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Abstract—Knowing the actual precipitation in space and time
is critical in hydrological modeling applications, yet the spatial
coverage with rain gauge stations is limited due to economic con-
straints. Gridded satellite precipitation datasets offer an alternative
option for estimating the actual precipitation by covering uni-
formly large areas, albeit related estimates are not accurate. To im-
prove precipitation estimates, machine learning is applied to merge
rain gauge-based measurements and gridded satellite precipitation
products. In this context, observed precipitation plays the role of the
dependent variable, while satellite data play the role of predictor
variables. Random forests are the dominant machine learning algo-
rithm in relevant applications. In those spatial prediction settings,
point predictions (mostly the mean or the median of the conditional
distribution) of the dependent variable are issued. The aim of the
manuscript is to solve the problem of probabilistic prediction of
precipitation with an emphasis on extreme quantiles in spatial in-
terpolation settings. Here we propose, issuing probabilistic spatial
predictions of precipitation using light gradient boosting machine
(LightGBM). LightGBM is a boosting algorithm, highlighted by
prize-winning entries in prediction and forecasting competitions.
To assess LightGBM, we contribute a large-scale application that
includes merging daily precipitation measurements in contiguous
United States with PERSIANN and GPM-IMERG satellite pre-
cipitation data. We focus on extreme quantiles of the probability
distribution of the dependent variable, where LightGBM outper-
forms quantile regression forests (a variant of random forests) in
terms of quantile score at extreme quantiles. Our study offers an
understanding of probabilistic predictions in spatial settings using
machine learning.

Index Terms—Light gradient boosting machine (LightGBM),
quantile regression, remote sensing, spatial interpolation.

I. INTRODUCTION

ECONOMIC constraints limit the extent as well as the den-
sity of spatial coverage of areas with rain gauge stations.

Therefore, gridded satellite datasets are used as a substitute
for observed precipitation in hydrological applications. Never-
theless, gridded satellite datasets provide inaccurate estimates
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of actual precipitation, therefore post-processing is required
by merging gridded datasets with rainfall gauge-based mea-
surements; see the reviews by Abdollahipour et al. [1] and
Hu et al. [29].

A common means to merge-gridded satellite datasets and
gauge-based measurements is to apply machine learning al-
gorithms in regression settings. In this context, satellite pre-
cipitation data play the role of predictor variables, while ob-
served precipitation plays the role of the dependent variable.
The major assumption in such settings is that the actual pre-
cipitation is represented by gauge-based measurements, albeit
some studies question the accuracy of those measurements [61].
The state-of-the-art algorithm in these regression settings is
Breiman’s [10] random forests [3], [12], [19], [25], [26], [37],
[42], [46], [68], [84]. Other machine learning algorithms also
have been implemented (e.g., [35], [41], [51], [52], [59]), albeit
less frequently. To better understand their performance, it is
important to compare multiple algorithms using big datasets
that cover large areas with dense networks of rain gauge stations
[35], [51], [52].

A common characteristic of most studies merging satellite
data and station observations is that spatial point predictions are
issued and assessed using the squared error scoring function, the
absolute error scoring function or related skill scores (e.g., the
Nash-Sutcliffe efficiency and the Kling-Gupta Efficiency). The
squared error scoring function is consistent (for the definition of
consistency the reader is referred to Section III-D) for the mean
functional of the probability distribution [22], i.e., by training
a machine algorithm with a squared error scoring function, one
can issue predictions of the mean of the conditional probability
of the response of the regression algorithm. Similar arguments
apply for the case of the absolute error scoring function (which is
consistent for the median functional) as well as for the associated
skill scores [22]. However, predictions are more informative
when they take the form of probability distributions [23], while
the requirement for probabilistic predictions in hydrology has
been commented on by Papacharalampous and Tyralis [48],
Papacharalampous et al. [50] and has been identified as an
important problem in hydrology, in the context of uncertainty
estimation in general [9].

Prediction of quantiles of the conditional probability distribu-
tion at a dense grid of quantile levels can provide an approxima-
tion of the full probability distribution [63], [64]. Our focus is on
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extreme quantiles of the conditional probability distribution (see
e.g., [13], [66]), although predictions of functionals in the center
of the conditional probability distribution of the response are
also assessed. Extreme quantiles are of interest, given their im-
portance for conducting flood studies. Our application includes
merging the PERSIANN and the GPM-IMERG daily precipita-
tion datasets with gauge-based daily precipitation measurements
that cover the contiguous United States (CONUS).

