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Abstract—Hyperspectral anomaly detection based on represen-
tation learning has received much attention in recent years. Due
to the lack of prior knowledge about anomalies, it is difficult for a
collaborative representation (CR) model to obtain a pure dictionary
in the ideal case. Some algorithms proposed to remove anomalous
pixels from a dictionary, which may result in the removal of con-
tributing background atoms. To address such a problem, this article
introduces a competitive regularization constraint term into the CR
model, and divides the dictionary into anomaly and background
classes using an outlier searching strategy, while adding compe-
tition weights to improve the competitiveness of the background.
To better reconstruct the pixels, the Jaccard similarity coefficient
is combined with the distance-weighted regularization matrix to
adjust the representation coefficients. In addition, to make the
most of the information from the hyperspectral data, a significance
mechanism is introduced to construct an anomaly saliency weight
to achieve the purpose of suppressing the background and high-
lighting anomalies. Experiments on five real datasets show that the
detection performance of the proposed method is better than other
advanced algorithms.

Index Terms—Anomaly saliency weight, collaborative repre-
sentation (CR), competitive regularization constraint term,
hyperspectral anomaly detection.

I. INTRODUCTION

THE key difference between hyperspectral and traditional
multispectral images lies in narrow-band imaging. A hy-

perspectral image is a three-dimensional data cube, which pro-
vides two-dimensional spatial information and a third densely
sampled spectral band information [1]. This rich spectral infor-
mation can reflect the basic attributes of objects and provide the
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potential for diagnosis and recognition of ground objects [2],
[3]. Therefore, hyperspectral data has incomparable advantages
in target detection [4], ground object classification [5], [6],
environmental monitoring, and other fields [7].

Considering the merits of hyperspectral data and the practica-
bility of target detection, the research of this article is focused on
hyperspectral target detection. According to whether the target
is a priori, hyperspectral target detection can be achieved by
supervised [8] or unsupervised [9] methods. Unsupervised target
detection, namely anomaly detection, does not consider specific
unknown targets but finds targets with different characteristics
from the surrounding neighbors or the environment [10]. Since
no prior knowledge is required, hyperspectral anomaly detection
(HAD) has been greatly applied in civil search and rescue [11],
national defense security [12], medical inspection [13], and food
health detection [14].

Among the existing algorithms for HAD, the most repre-
sentative ones are those based on statistical models and those
based on representation learning. In addition, anomaly detec-
tion methods based on deep learning have become a research
hotspot in recent years. Reed-Xiaoli (RX) [15] algorithm is
regarded as the most classical algorithm in statistical models.
It assumes background pixels obey multivariate Gaussian dis-
tribution. The RX algorithm includes the global RX algorithm,
which treats the entire hyperspectral image as the background,
and the local RX algorithm (LRX) [16], which uses the local
data in a dual-window as the background model. The key
point of hyperspectral anomaly detection is the modeling of
the background. Therefore, many anomaly detection methods
will consider the use of global and local information. Wu et al.
proposed an anomaly detection method via global and local joint
modeling of the background [17]. The RX algorithm is simple
and powerful, but not all background images obey the Gaussian
distribution, especially scenes with complex feature distribution.
Therefore, some improved variants were proposed. In [18], a
rigid dual-window construction dictionary method is developed
in favor of adaptive determination of the detection window for
LRX using super-pixel segmentation. Kwon et al. proposed the
kernel RX algorithm [19] based on the kernel theory, which
solves the nonlinear anomaly-background separation problem
by mapping the original data into a higher dimensional feature
space. However, this algorithm has high complexity. To reduce
the computational cost, an anomaly detection algorithm based
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on clustering and kernel method [20] was proposed, which not
only performs well in detection performance but also has high
computational efficiency. An improved RX technique based on
subspace (named SSRX) that can accurately detect the target
and lower the false detection rate is presented in [21]. An-
other reliable anomaly detector that is commonly mentioned
is the blocked adaptive highly computationally efficient outlier
nomenclature [22], which effectively discovers anomalies via
blocking approaches and adaptive parameter change. minimum
covariance determinant RX [23] which uses multiple adaptively
sized windows to estimate the local background covariance
matrix, an algorithm with high anomaly detection performance
at different signal-to-noise ratios.

Although the principle of HAD algorithm based on statistics is
simple and computational cost is relatively low, it does not make
full use of the deep relationship between hyperspectral pixels,
and does not consider the characteristics of spectral redundancy.
To avoid the drawbacks of these algorithms, representation-
based approaches without any statistical assumptions have
drawn wide attention in recent years [24], the representation-
based learning approaches have proven to be powerful tools for
HSI processing and are widely used in different HSI domains
[25]. According to different constrained conditions, the algo-
rithm of HAD based on representation can be further divided into
collaborative representation (CR), sparse representation (SR),
and low-rank representation (LRR). SR uses either an l1 norm
or an l21 norm [26], [27], [28]. In [29], anomaly detection is
achieved by calculating the sparsity divergence lift of pixels in
each band. In background joint sparse-representation detector
[30], a background dictionary representing local background
information is used to achieve robust background estimation. In
[31], a maximum likelihood estimation-based joint sparse rep-
resentation model is applied to the classification, which brings
new thinking to sparse representation-based anomaly detection
methods. The LRR model describes the global characteristics
of hyperspectral images, and assumes the background has low-
rank property. The background and anomalies of hyperspectral
images can thus be distinguished by using the low-rank theory.
Typical methods include robust principal component analysis
(RPCA) [32], anomaly detection based on low-rank sparse ma-
trix decomposition [33], [34]. Since the low-rank representation
does not well consider the local structure of each pixel, Xu et
al. proposed a hyperspectral anomaly detection method based
on the low-rank sparse representation [35], which achieves an
accurate description of the pixel structure by adding sparse
induced regularization terms.

