown in Algorithm 1.

Algorithm 1: mRMR.
Input: RG, b
Output: ξopt, ηopt

1. Initialization s′ = 1
2. for(j = 1to8)do
3. Based on the mutual information definition in

formula (4), calculate the relevance between aj and
b;

4. end for
5. Add the most relevant vector in RG to set G, where
G = {g1};

6. for(s′ = 2to3)do
7. Using the existing element gi in set G, add the

feature vector gs′ satisfying (8);

gs′ = argmax
aj∈RG−G

[
MI(aj ; b)

1
|G|

∑
gi∈G MI(aj ; gi)

]
(8)

8: end for
9: Separate the set G into the optimal 3-D clutter feature

vectors ξopt and optimal 3-D feature vectors at the CUT
ηopt;

10: returnξopt, ηopt

In Algorithm 1, we input RG and stability label vector b,
select the features of RG according to the mRMR, and obtain
its optimal subset G. Since an optimal 3-D feature vector is
required, the value of the final |G| is 3. Finally, the subset G
is separated into optimal 3-D clutter feature vectors ξopt and
optimal 3-D feature vectors at the CUT ηopt, where each optimal
3-D clutter feature vector ξopt represents one clutter sample in
the 3DFS, and each optimal 3-D feature vector at the CUT ηopt
represents one sample of the CUT in the 3DFS.
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Fig. 1. NMI s of 56 combinations of the 3-D feature vectors.

To evaluate the optimality of the selected 3-D feature vector,
the normalized MI metric NMI is used as the measure index.
First, the MI metric is defined as follows:

MI(ξ,η) =
∑
ξ∈ξ

∑
η∈η

p(ξ, η)log2
p(ξ, η)

p(ξ)p(η)
(9)

where p(ξ) is the probability of data ξ in 3-D clutter feature
vectors ξ, p(η)is the probability of data η in 3-D feature vectors
at the CUT η, and p(ξ, η) is the joint probability of ξ and η.
Then, the normalized MI metricNMI is defined as follows:

NMI(ξ, η) =
MI(ξ,η)√
H(ξ) ∗H(η)

(10)

whereH(ξ) and H(η) are the information entropies of ξ and η,
respectively, which are defined as follows:

H(ξ) = −
∑
ξ∈ξ

p(ξ)log2 p(ξ) (11)

H(η) = −
∑
η∈η

p(η)log2 p(η). (12)

If the correlation between ξ andη is weaker, the value of NMI
is smaller. It is known that there areC3

8 = 56 combinations when
3-D feature vectors are selected from 8-D feature vector space.
Fig. 1 shows the NMIs of 56 combinations.

From Fig. 1, the 37th combination is selected by the mRMR.
The NMI of the 3-D feature vector selected by the mRMR is less
than the other 3-D feature vectors, which proves that there is the
weakest correlation between the 3-D clutter feature vector and
the 3-D feature vector at the CUT selected by the mRMR. This
result conforms to the required principle of feature selection.

IV. TARGET DETECTION ALGORITHM

After obtaining the 3-D feature vectors, we can transform
the detection into a single classification or anomaly detection.
The 3-D clutter feature vectors ξq form a set ζ = {ξq ∈ R3, q =
1, . . . , Q}, whereQ is the total number of clutter feature vectors.
The judgment area of detection is an area that can wrap those

clutter feature vectors tightly. During the decision stage, if the
feature vector at the CUT falls inside the judgment area of
detection, then there is no target. Otherwise, if the feature vector
falls outside the judgment area, there is a target.

According to the Neyman-Pearson criterion, in the 3-DFS,
when the conditional probability densities p(ξ|H1) and p(ξ|H0)
of H1 and H0 are known and the false alarm rate PF is given,
where PF refers to the probability of clutter being misjudged as
the target, the judgment area Ω of detection can be expressed as
follows:

max
Ω

{
PD = 1−

∫∫∫
Ω

p(ξ|H1)dξ

}
,

s.t.
∫∫∫

Ω

p(ξ|H0)dx = 1− PF (13)

where PD is the detection probability. According to [15], Ω
is a limited space, and it is assumed that the judgment area
is contained in a larger uniform distribution space. The final
judgment area can be simplified into an optimization problem
as follows:

min
Ω∈C

{|Ω|} , s.t.
#
{
q, ξq ∈ Ω

}
Q

= 1− PF (14)

whereC represents all bounded sets inR3, which can be convex
or concave, and #{q, ξq ∈ Ω} is the number of clutter feature
vectors in the judgment area. By solving the optimization, the
judgment area can be obtained. When the judgment area Ω is
a convex space, the detection is called convex hull detection;
when the judgment area Ω is a concave space, the detection is
called concave hull detection. Next, we introduce convex hull
detection and concave hull detection.