The aim of this article is to solve the problem of probabilistic
prediction of precipitation with an emphasis on extreme quan-
tiles in spatial interpolation settings. To this end, we propose
to apply the light gradient boosting machine (LightGBM) al-
gorithm [32] trained with the quantile scoring function [33].
Applications of the quantile scoring function and the associated
mean score can be found in hydrological modeling and forecast-
ing studies, see e.g., [14], [50], [63]. LightGBM is compared
with quantile regression forests (QRF, [39]), which is a variant
of random forests. The assessment of LightGBM is based on
its relative performance with respect to QRFs, given the strong
preference for the use of random forests in spatial interpolation
settings due to high predictive performance and convenience in
their use [26]. Previous applications of QRF in merging satellite
and gauge-based precipitation measurements include [4], [85],
while applications of other machine learning algorithms that can
issue probabilistic predictions in spatial interpolation settings
are limited (see e.g., a deep learning application by [20]). As
already mentioned, we focus on extreme quantiles while we
base the comparison on skill scores whose components include
quantile scoring functions. Although the assessment focuses on
extreme quantiles, we further comment on quantiles at central
quantile levels, where results are largely influenced by the inter-
mittent nature of precipitation.

The remainder of this article is structured as follows. Section II
presents LightGBM and QRF with emphasis on topics related to
quantile regression. Section III follows with presentation of the
data used in the study as well as the problem formulation and
metrics for the assessment of the algorithms. Results are pre-
sented in Section IV, followed by their discussion in Section V.
Section VI concludes the article.

II. METHODS

We applied LightGBM to a dataset that includes gridded satel-
lite precipitation products (see Section III-A) and gauge-based
measurements (see Section III-A). Since our scope is to pro-
vide probabilistic predictions of precipitation (in particular high
quantiles), LightGBM was trained using the quantile scoring
function (see Section II-C). The algorithms were compared with
QRF using a hold-out sample (see Section III-B). In this section,
we describe LightGBM and QRF, while software implementa-
tion is provided in the Appendix. Since LightGBM and QRF
are variants of boosting algorithms and random forests, respec-
tively, we focus on certain properties that distinguish them from
the respective introducing algorithms. Extended descriptions of
boosting and random forests can be found in textbooks [18],
[24], [31] while remote sensing scientists and technologists are
familiar with them.

A. Quantile Regression Forests

QRFs [39] is a variant of random forests [10] that is used to is-
sue probabilistic predictions. Random forest is a state-of-the-art
algorithm for spatial interpolation [26] and has been extensively
used in hydrological applications [68].

A random forest algorithm for regression grows an ensemble
of decision trees while the prediction of the algorithm is equal to
the mean of the individual trees. Building the forests of trees is
done with bagging combined with randomized node optimiza-
tion. Bagging (bootstrap aggregating) refers to the procedure of
resampling with replacement of the training set and using this
sample to train a single tree. In addition, random forests select
a random subset of features at each candidate split.

QRFs define an approximation of the conditional distribution
of the response variable instead of averaging predictions of trees
(a procedure that approximates the conditional mean of the
response variable). Properties of random forests are transferrable
to QRFs. Those are summarized in [68] and include among
others related to our problem at hand, high predictive perfor-
mance, speed, feasibility in large-scale applications, resistance
to overfitting, efficient handling of highly correlated variables,
and stability.

Here we applied the R language implementation of QRFs by
[74], [75], using 100 decision trees and default values of hyper-
parameters, since default implementation is highly efficient [68].
The specific software implementation of random forests is fast
regarding computations times; however, it is extremely slower
compared to LightGBM for big datasets, thus hyperparameter
optimization becomes prohibitive for the large sample of the
present study. Since QRFs are a regression algorithm, they are
trained and predicted in the usual fashion, i.e., the training
sample includes a set of observed predictor variables and a set
of the observed dependent variable. The specific application is
described later in Section III-B.

B. Light Gradient Boosting Machine

Gradient boosting decision trees is an ensemble learning
algorithm in which decision trees are added to the ensemble
sequentially. At each iteration, a new decision tree is trained with
respect to the error of the algorithm so far. A gradient-descent
based formulation formalized the concept of boosting [20], [38],
[43]. Gradient boosting decision trees can be optimized with dif-
ferent scoring functions, thus they can issue predictions tailored
to user’s requirements. A list of properties of boosting algorithms
can be found in [62]. Although boosting algorithms share some
similar properties with random forests, they frequently perform
better in several settings, although hyperparameter tuning is
needed.

LightGBM [32] is a boosting algorithm that has some fa-
vorable properties compared to common gradient boosting al-
gorithms. In particular, it is particularly suited for datasets with
high feature dimension and large size. It uses gradient-based on-
side sampling that excludes data instances with small gradients
(instead common boosting algorithms scan all data instances to
estimate the information gain of all possible split points), thus
reducing training time. Furthermore, it uses exclusive feature
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bundling that bundles mutually exclusive features, to reduce
their number. Besides, it uses a histogram-based algorithm to
find the best-split points, similar to earlier successful boosting
variants (e.g., [11]).