While the importance of sparsity has been emphasized in
many studies, it is pointed out in [36] that the collaborative nature
of the dictionary atoms is more important, and that CR imposes
l2 parametric constraints on the regularization parameters. The
first application of CR to hyperspectral anomaly detection was
made by Li and Du [37]. The anomaly detection algorithm based
on CR considers that a background pixel can be reconstructed
by the background dictionary but not anomaly pixels, and the
reconstructed representation residuals are considered as the final
anomaly detection results. Although the CR model is simple
and fast, and does not require any prior assumptions, it suffers

from the vulnerability of the background dictionary to anomaly
contamination and under-utilization of features. To address these
drawbacks of CR model, many scholars have proposed vari-
ants for improvements. In [38], a hyperspectral collaborative
representation anomaly detection algorithm for anomaly re-
moval is proposed, which uses statistical theorems to set up-
per and lower bounds for thresholds, and pixels outside the
threshold bounds are considered as anomalies for removal. On
top of the outlier removal strategy, Vafadar and Ghassemian
[39] uses both spectral and spatial information to detect anoma-
lies. Su et al. [40] adopt spatial domain principal components
analysis (PCA) to extract the main pixel information of the
background as a sample for the CR model, while removing the
anomalous pixel information from the background. A density
peak clustering algorithm was used in the construction of the
background dictionary in [41], and atoms with high density
were considered as background dictionaries. In [42], the rep-
resentation coefficients are ranked based on an outlier strategy,
and the few dictionary atoms with small representation coeffi-
cients are considered outliers and removed. At the same time,
a saliency weight is constructed using the atoms in the inner
window to weight the testing pixels, but this saliency weight
does not consider the fact that for scenes with complex features,
the background may also be salient and significant, resulting
in a poor generalization performance of the algorithm. These
algorithms focus on the construction of a complete and pure
background dictionary.

As an important branch and frontier of machine learning, deep
learning-based methods have been well applied in hyperspectral
remote sensing classification [43], and have brought new ideas to
anomaly detection. Deep learning frameworks have been divided
into supervised and unsupervised ones, typical unsupervised
deep learning networks such as autoencoders [44] and generative
adversarial networks [45] have been successfully applied to hy-
perspectral anomaly detection. The representative of supervised
deep learning is typically a convolutional neural network (CNN),
which is used in [46] for hyperspectral anomaly detection.
Moreover, Song et al. proposed a HAD method based on CNN
and LRR in [47], which combines representation learning with
deep learning methods.

Although the statistical model-based hyperspectral anomaly
detection algorithm is computationally efficient, it is limited by
the assumption of a single statistical distribution model, which
can lead to serious false alarm rates in scenes with complex
background distributions. There are no assumptions needed for
the anomaly detection approach based on the representation
model, which has a simple and effective model, but suffers from
the problem that the background dictionary is susceptible to
anomalous pixels and feature utilization needs to be improved.
Deep learning is highly capable of learning, but most deep
learning-based methods need to be retrained before they can
be applied to new test scenarios, and a single deep learning
network for anomaly detection is not as effective and needs to be
mined for more image information. Therefore, the combination
of deep learning and traditional machine learning will be a trend.
This article is developed based on the method of representation
learning.
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We learned that while collaboration between dictionary atoms
is important, such collaboration is only between background
atoms, and once there is an anomaly in a dictionary atom, then
it introduces competition between dictionary atoms. Moreover,
the lack of prior knowledge of anomalies makes it difficult for the
CR detector, and its improved algorithm for impure dictionaries
to achieve the ideal situation where the background dictionaries
are not contaminated. The background atoms that contribute
to the testing pixel may also be removed as anomalies, affecting
the process of reconstruction. In addition, in the CR model,
the dictionary atoms constructed by the dual-window ignore
the global information, making the model itself incomplete for
feature extraction of hyperspectral images. To address the above
problems, this article introduces a competitive regularization
constraint term in the CR model. Meanwhile, the saliency mech-
anism is also introduced into anomaly detection, and anomaly
saliency weight is proposed.

In summary, this article proposes a saliency-guided
collaborative-competitive representation (SG-CCR) method to
identify anomalous pixels. Instead of selecting purified atoms,
the method divides the dictionary atoms within the dual-window
into a background class and an anomaly class, introducing a
competitively constrained regularization term. The competition
of background pixels is also improved to better reconstruct the
pixels to be measured, and the initial reconstruction error is
obtained. Then anomaly saliency weight is added to the initial
reconstruction error to obtain the final anomaly detection results.
The following summarizes the major contributions of this article.

1) A competitively constrained regularization term is added
to the CR model. Due to the lack of prior information
on anomalies, it is difficult to obtain a pure background
dictionary in an ideal state. Considering the competitive
relationship between anomalies and background in dictio-
nary atoms, a competitive constraint is introduced into CR
model to achieve the purpose of better reconstruction of
pixels.

2) A spectral Jaccard similarity coefficient is added to the
distance-weighted Tikhonov regularization. As the spec-
tral Jaccard similarity coefficient considers the similarity
of the two curves from the curve trend, it can be used to
adjust the weight vector to better reconstruct the testing
pixels.

3) Spatial and spectral information are used to construct
anomaly saliency weights. The construction of this weight
takes into account the characteristics of the human visual
system when recognizing targets, and therefore introduces
the saliency mechanism into anomaly detection in order
to highlight anomalies.

The rest of the article are arranged as follows. The related
work is presented in Section II. Section III proposes the SG-
CCR anomaly detection method. Section IV introduces the ex-
perimental dataset, evaluation metrics, comparison algorithms,
parameter settings, and experimental results. Section V conducts
the ablation study, then discusses the validity of the proposed
algorithm, the parameter sensitivity analysis, and the window
stability analysis. Finally, Section VI concludes this article.