A. 3-D FAC Convex Hull Learning Algorithm

The 3-D FAC convex hull learning algorithm [15] uses the
convex hull to wrap the clutter feature vectors. Thus, the judg-
ment area is convex. The solution to formula (14) involves
finding the convex hull with the following two conditions: the
volume of the convex hull is at a minimum, and the num-
ber of clutter feature vectors wrapped by the convex hull is
[(1− PF )×Q]. We use the convex hull learning algorithm to
obtain the optimal solution in which the clutter feature vectors
are regarded as training sample points in the 3-DFS. The 3-D
FAC convex hull learning algorithm is used to obtain the convex
judgment areaΩconvexhull. During the decision stage, if the feature
vectors at the CUT fall inside the judgment area of detection,
then there are no targets. Otherwise, if the feature vectors fall
outside the judgment area, these are considered targets. When
the distribution of ζ in the 3-D space is convex, the convex
hull learning algorithm exhibits good detection performance.
However, in practical applications, the distribution of ζ in the
3-D space is not always convex and is often concave. In this case,
if the convex hull learning algorithm is still used, the judgment
area will inevitably extend, and the detection performance will
inevitably be lost. Therefore, in the next section, we study the
concave hull learning algorithm with the concave distribution of
ζ in 3-D space.
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Fig. 2. Distribution of sea clutter feature vectors in 3-D space. (a) Convex hull
algorithm. (b) Concave hull algorithm.

B. Proposed 3-D FAC Concave Hull Learning Algorithm

According to the above, formula (14) is obtained on the
premise that the judgment area is a uniformly distributed space.
In fact, due to the obvious gaps in the convex hull, the distribution
of the sea clutter feature vectors is usually not uniform. Fig. 2
shows the convex hull, the concave hull, and the distribution of
sea clutter feature vectors in 3-D space. As shown in Fig. 2(a),
there are large gaps. When the feature vectors at the CUT fall
in these gaps, they will be incorrectly judged as clutter feature
vectors. However, these gaps are formed by the connection of
the vertices in the convex hull and do not contain sea clutter
feature vectors. If a convex hull with large gaps is considered the
judgment area, it will inevitably lead to a considerable detection
error. If these gaps are removed and a new judgment area is
formed, as shown in Fig. 2(b), the judgment area will become
a concave hull with a smaller volume than the convex hull. In
addition, the concave hull can wrap the sea clutter feature vectors
more compactly, so the detection performance will be better.

It can be seen from Fig. 2 that there are a large number of
gaps in the convex hull without sea clutter, which will inevitably
reduce the detection probability. The concave hull encloses the
sea clutter feature vectors more compactly, which effectively
reduces the gap and makes the judgment area more reasonable.
For this reason, we propose a 3-D FAC concave hull learning
algorithm, as shown in Algorithm 2. It comprises five parts:
delete false alarm points by the alpha concave hull, form the
convex hull by ζNf , carry out the concave hull internal digging
algorithm, carry out the concave hull external filling algorithm,
and obtain the final concave judgment area Ωfinal.

Li and Niggemann [26] present an N− dimensional concave
hull algorithm that can form a concave hull in any dimensional
space. In the field of radar detection, it is very difficult to control
false alarms in high-dimensional space. Therefore, we reduce the
HDFS to 3-DFS first, which is realized in Section III, and we
use the internal digging algorithm to achieve 3-D concave hull
feature detection. However, there are three troubles encountered
when using this algorithm in [26] to form a judgment area.