LightGBM has multiple parameters that when tuned can
increase its predictive performance. The optimization procedure
is described in Section III-C. Moreover, LightGBM was trained
with a quantile scoring function (see Sections II-C and III-D) to
issue probabilistic predictions. Since LightGBM is a regression
algorithm, it is trained and predicts in the usual fashion, i.e., the
training sample includes a set of observed predictor variables and
a set of the observed dependent variable. The specific application
is described later in Section III-B.

C. Quantile Regression

Quantile regression algorithms are used to predict conditional
quantiles in regression settings. Here, we explain how quantile
regression works in practice. Hereinafter, observations will be
notated with lowercase letters, while random variables will be
notated by underlined lowercase letters. Let y be a random
variable with cumulative distribution function Fy defined by

Fy (y) := P (y ≤ y). (1)

Then, the τ th quantile of y, Qy(τ ) is defined by

Qy (τ) := inf{y : Fy (y) ≥ τ}, τ ∈ (0, 1) (2)

where inf{·} denotes the infimum of a set of real numbers.
Let Fy |x be the distribution of the random variable y given

the p-dimensional vector x

Fy|x (y|x) := P (y ≤ y|x). (3)

Then, the τ th quantile of y conditional on x, Qy |x(τ |x) is
defined by

Qy|x (τ |x) := inf{y : Fy (y|x) ≥ τ}, τ ∈ (0, 1) . (4)

The quantile loss function ρτ (u) is defined as

ρτ (u) = u(I (u ≥ 0)− τ), u ∈ R. (5)

Here τ is the quantile level of interest and I(A) denotes the
indicator function that is equal to 1 when the event A realizes
and 0 otherwise. The quantile loss function, defined by (5), is
positive and negatively oriented, i.e., the objective is to minimize
it and equals to 0, when u = 0.

Let θ be the parameters of a regression model (e.g., the Light-
GBM of Section II-B). Let y(x, θ(τ )) be the prediction of the
regression model at quantile level τ , given values of the predictor
variables equal to x, and values of the model’s parameters equal
to θ(τ ). To estimate θ(τ ) for τ � (0, 1), one should minimize
the average quantile score (1/n) Σn

i = 1 ρτ (y(xi, θ(τ )) – yi),
which is the core idea of linear-in-parameters quantile regression
elaborated by [33]. The regression model with parameters θ(τ )
predicts conditional quantiles Qy |x(τ |x).

III. DATA AND APPLICATION

A. Data

We assessed the algorithms using daily earth-observed pre-
cipitation retrieved from the Global Historical Climatology Net-
work daily (GHCNd) as described in Section III-A1, gridded
satellite precipitation from the current operational PERSIANN
(Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks) system as well as the GPM
IMERG (Integrated Multi-satellitE Retrievals) late precipitation
dataset (described in Section III-A2) and elevation data retrieved
from the Amazon Web Services (AWS) Terrain Tiles application
(described in Section III-A3)). The locations of gauges are
presented in Fig. 1.

1) Earth-Observed Precipitation Data: We used total daily
precipitation data precipitation retrieved from the GHCNd [16],
[17], [40], NOAA National Climatic Data Center (https://www1.
ncdc.noaa.gov/pub/data/ghcn/daily); accessed on 2022-02-27).
In particular, data from 7261 stations spanning across CONUS
(see Fig. 1) were extracted. The data cover the two-year time
period 2014−2015.

2) Satellite Precipitation Data: We used gridded satellite
daily precipitation data from the current operational PERSIANN
system [28], [44], [45], developed by the Centre for Hydrom-
eteorology and Remote Sensing (CHRS) at the University of
California, Irvine. The PERSIANN data were retrieved from the
website of the CHRS (https://chrsdata.eng.uci.edu; accessed on
2022-03-07).

Furthermore, we used the GPM IMERG late Precipitation
L3 1 day 0.1 degree × 0.1 degree V06 dataset developed by
the NASA (National Aeronautics and Space Administration)
Goddard Earth Sciences Data and Information Services Center
[30]. The GPM IMERG data were interpolated to a 0.25 degree
× 0.25 degree using bilinear interpolation on CMORPH0.25
grid. Alternatives for interpolating exist, but conclusions of the
manuscript are independent of the type of interpolation while
they depend on the type of algorithm implemented (as explained
later in Section V). The IMERG data were retrieved from the
website of NASA Earth Data (https://doi.org/10.5067/GPM/
IMERGDL/DAY/06; accessed on 2022-12-10).