II. RELATED WORK

A. Collaborative Representation Detector

The CR model believes that the collaboration between atoms
is important. It assumes that each normal background pixel
can be well represented by surrounding pixels, while abnormal
pixels cannot. The model can be expressed as follows:

argmin
α

‖y −Xsα‖22 + λ‖α‖22 (1)

where Xs ∈ Rb×s is the dictionary taken from dual-window
centered on the testing pixel y ∈ Rb×1, b is the number of bands,
s is the number of samples, andα and λ are the coefficient vector
and Lagrange multiplier, respectively. The solution for α is

α =
(
XT

s Xs + λI
)−1

XT
s y. (2)

However, for the testing pixel, not every dictionary atom used
for reconstructs is similar to it. Therefore, a larger reconstruction
coefficient should be given to a dictionary atom that is very
similar to the testing pixel, while a smaller coefficient should be
given to dissimilar atoms. Taking this into account, Tikhonov
regularization with distance weighting Γy is usually adopted
to adjust the weight vector. Then, the CRD model expression
becomes

argmin
α

‖y −Xsα̂‖22 + λ‖Γyα̂‖22 (3)

where Γy is a diagonal regularization matrix to the dictionary
atoms and the testing pixel y

Γy =

⎡⎢⎣‖y − x1‖2 0
. . .

0 ‖y − xs‖2

⎤⎥⎦. (4)

xs ∈ Rb×1 is the sth dictionary pixel, and the solution to α̂ is

α̂ =
(
XT

s Xs + λΓT
y Γy

)−1
XT

s y. (5)

In CRD, the reconstruction error r is used to determine the
anomaly

r = ‖y −Xsα̂‖2. (6)

If it is larger than a certain threshold, then y is declared as an
anomalous pixel

The selection of background dictionary of CRD model is
easily affected by abnormal pixels, which affects the accuracy
of detection.

B. RX-Detector

The RX algorithm is one of the most classical algorithms
for hyperspectral anomaly detection. For hyperspectral images,
the data matrix is defined as X ∈ Rb×n(n is the total number
of pixels). Each spectral pixel consists of b spectral bands,
denoted as: x(n) = (x1(n), x2(n) . . . , xb(n))

T . According to
the principle of generalized likelihood ratio detection, H0 is set
as that the testing pixel is a background pixel, and H1 is that the
pixel is an abnormal pixel. Then, the binary hypothesis of the
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Fig. 1. Flowchart of the proposed SG-CCR method. First, the background dictionary and the anomaly dictionary are constructed by using the outlier strategy,
and the obtained dictionary is put into the CCR model to obtain the initial anomaly result. Then, the anomaly significance weight is constructed, multiplied by the
initial anomaly result, and the final anomaly result graph is obtained.

RX algorithm is as follows:

H0 : x = n (Target absent) (7)

H1 : x = s+ n (Target present) (8)

where x is the pixel to be measured, n is the background noise
vector, and s is the target spectrum vector. It is assumed that the
pixel follows multivariate normal distribution. The expression
of RX algorithm is as follows:

RX (x) = (x− ub )
TC−1

b (x− ub) (9)

where ub is the mean value of the background spectral vector,
and Cb is the covariance matrix of the background spectral
vector. Setη as the threshold. IfRX(x) > η, thenx is considered
as an abnormal pixel; otherwise, it is a background pixel.

III. PROPOSED METHOD

To improve the reconstruction effect and achieve the purpose
of suppressing background and highlighting anomalies, this ar-
ticle proposes a collaborative-competitive representation (CCR)
hyperspectral anomaly detection method based on saliency guid-
ance. The flowchart of the method is shown in Fig. 1, and the
main steps are as follows.

1) Based on the CR model, a competitive regularization
constraint term is introduced to build the CCR model.

2) Construct a dual-window dictionary for the pixel to be
measured, and use the outlier strategy to classify the
dictionary atoms with different contributions into two cat-
egories: background dictionary and anomaly dictionary.

3) Input the obtained dictionary into the CCR model, and
obtain the initial anomaly detection residuals.

4) Construct anomaly saliency weight, multiply by initial
anomaly detection residual, and obtain the final anomaly
detection result.

A. Collaborative-Competitive Representation Detector

CCR is an extension of CR, which impose a competitive
constraint on the CR model [48]. The CCR model is currently
validated effectively in the field of object classification. In [49],
the CCR model is used for anomaly detection by introducing
local constraints. The most critical step in CR is the acquisition
of the dictionary, but it is difficult to acquire a pure dictionary in
an ideal state due to the lack of prior knowledge of anomaly de-
tection. For anomaly detection, anomaly atoms and background
atoms are antagonistic and they are competitively involved in
the reconstruction. Once there is an anomaly in the dictionary,
it will affect the reconstruction result. Therefore, this article
considers the competition between background and anomaly
in the dictionary, and introduces the competitive constraint into
the CR model. Since there are usually fewer anomaly atoms,
the background atoms are more competitive, meanwhile, we
introduce competitive weight to improve the competition of
background atoms in the reconstruction process, so the purpose
of introducing the competition constraint term is to better re-
construct the test pixels and attenuate the influence of anomaly
pixels on the reconstruction. The objective function of the CCR
is

argmin
α

‖y −Xsα‖22 + λ

C∑
i =1

‖y −Xiαi‖22 + β‖α‖22. (10)

HereXs ∈ Rb×s is the dictionary matrix, and the dictionaries
in this article are chosen from a dual-window centered on the
pixel to be measured (the number of samples s = wout ×
wout − win × win, wherewout is the outer window size andwin

is the inner window atom), Xi is a dictionary of different kinds
divided from Xs. In (10), λ and β are regularization parameters.
In anomaly detection, the dictionary includes only two classes,
background and anomaly, so C = 2. According to the outlier
strategy, the dictionary can be divided into background dictio-
nary Xs1

and anomaly dictionary Xs2
, whose corresponding
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coefficient vectors are αs1
and αs2

, respectively. Firstly, we
calculate the mean valueμ and standard deviationσ of dictionary
Xs, and set the threshold to determine the number m0 of outlier
pixels. The formula of threshold construction is as follows:

thresholdmax = μ+ 2× σ (11)

thresholdmin = μ− 2× σ (12)

where thresholdmax and thresholdmin denote the maximum and
minimum intensity values respectively. Since the testing pixel
can be represented linearly by the surrounding pixels, the result-
ing representation coefficients are the degree of contribution of
the dictionary atoms to the testing pixel, so the magnitude of
the representation coefficients is used as a basis for classifying
background and anomalous pixels, and the vector of coefficients
obtained using the least squares solution is

argmin
α̃

‖y −Xsα̃‖22 (13)

α̃ = (XT
s Xs)

−1
XT

s y. (14)

The coefficient vectors are ranked by their contributions

|α̃1| > |α̃2| > · · · > |α̃s| (15)

the m0 outlier atoms corresponding to the representation coef-
ficients with smaller contribution are considered as the anomaly
dictionary Xs2

and the rest are considered as the background
dictionary Xs1

. Therefore, the objective function of CCR with
the competitive constraint of anomaly and background is

argmin
α

‖y −Xsα‖22 + λ

2∑
i=1

‖y −Xsi
αi‖22 + β‖α‖22.