First, to form the judgment area, we need to delete the false
alarm points according to the principle of maximum volume
loss of concave hulls. However, deleting the false alarm points
using the concave hull from [26] can result in high algorithm
complexity. To reduce the algorithm complexity, we introduce
the fast FAC alpha concave hull. As shown in Algorithm 3’s
table, similar to the convex hull learning algorithm and based

Algorithm 2: 3-D FAC Concave Hull Learning Algorithm.
Input: ζ, PF

Output: final concave judgment area Ωfinal

1. Algorithm 3: Use the fast FAC alpha concave hull to
delete false alarm points and get ζNf ;

2. According to ζNf , the original convex hull Ωoriginal,
whose surface is composed of D triangulation planes, is
generated by the convex hull algorithm;

3. Calculate the perimeter Ld, d = 0, . . . , D of all
triangulation planes;

4. Calculate the average perimeter of all triangulation
planes and use it as the threshold;

5. Initialize i = 1, j = 1, Ωi,j = Ωoriginal and the number of
internal digging operations dig_num = 150;

6. while (j ≤ dig_num) do
7. Calculate the perimeter Lj,d, d = 0, . . . , D of all

triangulation planes of Ωi,j ;
8. Calculate the maximum value Lj,max in Lj,d,

d = 0, . . . , D;
9. if (Lj,max > threshold) then

10. Algorithm 4: Concave hull internal digging
algorithm, i = i+ 1, j = j, get Ωi,j ;

11. Algorithm 5: Concave hull external filling
algorithm, j = j + 1, i = i, get Ωi,j ;

12. else
13. break;
14. end if
15. end while
16. Ωfinal = Ωi,j ;
17. return Ωfinal;

on the principle of the maximum reduction of the alpha concave
volume, we obtain the updated clutter feature vector set ζNf

by
iteratively deleting [PF ×Q] false alarm points from the clutter
feature vector set ζ.

Second, the internal digging point selected in [26] is the
nearest internal point to the edge side, which results in an
inefficient internal digging operation. To solve this problem, we
select the inner point nearest to the center point of the edge
side as the internal digging point and improve the concave hull
internal digging algorithm, as shown in Algorithm 4.

Third, in Algorithm 4, after each internal digging operation,
there may be some internal points located outside the concave
hull, resulting in a final generated judgment area that does not
satisfy the CFAR. To solve this problem, the external filling
algorithm from [27] is introduced after each internal digging
operation, as shown in Algorithm 5.

Based on the above three improvements, we can obtain the
proposed 3-D FAC concave hull learning algorithm in this
article. The flow chart is shown in Fig. 3.

A concave hull is formed by internal digging and external
filling on the basis of a convex hull. The process of forming a
concave hull after each internal digging and external filling is
shown in Fig. 4.
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Algorithm 3: Use the Fast FAC Alpha Concave Hull to
Delete the False Alarm Points.

Input: ζ, PF

Output: ζNf

1. Calculate the number of sample points Q in set ζ;
2. Calculate the number of false alarm points

Nf = Q× PF ;
3. Initialize v = 1, ζv = ζ;
4. while (v ≤ Nf ) do
5. Generate the fast FAC alpha concave hull of ζv and

calculate its volume;
6. When one concave hull’s vertex is deleted from ζv ,

calculate the volume of the concave hull with the
remaining sample points;

7. Record the vertex of the concave hull that can
maximumly reduce the volume of the concave hull;

8. Delete this vertex from set ζv , v = v + 1, get a new
ζv;

9. end while
10. ζNf

= ζv;
11. return ζNf

;

Algorithm 4: Concave Hull Internal Digging Algorithm.
Input: Ωi,j

Output: Update Ωi,j by internal digging
1. Find the triangulation plane Δm1,i corresponding to
Lj,max;

2. Find the longest edge side in Δm1,i;
3. Get another triangulation plane Δm2,i that shares the

same edge side with Δm1,i;
4. Use the points that are not the vertices about Ωi,j as the

interior points;
5. Find the internal digging point P0 that is closest to the

center point of the edge side from the interior points;
6. Let all vertices of Δm1,i and Δm2,i be point set F ;
7. Create new facets Δ1,i,Δ2,i,Δ3,i,Δ4,i using point set

F and P0 and satisfy:

{Δ1,i,Δ2,i,Δ3,i,Δ4,i} ∩
{
Δm1,i,Δm2,i

}
= ∅ (15)

8: Delete Δm1,i,Δm2,i from Ωi,j and add Δ1,i,Δ2,i,Δ3,i,
Δ4,i to complete the update. From a spatial point of
view, the hexahedron composed of Δ1,i, Δ2,i, Δ3,i,
Δ4,i, Δm1,i,Δm2,i is dug out in space Ωi,j ;

9: return Ωi,j ;

Fig. 4 shows that from the perspective of space, one internal
digging operation is equivalent to digging out a hexahedron in
space Ωi,j , and one external filling operation is equivalent to
filling a tetrahedron in space Ωi,j .

Both the fast FAC alpha concave hull and the concave hull
formed by Algorithms 4 and 5 have their own advantages and
disadvantages. For the former, the computational complexity
of the concave volume is low, but the generated concave hull

Algorithm 5: Concave Hull External Filling Algorithm.
Input: Ωi,j

Output: Update Ωi,j by external filling
1. Use the clutter feature vectors outside Ωi,j to form a set

Z = {Z1, . . . , ZH}. H is the number of clutter feature
vectors outside Ωi,j ;

2. for (t = 1 to 4) do
3. for (h = 1 toH) do
4. Calculate the distances from Zh to Δ1,i, Δ2,i, Δ3,i,

Δ4,i, which are di1, di2, di3, di4, respectively;
5. if (dit = min{di1, di2, di3, di4}) then
6. Store Zh in set Js;
7. end if
8. end for
9. Sort the points in Js from near to far from Δt,i to get a

new set J ′
s = {J ′

1, . . . , J
′
S}. S is the number of

points in set Js;
10. for(s = 1 toS) do
11. Among all triangulation planes of the Ωi,j surface,

find the closest triangulation plane Δnear to J ′
s;

12. Let all vertices of Δnear be point set F ′;
13. Use point set F ′ and point J ′

s to create new faces
Δ5,j ,Δ6,j ,Δ7,j and satisfy:

{Δ5,j ,Δ6,j ,Δ7,j} ∩ {Δnear} = ∅ (16)

14: Delete Δnear from Ωi,j , add Δ5,j ,Δ6,j ,Δ7,j , and
complete the update of Ωi,j . From the perspective of
space, it is equivalent to the Ωi,j space filled by
tetrahedron POfill composed of Δ5,j , Δ6,j , Δ7,j ,
Δnear;

15: end for
16: end for
17: return Ωi,j ;

volume is larger than the latter. For the latter, although its
volume is smaller than the former, its computational complexity
is higher. Therefore, we introduce the fast FAC alpha concave
hull to update the sea clutter feature vector set, as shown in
Fig. 3. The [PF ×Q] false alarm points are deleted from the
clutter feature vector set by iteration according to the principle
of the maximum reduction of the concave hull volume. Then, the
updated clutter feature vector set is used to generate a convex
hull. On the basis of the convex hull, Algorithms 4 and 5 are
used to generate the final concave judgment area Ωfinal.

C. Proposed mRMR-Tri-ConcaveHull Detector

Combining the contents in Sections III and IV-B, the flow
chart of the mRMR-Tri-ConcaveHull detector is shown in Fig. 5.

As shown in Fig. 5, first, with the received data, the features
are extracted to form the 8-D clutter feature vector ς and the
8-D feature vector κ at the CUT. Second, the two vectors are
spliced to form RG. Third, the optimal 3-D clutter feature
vectors ξopt and optimal 3-D feature vectors at the CUT ηopt
are obtained by the mRMR algorithm. Then, ξopt are input
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Fig. 3. Flowchart of the Algorithm 2.

Fig. 4. Formation process of internal digging and external filling. (a) Convex
hull. (b) Concave hull after one internal digging operation. (c) Concave hull after
one internal digging and external filling operation.

into the proposed concave hull detector and used as training
sample points. Concave hull detection can be divided into two
steps: First, the judgment area Ωfinal is obtained by the 3-D FAC
concave hull learning algorithm. Second, the position of ηopt is
determined with respect to the judgment area Ωfinal. If ηopt is

Fig. 5. Flow of the mRMR-Tri-ConcaveHull detector.

inside the judgment area Ωfinal, it is judged as H0; otherwise, it
is judged as H1.

It can be seen from Section IV-B that the judgment area Ωfinal

is a concave hull that is obtained by digging several hexahedrons
POdig and filling several tetrahedrons POfill from Ωoriginal. The
original convex hull Ωoriginal, the hexahedron POdig and the
tetrahedron POfill are convex polyhedrons whose surfaces are
composed of triangulation planes. Therefore, the original convex
hull Ωoriginal, the hexahedron POdig and the tetrahedron POfill

can be expressed as follows:

Ωoriginal = SP{triangle(u(1)
d , u

(2)
d , u

(3)
d ), d = 1, 2, . . . , D}

(17)

POdig = SP{triangle
(
u′(1)d , u′(2)d , u′(3)d

)
, d = 1, 2, . . . , 6}

(18)