(16)
Meanwhile, in order to improve the contribution of back-

ground, this article increases the competitive weight w−i on
the basis of CCR model inspired by [50], w−i refers to the
competitive weight of other training samples except ith class
samples. The expression of w−i is

w−i = exp

(
rmax − r−i

δ

)
(17)

where δ = 1 and the expressions for the residuals r−1, r−2

obtained using the anomaly dictionary and the background
dictionary are

r−1 = ‖y −Xs2
αs2

‖2 (18)

r−2 = ‖y −Xs1
αs1

‖2 (19)

rmax = max (r−1, r−2) . (20)

In general, the background dictionary Xs1
has more contri-

butions to the reconstruction process. Fig. 2 shows a portion of
competitive weights for the testing pixels. It can be seen thatw−2

is usually larger thanw−1, so adding the competitive weightw−i

can improve the contribution of the background dictionary. The

Fig. 2. Competitive weight of anomaly and background.

CCR objective function equation at this point becomes

argmin
α

‖y −Xsα‖22 + λ

2∑
i=1

w−i‖y −Xsi
αi‖22 + β‖α‖22.

(21)

The closed form solution of α is

α = (1 + λ)
(
XT

s Xs + λM + βI
)−1

XT
s y (22)

where M is

M =

[
XT

s1
Xs1

0

0 XT
s2
Xs2

]
. (23)

The anomaly and background vectors should be uncorrelated.
Thus, their inner product is assigned a value of 0, which can also
be reflected in the expression of M .

B. Jaccard Similarity Coefficient

The CCR anomaly detector proposed above only improves
the competitiveness of background pixels in the reconstruction
process, but it should not be ignored that background dictionaries
may be interfered by abnormal pixels. In some algorithms,
different penalties are given by means of distance-weighted
Tikhonov regularization parameters. We found that the trend of
most of the curves for the background pixels were similar, while
the trend of the abnormal curve is inconsistent with most of the
background pixels. According to this characteristic, we add the
Jaccard similarity coefficient to the distance-weighted regular-
ization matrix, adjusting the contribution of each background
pixel to achieve a better reconstruction of the testing pixel.

The spectral Jaccard similarity coefficient is added in this
article [51], which is used to compare the degree of similarity
between samples, with higher values representing greater simi-
larity. The Jaccard coefficient is defined as follows:

J (A,B) =
|A ∩B|
|A ∪B| . (24)

During most of the reconstruction process, if the pixel to be
measured is the background, it is more similar to the spectral
curve trend of the dictionary atom, and conversely, if the pixel
to be measured is abnormal, it is not similar to the spectral
curve trend of the dictionary atom. Therefore, in this article, we
introduce the Jaccard index to represent the similarity between
the curves and use the first order derivative to represent the
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Algorithm 1. CCR Anomaly Detector

Input: Dual-Window Dictionary Xs ∈ Rb×s.
1. Use the outlier strategy of (11) and (12) to determine

the number of outlier pixels in the dictionary;
2. Obtain the coefficient vector using (14) and rank them

according to their contribution;
3. Divide the dictionary Xs into background class Xs1

and anomaly class Xs2
according to step 1 and 2;

4. Calculate the Jaccard similarity index using (25) to
obtain the regularization parameter Γ̂y;

5. Use (28) to obtain the representation coefficient α;
6. Calculate the reconstruction error of the testing pixel

using (29) ;
Output: Initial anomaly detection result r∗

spectral trends. The Jaccard coefficient of similarity between
the two spectral curves is then defined as follows:

JSC =
B11 +B00

B
. (25)

Here B11 is the band where the first order derivative of the
two image spectral curves is greater than zero at the same time,
that is, the band where the curve trend is up at the same time.
B00 is the band where the first-order derivative of the two image
spectral curves is less than or equal to zero simultaneously, that
is, the band where the curve trend is down simultaneously. B
represents the total number of bands. By adding the Jaccard
similarity coefficient on the basis of Tikhonov regularization,
the new regularization parameters can be obtained as follows:

Γ̂y =

⎡⎢⎣
1

jsc1
‖y − x1‖

2
0

. . .
0 1

jscs
‖y − xs‖2

⎤⎥⎦ (26)

where jscs is the Jaccard similarity coefficient for the dictionary
pixel. We add the Jaccard similarity coefficient to the distance-
weighted Tikhonov regularized CCR model to obtain the JCCR
model. The objective function of the JCCR model is

argmin
α̂

‖y −Xsα̂‖22+λ

2∑
i=1

w−i‖y −Xsi
α̂i‖22+β‖Γ̂yα̂‖22.

(27)
The closed solution of α̂ is

α̂ = (1 + λ)
(
XT

s Xs + λM + βΓ̂
T

y Γ̂y

)−1

XT
s y (28)

After obtaining the representation coefficient, the final resid-
ual result is

r∗ = ‖y −Xsα̂‖2 (29)

where the residual r∗ is the initial anomaly detection result.
Algorithm 1 is the pseudocode of CCR anomaly detector pro-
posed in this article.