POfill = SP{triangle(u′(1)d , u′(2)d , u′(3)d ), d = 1, 2, 3} (19)

whereSP{} represents the convex polyhedron formed by tri-
angulation planes, u(1)

d , u
(2)
d , u

(3)
d represent the vertices of the

triangulation plane of Ωoriginal, D represents the number of its

triangulation planes, u′(1)d , u′(2)d , u′(3)d represent the vertices of

the triangulation plane in POdig, and u′(1)d , u′(2)d , u′(3)d represent
the vertices of the triangulation plane in POfill. We store all
POdig and POfill in two sets. Therefore, we only need to judge
the position of the ηopt corresponding to Ωoriginal, POdig, and
POfill in turn. We calculate its detection statistics as follows:

ρ(ηopt) = max
d

{∣∣∣[u(1)
d − ηopt, u

(2)
d

−ηopt, u
(3)
d − ηopt

]∣∣∣ , d = 1, 2, . . . , D
}

(20)

ρ′(ηopt) = max
d

{∣∣∣[u′(1)d − ηopt, u′(2)d

−ηopt, u′(3)d − ηopt

]∣∣∣ , d = 1, 2, . . . , 6
}

(21)

ρ′(ηopt) = max
d

{∣∣∣[u′(1)d − ηopt, u′(2)d

−ηopt, u′(3)d − ηopt

]∣∣∣ , d = 1, 2, 3
}
. (22)
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Fig. 6. Detection flow to determine whether ηopt is inside the concave judg-
ment area Ωfinal.

If ρ(ηopt) ≤ 0, then ηopt is inside Ωoriginal. Similarly, if
ρ′(ηopt) ≤ 0, then ηopt is inside POdig. Ifρ′′(ηopt) ≤ 0, then ηopt
is inside POfill.

As shown in Fig. 6, first, we judge whether ηopt is inside
Ωoriginal; if not, then judge it as H1; otherwise, continue to judge
whether it is inside POdig. If not, it will be judged as H0;
otherwise, continue to judge whether it is inside POfill. If not,
it will be judged as H1; otherwise, it will be judged as H0. The
formula using detection statistics is as follows:

⎧⎪⎪⎨
⎪⎪⎩
H0 :

{
ρ(ηopt)≤0 and ρ′(ηopt)>0 (23.1)
ρ(ηopt)≤0 and ρ′(ηopt)≤0 and ρ′′(ηopt)≤0 (23.2)

H1 :

{
ρ(ηopt)>0 (23.3)
ρ(ηopt)≤0 and ρ′(ηopt)≤0 and ρ′′(ηopt)>0 (23.4)

.

(23)

When condition (23.1) or condition (23.2) is met, it is deter-
mined as H0; when condition (23.3) or condition (23.4) is met,
it is determined as H1.

V. EXPERIMENTAL VERIFICATION AND PERFORMANCE

ANALYSIS

In this section, experiments are conducted based on real sea
clutter data to verify the effectiveness of the proposed mRMR-
Tri-ConcaveHull detector. In the experiments, IPIX Radar data
collected in 1993 and 1998 by Professor Haykin of Canada
McMaster University were used [38]. IPIX Radar can transmit
horizontal polarization and vertical polarization electromagnetic
waves and uses two linear receivers to complete the horizontal
and vertical reception. Therefore, radar echo data of HH, HV,
VH, and VV polarities can usually be obtained.

In the experiments, we use 10 datasets collected in 1993 and
10 datasets collected in 1998. During the data collection, there
were certain differences between the radar working place, data
acquisition parameters, and cooperative targets. When collecting
data in 1993, the radar was set up on a 30 m high cliff near
Dartmouth, Nova Scotia, on the east coast of Canada. The radar
was directed toward the Atlantic Ocean. The target to be detected
was a floating ball wrapped in aluminum wire with a diameter
of 1 m. The operating frequency of the radar was 9.3 GHz, the
beam width was 0.9°, and the range resolution was 30 m. The
radar operated in dwell mode with a pulse repetition frequency
of 1000 Hz and dwell time of approximately 131 s. Each group
of data contains 14 range cells. In 1998, the IPIX Radar was
placed in Grimsby, Ontario, to collect a new set of data. The
radar was set at a height of 20 m, and the target to be measured
was a floating boat. The range resolution was 30 m, the pulse

Fig. 7. Detection probability of the convex hull detector and concave hull de-
tector without optimal feature selection under four polarizations for 20 datasets
with N = 512, PF = 0.001. (a) HH. (b) HV. (c) VH. (d) VV.

Fig. 8. Detection probability of the convex hull detector and concave hull de-
tector without optimal feature selection under four polarizations for 20 datasets
with N = 1024, PF = 0.001. (a) HH. (b) HV. (c) VH. (d) VV.

repetition frequency was 1000 Hz, and the dwell time was 60 s,
including 28 range cells.

A. Performance of the 3-D Convex Hull Detector and 3-D
Concave Hull Detector Without Optimal Feature Selection

In this section, the RAA-RDPH-RVE and RI-NR-MS are
input into the convex hull detector and our proposed 3-D concave
hull detector, respectively, to compare the detection perfor-
mance. Among them, the Tri-feature Convex Hull (TFC-H)
detector is the RAA-RDPH-RVE convex hull detector from
[15], the TF-Tri-feature Convex Hull (T-T-FCH) detector is the
RI-NR-MS convex hull detector in [16], and the Tri-feature
Concave Hull detector and TF-Tri-feature Concave Hull detector
are 3-D FAC concave hull detectors using RAA-RDPH-RVE
and RI-NR-MS, respectively. In the experiment, we set the
false alarm rate to 0.001. The detection probabilities of the four
detectors are shown in Figs. 7 and 8.

As shown in Figs. 7 and 8, based on 20 datasets, the TF-Tri-
feature Concave Hull detector and the Tri-feature Concave Hull
detector are superior to the TFC-H detector and the T-T-FCH
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Fig. 9. Detection probability of three convex hull detectors under four polar-
izations for 20 datasets with N = 512, PF = 0.001. (a) HH. (b) HV. (c) VH.
(d) VV.

detector, respectively. This result indicates that the performance
of the proposed 3-D FAC concave hull detector is superior to
that of the existing convex hull detectors because the concave
hull we generate is completed on the basis of the convex hull
through internal digging and external filling. The concave hull
is a part of the convex hull, and the volume of the concave hull
must be smaller than the volume of the convex hull. Therefore,
the detection performance of our proposed 3-D FAC concave
hull detector is better than that of the convex hull detectors. On
the other hand, the detection performance of the concave hull
detector for different datasets is improved to different extents,
with a maximum increase of 32.90% because the improvement
of the detection performance depends on whether the generated
original convex hull judgment area can tightly wrap the sea
clutter feature vectors. If there is a larger gap area in the convex
hull, the target feature vectors that fall in the gap area will be
incorrectly identified as clutter feature vectors. Whereas our
concave hull learning algorithm can dig out these gap areas
under the condition of meeting the CFAR. These target fea-
ture vectors can be correctly identified in the concave hull, so
the performance of the concave hull detectors will improve
more. When the detection probability of the convex hull is
1, the detection probability of the concave hull is the same
as that of the convex hull, and the performance improvement
is 0.

B. Performance of the 3-D Convex Hull Detector With
Different Features

In this section, the RAA-RDPH-RVE, RI-NR-MS, and the
optimal three features selected by the mRMR algorithm are
input to the convex hull detector. Among them, the TFC-H
detector [15] and T-T-FCH detector [16] are convex hull detec-
tors using the RAA-RDPH-RVE and RI-NR-MS, respectively.
The mRMR-Tri-ConvexHull detector is a convex hull detector
that uses the mRMR to obtain three optimal features. In the
experiment, we set the false alarm rate to 0.001, and the detection
probabilities of the four detectors are shown in Figs. 9 and 10.

As shown in Figs. 9 and 10, based on 20 datasets and com-
pared with the other two algorithms, the mRMR-Tri-ConvexHull

Fig. 10. Detection probability of three convex hull detectors under four
polarizations for 20 datasets with N = 1024, PF = 0.001. (a) HH. (b) HV.
(c) VH. (d) VV.

Fig. 11. Detection probability of three concave hull detectors under four
polarizations for 20 datasets with N = 512, PF = 0.001. (a) HH. (b) HV.
(c) VH. (d) VV.

detector can essentially achieve the best detection perfor-
mance. Compared with the TFC-H detector, the mRMR-Tri-
ConvexHull detector can improve the detection performance
by up to 77.59%, and compared with the T-T-FCH detector,
the mRMR-Tri-ConvexHull detector can improve the detection
performance by up to 40.86%. These results show that in the
convex hull detector, the mRMR can improve the robustness of
the detection performance.