C. Anomaly Saliency Weight

Inspired by papers [42] and [52], abnormal objects are re-
garded as significant objects in the visual system, the signif-
icance mechanism is introduced, and significance weight is
represented by the ratio of spectral Angle distance and Euclidean
distance between single-window pixels and the testing pixel, so
as to distinguish anomalies and backgrounds. The formula of
saliency weight is as follows:

D (xi,y) =
dspectral (xi,y)

1 + cdposition (xi,y)
(30)

where dspectral represents the spectral angular distance and
dposition represents the Euclidean distance. The expression for-
mula of spectral angular distance is

dspectral (xi,y) = cos−1

(
xT
i y√

xT
i xi

√
yTy

)
. (31)

The testing pixel is marked as the center origin (0, 0), and the
position of xi is marked as (p, q), then the expression of dposition

is

dposition (xi,y) =
√

p2 + q2. (32)

Considering that hyperspectral images have multiple bands,
the pixel values can be interpreted as different spectral scores
for pixels between different bands, i.e., different bands generate
different spectral values for the same pixel. This is not considered
in simple cosine similarity, so the cosine similarity coefficient
dspectral in the significance weight is replaced by the adjusted
cosine similarity degree dsim as a way to address the shortcoming
of considering only the similarity of spectral dimensions in
cosine similarity without taking into account their differences.
The adjusted cosine similarity is corrected by the operation of
subtracting the mean value from each dimension

dsim (xi,y) = cos−1

(
(xi−x̄i)

T (y−ȳ)T√
(xi−x̄i)

T (xi−x̄i)
√

(y−ȳ)T (y−ȳ)

)
.

(33)
Therefore, the new significance weight expression is

D̃ (xi,y) =
dsim (xi,y)

1 + cdposition (xi,y)
(34)

where c usually takes the value of 1. Significance weights for
test pixels are the average of all weights within a single window

dsal =

∑s0
i=1 D̃ (xi,y)

s0
(35)

where s0 = ws × ws − 1 and ws is the single window size
divided for the purpose of calculating significance weights.

Considering that in the image with relatively complex back-
ground, some backgrounds are also significant under visual
effects, which will cause negative effects on anomaly detection.
In order to highlight the anomalies and suppress the background,
the anomaly saliency weight is constructed by multiplying this
by the weight of the suppressed background. The expression for
the anomaly saliency weight is

dAS = (1− etr̃(x))× dsal (36)
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Fig. 3. (a) Pseudocolor images. (b) Reference anomaly maps.

Algorithm 2: Anomaly Saliency Weight.

Input: Single-Window Dictionary Xs0
∈ Rb×s0 .

1. Using Algorithm 1 to obtain the initial reconstruction
error r∗;

2. Use (9) to obtain the RX distance;
3. Intercept M0 pixels with the largest initial

reconstruction error r∗ and RX distance, and use (35)
to obtain the set T .

4. Assign the RX distance of all pixels in the set T to the
maximum RX distance, and leave the RX distance of
the remaining pixels unchanged, and the adjusted RX
distance r̃(x) was obtained;

5. Use (34) to obtain the anomaly saliency weight
Output: Anomaly saliency weight dAS

where the parameter t is the adjusted value of the function, and
r̃(x) is the adjusted global RX distance, and the adjusted RX
distance is adopted because the RX distance of the anomaly may
be smaller than that of the background. Therefore, it is very likely
to suppress the anomaly while suppressing the background pixel,
which will also bring negative effects to the anomaly detection.
The specific operation is to sort the initial reconstruction error r∗

and RX distance. Then the top M0 pixels with the largest r∗ and
RX distances are selected to obtain the sets T1 and T2, and the
sets T1 and T2 are intersected by the set T . The RX distances
of the pixels in the set T are assigned to the maximum RX
distance, and the RX distances of the remaining pixels remain
unchanged, and the adjusted RX distance r̃(x) was obtained.
Anomaly saliency weight das is obtained by formula (34)

T = T1 ∩ T2. (37)

Algorithm 2 is the pseudocode for constructing abnormal sig-
nificant weights. After obtaining the anomaly saliency weight,
it is multiplied by the initial reconstruction error r∗ to obtain the

final anomaly detection result e.

e = r∗ × dAS . (38)

IV. EXPERIMENTS

A. Experimental Datasets

Five datasets were used for this experiment, with pseudocolor
images and anomaly reference maps as shown in Fig. 3.

1) The first dataset was acquired by the Hyperspectral Digital
Image Collection Experiment (HYDICE) sensor [53] with
a spatial resolution of 1.56 m and a spectral resolution
of 10 nm. The image size is 80 × 100 pixels with 175
effective bands. The anomalous targets in the images are
cars and rooftops, and these anomalous targets are made up
of 21 pixels. This dataset has a complex background, with
small and scattered anomaly targets that are not prominent
enough from the global perspective.

2) The second dataset was acquired by the reflection optical
system imaging spectrometer at the Pavia Centre with a
spatial resolution of 1.3 m. The image size of 105 × 120
pixels was selected on this dataset and 102 bands were
retained after removing the undesirable bands. The back-
ground consists mainly of bridges, rivers, and soil, with
the anomaly being a vehicle on a bridge, consisting of
43 pixels. The background of this dataset is simple and
the anomalies are located on a bridge, which affects the
saliency of the anomaly target in the global view as the
bridge is quite prominent.

3) The third dataset was acquired by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) sensor over
the San Diego airport area, with a spatial resolution of
3.5 m and a spectral resolution of 10 nm. The image
size is 100 × 100 pixels with 189 effective bands. The
background consists mainly of tarmac and bare soil, and
the anomaly is a scattered trio of aircraft, consisting of
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134 pixels. The background of this dataset is relatively
complex and the abnormal targets are large, which are
more prominent in the global perspective.

4) The fourth dataset was acquired by the AVIRIS sensor over
the Los Angeles Airport area in California, USA [54], with
a spatial resolution of 7.1 m. The image size is 100 × 100,
with 205 bands retained after removing undesirable bands.
The background consists mainly of hangars and airport
runways and aprons. The anomalies are the two aircraft in
the center, consisting of 87 pixels. The background of this
dataset is relatively complex. The anomalous targets are
larger and more visible in the global view, where the two
aircraft in the lower left are more prominent compared to
the aircraft in the upper right.