C. Performance of the 3-D FAC Concave Hull Detector With
Different Features

In this section, the RAA-RDPH-RVE, RI-NR-MS, and the
optimal three features selected by the mRMR algorithm are input
into our 3-D FAC concave hull detector. Among them, the Tri-
feature Concave Hull detector and TF-Tri-feature Concave Hull
detector are concave hull detectors using the RAA-RDPH-RVE
and RI-NR-MS, respectively. The mRMR-Tri-ConcaveHull de-
tector is a concave hull detector that uses the mRMR to obtain
three optimal features. In the experiment, we set the false alarm
rate to 0.001. The detection probabilities of the four detectors
are shown in Figs. 11 and 12.
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TABLE I
AVERAGE DETECTION PROBABILITIES OF THE SIX DETECTORS ON THE 20 DATA SETS WITH FOUR POLARIZATIONS

Fig. 12. Detection probability of three concave hull detectors under four
polarizations for 20 datasets with N = 1024, PF = 0.001. (a) HH. (b) HV.
(c) VH. (d) VV.

As shown in Figs. 11 and 12, on 20 datasets, the mRMR-
Tri-ConcaveHull detector essentially achieves the best detec-
tion performance compared with the other two detectors. Com-
pared with the Tri-feature Concave Hull detector, mRMR-Tri-
ConcaveHull detector can increase the detection performance
by up to 74.24%, and the mRMR-Tri-ConcaveHull detector can
increase the detection performance by up to 34.32% compared
with the TF-Tri-feature Concave Hull detector. These results
indicate that in the 3-D FAC concave hull detector, the mRMR
can improve the robustness of detection performance.

D. Performance of the mRMR-Tri-ConvexHull Detector and
mRMR-Tri-ConcaveHull Detector

From Section V-A to V-C, we can see that both the mRMR and
the 3-D concave hull detector can improve the detection perfor-
mance. In this section, with the help of the mRMR, we input three
optimal features into the convex hull detector and the concave
hull detector. We compare the mRMR-Tri-ConvexHull detector
with the mRMR-Tri-ConcaveHull detector. In the experiment,

Fig. 13. Detection probability of the mRMR-Tri-ConcaveHull detector and
the mRMR-Tri-ConvexHull detector under four polarizations for 20 datasets
with N = 512, PF = 0.001. (a) HH. (b) HV. (c) VH. (d) VV.

Fig. 14. Detection probability of the mRMR-Tri-ConcaveHull detector and
the mRMR-Tri-ConvexHull detector under four HH s for 20 datasets with N =
1024, PF = 0.001. (a) HH. (b) HV. (c) VH. (d) VV.
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE MRMR-TRI-CONCAVEHULL DETECTOR

AND CONVEX HULL DETECTOR

we set the false alarm rate to 0.001. The detection probabilities
of the four detectors are shown in Figs. 13 and 14.

From Figs. 13 and 14, we can see that the detection perfor-
mance of the mRMR-Tri-ConcaveHull detector is better than
that of the mRMR-Tri-ConvexHull detector on the 20 datasets.
The mRMR-Tri-ConcaveHull detector can further improve the
detection performance by using the combination of the optimal
feature selection and concave hull.

E. Performance of the Six Detectors

The TFC-H detector [15], T-T-FCH detector [16], mRMR-
Tri-ConvexHull detector, Tri-feature Concave Hull detec-
tor, TF-Tri-feature Concave Hull detector, and mRMR-Tri-
ConcaveHull detector run on 20 datasets under four polariza-
tions with N = 512 and 1024, PF = 0.001. Table I lists the
average detection probabilities of six detectors on 20 datasets
with four polarizations in the IPIX radar database, where the
averages at each polarization and at the four polarizations are
listed separately. As seen in Table I, the detection performance
of 3-D FAC concave hull detector is better than that of the
convex hull detectors. In addition, the mRMR can also im-
prove the detection performance to a certain extent. Combining
the mRMR with the 3-D FAC concave hull detector, the pro-
posed mRMR-Tri-ConvaveHull detector has the best detection
performance.

F. Computational Complexity of the Proposed
mRMR-Tri-ConcaveHull Detector and Convex Hull Detector

Table II shows the computational complexity of the proposed
mRMR-Tri-ConcaveHull detector and convex hull detector.
Among them, Nf represents the number of false alarm points,
dig_num is the number of internal digging operations, H is the
number of clutter feature vectors outsideΩi,j ,S is the number of
points in set Js, Q is the total number of sea clutter samples, and
vernum is the number of vertex of convex hull. From Table II, it
can be seen that the proposed mRMR-Tri-ConcaveHull detector
is slightly more complex than the convex hull detector. In the
above experiments, the feasibility of the proposed mRMR-Tri-
ConcaveHull detector is verified.