5) The fifth dataset was acquired by the Nuance Cri sensor
[34]. The spectral resolution is 10 nm. The image size
is 400 × 400, and 46 bands are retained after removing
undesirable bands. The background is mainly different
types of grass and the anomalies are ten rocks, consisting
of 2216 pixels. The background of this dataset is simple,
the anomalous targets are relatively salient in the global
view, especially those located in the center.

B. Evaluation Indicators

In this article, we adopt five evaluation metrics widely used
in anomaly detection, which are the (ROC) curve [55], the area
under the curve (AUC) [56], the box plot, the square error ratio
(SER) [57], and the area error ratio (AER) [58].

ROC curve is the classical metric to measure detection perfor-
mance, which describes the relationship between detection rate
PD and false alarm rate PFA. AUC is the area under the ROC
curve, which is used to measure the overall detection accuracy.
The larger the AUC, the better the algorithm performance. The
box plot depicts the degree of background-anomaly separation
and background suppression. The larger the spacing between
the two boxes, the greater the separation between the anomaly
and the background, and if an algorithm has better background
suppression effect, the shorter its background box is in the
box plot.

The sum of the squares of the residuals between the actual
and detected values of the anomalous and background pixels is
the SER value. The anomalous pixel has a value of 1 and the
background pixel has a value of 0 in the ideal case. The objective
function of SER is

SER =

∑nabomaly(GT )
i=1 (pi − 1)2 +

∑nbak(GT )
i=1 (pj − 0)2

Np
× 100

(39)
where pi and pj denote the detected values of anomalous and
background pixels, respectively,nabomaly(GT ) andnbak(GT ) are
the numbers of true anomalous pixels and true background pixels
in the image respectively, and Np is the number of total pixels.
The smaller the SER, the more effective the anomaly detection.

The AER describes the separability of the anomalies from the
background by analyzing the PD and PFA at different thresh-
olds. Assuming that in a two-dimensional coordinate system,
the y-axis represents the PD and PFA obtained at different

thresholds, and the x -axis represents the normalized threshold.
The AER index can then be described as follows:

AER =
1−APFA

1−APD
(40)

where APD and APFA are the areas under the PD and PFA

curves, respectively. Contrary to the performance of SER on
anomaly detection, the larger the AER value, the better the
detection effect.

C. Comparison Methods and Parameter Settings

To verify the SG-CCR anomaly detection method proposed
in this article, eight mature anomaly detection methods are
used for comparison, which are the RX algorithm [15], LRX
[16], low-rank and sparse matrix decomposition-based anomaly
detection for hyperspectral imagery (LRaSMD) [33], CRD [37],
hyperspectral anomaly detection with kernel isolation forest
(KIFD) [59], multipixel anomaly detection with unknown pat-
terns for hyperspectral imagery (2S-GLRT) [60], hyperspectral
anomaly detection with robust graph autoencoders (RGAE)
[61], hyperspectral anomaly detection with guided autoencoder
(GAED) [62].

The parameters of the proposed anomaly detection algorithm
include the outer window dictionary wout the inner window
dictionarywin, the single-window dictionaryws for constructing
anomaly salient weights, the parameters λ and β for the CCR
model. and the parameter M0 for selecting the first M0 pixels
with the largest distance between r∗ and RX for constructing
anomaly saliency, and the adjustment parameter c for the func-
tion. The inner window win ranges from 3 to 17, the outer
window wout ranges from 5 to 25 and the single window ws

ranges from 3 to 25. The range of the parameters λ and β is
set to {1e-6–1e0}. The parameters M0 are chosen from the
number of pixels from 0 to n. and the parameter t ⊆ [1, 2, 4, 8].
The selection of parameters M0 and t did not have a signif-
icant effect on the results, so the parameters M0 and t were
usually fixed for the optimal results to analyze the effect of
other parameters on the experiments. The dual-window range
settings for LRX, CRD, and 2S-GLRT are consistent with the
range settings of the algorithms proposed in this article. The
parameters for LRaSMD, KIFD, RGAE, and GAED are set
according to the suggested values in their articles. The best
anomaly detection accuracy over the parameter variation range
was chosen as the final result in both the experimental and
comparison experiments.

D. Experimental Results

The anomaly detection results are shown in Fig. 4, the ROC
curves and box plots are shown in Figs. 5 –9, and the AUC, AER,
SER and running times for each method are shown in Table I.
The optimal detection results are marked in thick type in the
table and the sub-optimal detection results are underlined.

For the dataset HYDICE, the AUC of the proposed algorithm
in this article is 0.9994, which is higher than all other compared
algorithms, as evidenced by the ROC curve in Fig. 5(a). As
can be seen from Fig. 4(a), the anomalies detected by the
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Fig. 4. Anomaly detection maps of SG-CCR, RX [14], LRX [15], LRaSMD [29], CRD [33], KIFD [50], 2S-GLRT [51], RGAE [52], and GAED [53] for the
five datasets. (a) HYDICE. (b) Pavia center. (c) San Diego. (d) Los Angeles. (e) CRi.

Fig. 5. ROC curves and box plots for several methods in the HYDICE dataset. (a) ROC curves. (b) Box plots.

SG-CCR are more prominent relative to those detected by other
algorithms. The RX, CRD, KIFD, RGAE algorithms are less
effective in suppressing the background than SG-CCR. the LRX,
LRaSMD,2S-GLRT, and GAED algorithms are less effective in
detecting and highlighting the anomalies than SG-CCR. The
box plot in Fig. 5(b) shows the proposed SG-CCR algorithm
has better background suppression, although the suppression is
less effective than that of LRaSMD and 2S-GLRT, its separation
of background and anomaly is much greater than that of these
two algorithms, so that the anomaly is only relatively more
prominent. Table I shows that the LRaSMD algorithm has the

smallest SER value, SG-CCR has the next best SER value, CRD
has the largest AER value, and SG-CCR is more effective in
separating anomalies from the background.