TABLE III
AVERAGE DETECTION PROBABILITIES OF THE TEN FEATURE-BASED

DETECTORS ON THE 20 DATA SETS WITH FOUR POLARIZATIONS

G. Performance of the mRMR-Tri-ConvexHull Detector and
Nine Feature-Based Detectors

The existing 9 feature-based detectors and the proposed de-
tectors run on 20 datasets under four polarizations with N =
512 and 1024, PF = 0.001. Table III lists the average detection
probabilities of 10 detectors on 20 datasets with four polariza-
tions in the IPIX radar database, where the averages at each
polarization and at the four polarizations are listed separately.
As seen in Table III, the proposed mRMR-Tri-ConvaveHull (M-
T-C) detector has the best detection performance. The fractal-
based (F-B) detector [9] only utilizes a single feature, and its
detection performance is the worst. The second worst is the direct
feature-fusion-based (DF-F-B) detector [17], as it causes serious
performance losses in the process of direct feature fusion. For
SVM-based (S-B) detector [20], TFC-H detector [15], and T-T-
FCH detector [16], they use 3-D features, which cannot achieve
the highest recognition of target features and sea clutter features
in 3-DFS, thus their detection ability is limited. For PCA-based
(P-B) detector [18] and feature-compression-based (F-C-B) de-
tectors [17], they extract or compress three-dimensional features
from the high dimensional space and use convex hulls to match
the concave distribution of sea clutter, and this inevitably enlarge
the judgment area and considerably decreases the detection
probability. Due to prior information, Fast feature-fusion-based
(FF-F-B) detector [19] and KNN-based (K-B) detector [21]
achieve a good performance. Moreover, our proposed M-T-C
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Fig. 15. Flow chart of the operation that infers the clutter feature distribution
after the mRMR based on the mRMR-Tri-ConvexHull detector and mRMR-Tri-
ConcaveHull detector.

detector not only uses the prior information but also compensates
the disadvantage of the concave hull, resulting in the optimal
performance.

H. Experimental Conclusion

The distribution of sea clutter features in the 3-DFS is convex
or concave. If the distribution is convex, we use the mRMR-
Tri-ConvexHull detector; otherwise, we use the mRMR-Tri-
ConcaveHull detector. Combining the two detectors, we add
the operation that infers the clutter feature distribution after the
mRMR, as shown in Fig. 15.

As shown in Fig. 15, after selecting the optimal three feature
vectors with the mRMR, we determine whether the distribution
of clutter feature vectors is convex. On the condition that the
distribution is convex, we use the convex hull learning algorithm
to form a convex judgment area Ωconvexhull. If ηopt is inside
Ωconvexhull, it will be judged as clutter; otherwise, it will be judged
as a target. On the condition that the distribution is concave, we
use the concave hull learning algorithm to form the concave
judgment area Ωfinal. If ηopt is inside Ωfinal, it will be judged as
clutter; otherwise, it will be judged as a target.

VI. CONCLUSION

The detection of small floating targets in sea clutter has always
been a difficult problem due to complicated sea clutter and the
low RCS of small targets. The high-dimensional feature detector
is a trend, whereas the distribution of the feature is hard to define.
In this article, we use the mRMR to choose the features for
3-DFS from the HDFS and measure the distribution of the 3-D
features. In most cases, the distribution is concave. Therefore, we
propose the 3-D FAC concave hull detector to meet the concave
distribution of features. Combining the mRMR and the 3-D FAC
concave hull detector, we propose the mRMR-Tri-ConcaveHull
detector. The simulated results based on the measured data
show that the proposed mRMR-Tri-ConcaveHull detector has
better detection performance than the existing nine feature-based
detectors, which provides a new idea for target detection in sea
clutter.

According to research works [39], [40], IPIX radar is an X-
band radar, but in practical applications, the accuracy and stabil-
ity of radar detection may be affected by interference factors such
as rain clutter. Rainfall can blur the wave signatures, which may
negatively impact the use of X-band marine radar to measure
ocean surface parameters. Ensuring that marine radars have ef-
ficient and robust detection capabilities in any weather condition
is a challenging problem that we will explore in the future.
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