For the dataset Paiva Center, it can be seen from the anomaly
detection graph in Fig. 4(b) that the proposed algorithm in this
article is better at highlighting anomalies than all other algo-
rithms except LRaSMD, and the suppression of the background
is the best, LRaSMD does not suppress the background as well as
SG-CCR. As can be seen from Fig. 6(a), the ROC curves of the
algorithms SG-CCR, RGAE, and GAED are more consistent,
and their AUC values are also less different. The box plot in
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Fig. 6. ROC curves and box plots for several methods in the Pavia center dataset. (a) ROC curves. (b) Box plots.

Fig. 7. ROC curves and box plots for several methods in the San Diego dataset. (a) ROC curves. (b) Box plots.

Fig. 8. ROC curves and box plots for several methods in the Los Angeles dataset. (a) ROC curves. (b) Box plots.

Fig. 6(b) shows that SG-CCR suppresses the background better
and separates the background from the anomaly better than the
other algorithms. Table I shows that the SER results for SG-CCR
are optimal, the AER values are suboptimal, and the AER values
for LRaSMD are optimal. These metrics show that the algorithm
proposed in this article performs well on this dataset.

For the dataset San Diego, as shown in Fig. 4(c), the aircraft
in the lower left corner of the anomaly detection graph of the
SG-CCR algorithm is more conspicuous than the aircraft in
the upper right corner. SG-CCR outperforms other algorithms

in highlighting the anomalies and suppressing the background.
And although the anomaly target of KIFD is conspicuous, the
algorithm is poor at suppressing the background. The ROC curve
in Fig. 7(a) shows that SG-CCR starts off less well than KIFD,
but is overall optimal and has the largest AUC value. The box plot
in Fig. 7(b) shows that SG-CCR is optimal for background sup-
pression although not as good as LRX, LRaSMD, and 2S-GLRT.
Although not as good as KIFD for separating the background
from anomalies, SG-CCR is optimal overall. Table I shows that
the SER values for SG-CCR are the smallest, the AER values for
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Fig. 9. ROC curves and box plots for several anomaly detection method in the CRi dataset. (a) ROC curves. (b) Box plots.

TABLE I
AUC, SER, AER, AND RUNNING TIME OF SEVERAL ALGORITHMS IN FIVE DATASETS

KIFD are the largest, and the SER and AER values for RGAE
and GAED do not differ significantly from the optimal results.

For the dataset Los Angeles, as can be seen in Fig. 4(d),
although SG-CCR is not as effective as KIFD in highlighting
anomalies, its suppression of background is much better than
KIFD. So, on balance, SG-CCR has the best anomaly detection
effect. The ROC curve in Fig. 8(a) shows that SG-CCR has
a better ROC curve trend than other algorithms and the best
AUC value. The box plot in Fig. 8(b) shows that SG-CCR is
not as effective as LRaSMD in suppressing the background and
not as effective as KIFD in separating the background from the
anomaly, but in combination, SG-CCR outperforms the other
algorithms. In Table I, the SER value of SG-CCR is the smallest
and the algorithm with the largest AER value is KIFD.

Comparing datasets San Diego and Los Angeles, although
their anomaly targets are similar, in the pseudocolor images, the

target for dataset Los Angeles is closer to the background and
the anomaly target is less significant. Therefore, the anomaly
saliency weight works better for the dataset San Diego.

For dataset Cri, it can be seen from Fig. 4(e) that both
SG-CCR and LRaSMD have similar suppression of background
and highlighting of anomalies, but both outperform other
algorithms overall. The ROC curve in Fig. 9(a) shows that the
SG-CCR curve follows a similar trend to that of LRaSMD,
GAED, but the further to the right axis the ROC curve of
SG-CCR is closer to the upper left corner, thus the SG-CCR
algorithm has the largest AUC value. The box plot in Fig. 9(b)
shows that SG-CCR does not suppress the background as
well as LRaSMD, does not separate the anomalies from the
background as well as KIFD, and performs well although the
combined effect is not optimal. From Table I, it can be obtained
that the SER and AER values of LRaSMD are optimal and the
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TABLE II
COMPARISON OF SG-CCR AND ITS DERIVATES ON FIVE DATASETS

Fig. 10. AUC of CRD and CCR for five datasets.

SER value of SG-CCR is suboptimal. The combination of the
above metrics shows that the SG-CCR algorithm performs well.
Furthermore, for this large scene dataset, the time consumption
of the SG-CCR algorithm is within an acceptable range.

V. DISCUSSION

A. Ablation Analysis

In order to verify the effectiveness of the proposed algorithm,
an ablation study is conducted in this chapter. The CCR model
is obtained by adding competitive constraint term to the CRD,
the JCCR model is obtained by adding the Jaccard similarity
coefficient to the CCR model, and the SG-CCR model is con-
structed by adding anomaly saliency weight to the JCCR model.
Through the experiments, the accuracy of these four models on
five datasets was obtained, as shown in Table II. Based on the
information in the table, we used this to analyze the validity of
the three contributions.

1) Validity Analysis of Competitive Constraint Term: To as-
sess the validity of this contribution, the CRD model was com-
pared with the CCR model. Fig. 10 shows the accuracy of CRD
compared with CCR on five datasets, and it can be found that
the detection accuracy of CCR is higher than that of CRD in

Fig. 11. AUC of JCCR and SG-CCR for five datasets.

all the remaining datasets, except in dataset HYDICE, where
the accuracy of both models is the same, and the improvement
in detection accuracy is particularly obvious in the CRi data. It
can also be seen from Table II that after adding the competitive
constraint term, the AER values of all datasets improved, and
the SER values of dataset Pavia Center decreased.

The above analysis shows that whether it is small scene data
or large scene image, the performance of anomaly detection is
improved, which proves the effectiveness and stability of the
competition constraint term.

2) Validity Analysis of Spectral Jaccard Coefficient: We use
the JCCR model for comparison with CCR to reflect the validity
of the spectral Jaccard coefficient. In Table II, we can find that
while the AUC values of JCCR are only greater than CCR in the
San Diego and Los Angeles datasets, the SER values decrease
in both datasets HYDICE and CRi, and the AER values increase
in dataset Pavia Center.

This shows that the contribution of the Jaccard similarity
coefficient varies from data to data, but overall, the contribution
is helping to improve the detection performance.

3) Validity Analysis of Anomaly Saliency Weight: The ef-
fectiveness of this contribution was assessed by comparing the
JCCR and SG-CCR models. Fig. 11 shows a comparison of the
accuracy of JCCR and SG-CCR on five datasets, and it can be
found that, except in the dataset Pavia Center where the two
models have the same accuracy, in the rest of the datasets, the
detection accuracy of SG-CCR is higher than that of JCCR,
especially in the CRi data where the accuracy improvement
is obvious. Table II shows that the SER values of all datasets
decreased after adding the anomalous significant weights, which
indicates the robustness of the contribution of the anomalous
significant weights to the suppression of background.

From the above analysis, we can find that the competitive
constraint, the Jaccard similarity coefficient, and the anomaly
saliency weight all contribute to anomaly detection, with the
competitive constraint and the anomaly saliency weight con-
tributing relatively more to anomaly detection. Furthermore, we
find that the competitive constraint term and the saliency weight
are not only contributing but also applicable in different data
scenarios with robustness.

B. Parameter Analysis

The parameters of the proposed algorithm are: wout, win,
ws, λ, β, M0 and t. M0 and t are auxiliary parameters in the
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Fig. 12. Analysis of SG-CCR to λ, β, ws. (a)–(e): Sensitivity analysis of λ and β. (a) HYDICE. (b) Pavia center. (c) San Diego. (d) Los Angeles. (e) CRi.
(f) Stability analysis of single-window ws.

Fig. 13. Stability analysis of dual-window in HYDICE dataset.

construction of saliency weight for anomalies and have little
effect on the results of anomaly detection. For dataset HYDICE,
M0 = 55, t = 8. For dataset Pavia, M0 = 105, t = 2. For
dataset San Diego,M0 = 4000, t = 8. For dataset Los Angeles,
M0 = 9500, t = 1. For dataset Cri, M0 takes the total number
of pixels, t = 8. Fixed parameters M0 and t. The effects of
other parameters are analyzed and the range of values of the
parameters is described in Section IV.

1) Setting of λ and β: Fig. 12(a)–(e) show the variation
in detection accuracy of SG-CCR under different λ

and β. The dataset Los Angeles is not sensitive to λ.
When λ is set in the range {1e0–1e-6}and β is chosen
from {1e-2–1e-6}, the accuracy of datasets HYDICE
and Los Angeles is higher and the proposed algorithm
is insensitive to both λ and β within this parameter
setting. In the dataset Pavia Center, the anomaly detection
accuracy was better when β was taken as {1e-1,1e0} and

the detection accuracy of SG-CCR was essentially the
same when fixing β to change λ. In the San Diego dataset,
the detection accuracy of SG-CCR is high and stable
when the range of λ is {1e0–1e-3} and β is {1e-3–1e-6},
i.e., the algorithm is not sensitive to λ and β in this range.
The CRi dataset reaches its maximum when both λ and β
are taken as 1e0, and anomaly detection accuracy changes
steadily when λ and β are set in {1e-2–1e-6}.

2) Stability of Single Windowws: The single-windowws was
set to highlight the significant characteristics of anomalies
in the local area, fixing other parameter conditions and ob-
taining anomaly detection accuracy values for the five data
sets within the parameters of the single-window. Fig. 12(f)
shows the stability analysis of the single-window. It can
be seen from the figure that the dataset HYDICE, Pavia
Center, San Diego, Los Angeles has a stable change in
accuracy over the course of the window change. The
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Fig. 14. Stability analysis of dual-window in Pavia center dataset.

Fig. 15. Stability analysis of dual-window in San Diego dataset.

Fig. 16. Stability analysis of dual-window in Los Angeles dataset.

dataset CRi, on the other hand, increases in accuracy as
the single-window becomes larger until its size is 17× 17,
when the accuracy also stabilizes. This may be because
the anomaly targets for CRi are large and dispersed, and
the smaller window may result in the anomaly not being
locally significant.

3) Stability Analysis of Internal Window win and External
Window wout : In this article, 32 sets of windows were
selected within the parameters of the dual-window and
compared with three comparative algorithms, CRD, LRX,

and 2S-GLRT, as a way to analyze the effect of window
variation on the algorithm. Figs. 13–17 show the AUC
values for the five datasets with different window size.
Figs. 14–17 show that the curve of the SG-CCR algo-
rithm is almost a straight line in the dataset Pavia Center,
San Diego, Los Angeles, CRi, which indicates that the
detection performance of SG-CCR is stable and is not
affected by window size variations in these four datasets.
Moreover, the average detection performance of SG-CCR
outperformed the other algorithms. Fig. 13 shows the
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Fig. 17. Stability analysis of dual-window in CRi dataset.

variation in the accuracy of the dataset HYDICE under
different datasets. The detection performance of SG-CCR
is less stable than that of CRD, which is because the
background of this dataset is complex, with small and
few anomalies, so the collaboration between dictionary
atoms is stronger under most window settings, while the
algorithm proposed in this article adds competitive con-
straint term, so the dictionary selection under different
windows may affect the collaboration between atoms ef-
fect, which affects the detection performance and leads to
slightly lower stability of this algorithm than CRD, but
the window-related stability of this algorithm is better
compared with other algorithms. Overall, the detection
performance of the proposed SG-CCR is relatively stable
and has good robustness.

VI. CONCLUSION

In this article, a hyperspectral CCR anomaly detector with
anomaly salient weights is proposed. In the CCR method, the
competition between the anomaly and the background in the
dictionary is considered and therefore a competition constraint
is imposed. The construction of anomaly saliency weights sup-
presses background pixels thus highlighting anomaly targets.
Experimental results on five datasets demonstrate that the pro-
posed algorithm not only outperforms other comparative algo-
rithms in detection but also achieves good performance in both
large and small target scenarios.
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