The extracted data cover the CONUS at the two-year time
period 2014−2015. The herein used GPM IMERG version of
the satellite precipitation product has not used ground-based
precipitation data for bias correction. The PERSIANN dataset
has been corrected using ground-based data; therefore, applying
a regression algorithm to the data is practically a post-processing
framework that further improves the satellite dataset. That is a
common approach in the field, e.g., see [3], [4] among others.

It is possible to use different or more satellite precipitation
datasets. In the latter case, the available information and the num-
ber of predictor variables will increase followed by improved
accuracy of the corrected precipitation product. Although using
multiple satellite precipitation datasets is a common practice
when building new datasets which must be accurate, that is out
of the scope of the present study, which aims to provide an
understanding of the properties of LightGBM when probabilistic
predictions are issued. Furthermore, conclusions (see Section V)

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily
https://chrsdata.eng.uci.edu;
https://doi.org/10.5067/GPM/IMERGDL/DAY/06;
https://doi.org/10.5067/GPM/IMERGDL/DAY/06;
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Fig. 1. Map of the geographical locations (red points) of the earth-located stations that offered data for this work. Here, latitudes measure distance north of the
equator and longitudes measure distance west of the meridian in Greenwich, England in degrees (°).

will not be affected, since results are due to theoretical prop-
erties of the two implemented algorithms as discussed later in
Section IV. Nevertheless, including two datasets from which the
one is already corrected, but the other is not, has an additional ad-
vantage. In particular, as already shown in [52], the uncorrected
dataset includes more information compared to the corrected
one (in fact the latter provides less significant improvements
regarding the accuracy of the final product). Therefore, the
diversity of the products might serve to understand better the
properties of the correction algorithms.

3) Elevation Data: Elevation is a useful predictor vari-
able when merging gauged-based and satellite precipitation
data [81]. Therefore, we computed the elevation of the sta-
tions in Section III-A1 using the AWS Terrain Tiles (https:
//registry.opendata.aws/terrain-tiles; accessed on 2022-09-25)
application.

B. Problem Formulation and Assessment of the Algorithms

The setting of the problem has been formulated as follows
similarly to the procedures proposed in [51] and [52]. The

total daily station precipitation is the dependent variable in
a regression problem. Predictor variables are the total daily
precipitations from the closest grid points to the station. In
particular, there are four predictor variables corresponding to
the PERSIANN dataset and another four predictor variables
corresponding to the GMP IMERG dataset. Furthermore, we
computed the distances between the station and the closest grid
points for each satellite dataset; thus, we obtained eight more
predictor variables. The station elevations and their longitude
and latitude also play the role of predictor variables. Possible
interactions between predictor variables do not affect the perfor-
mance of random forests (and their variants) as well as boosting
(and its variants) as explained earlier in Section II-A and II-B,
respectively.

To understand how we related station precipitation to the
gridded satellite precipitation, we designed Fig. 2. For a single
grid (e.g., the PERSIANN), we determined the closest four grid
points to each precipitation station, we computed the distances
di, i = 1, 2, 3, 4 from these grid points and ordered in increasing
order d1 < d2 <d3 < d4 (see Fig. 2). When we refer to the
PERSIANN dataset, the distances di, i = 1, 2, 3, 4 are called

https://registry.opendata.aws/terrain-tiles;
https://registry.opendata.aws/terrain-tiles;


TYRALIS et al.: MERGING SATELLITE AND GAUGE-MEASURED PRECIPITATION 6973

TABLE I
INCLUSION OF PREDICTOR VARIABLES IN THE PREDICTOR SETS EXAMINED IN

THIS WORK

Fig. 2. Setting of the regression problem. Note that the term “grid point” is used
to describe the geographical locations with satellite data, while the term “station”
is used to describe the geographical locations with ground-based measurements.
Note also that, throughout this work, the distances di, i = 1, 2, 3, 4 are also,
respectively, called “PERSIANN distances 1−4” or “IMERG distances 1−4”
(depending on whether we refer to the PERSIANN grid or the IMERG grid)
and the daily precipitation values at the grid points 1−4 are called “PERSIANN
values 1−4” or “IMERG values 1−4” (depending on whether we refer to the
PERSIANN grid or the IMERG grid).

“PERSIANN distances 1−4” while when we refer to the IMERG
dataset, the distances are called “IMERG distances 1−4.” The
respective daily precipitation values at the grid points 1−4 are
called “PERSIANN values 1−4” or “IMERG values 1−4.”

Table I presents the predictor variables for the regression
setting of the problem. In particular, the predictor variables
are the PERSIANN values 1−4, the IMERG values 1−4, the
PERSIANN distances 1−4, the IMERG distances 1−4, and the
station’s longitude, latitude, and elevation. The final dataset in-
cludes 4 833 007 samples. We split the dataset into three equally
sized folds randomly. Random forests were trained in the union
of the first two folds and were tested in the third fold (that
includes 1 611 002 samples). LightGBM was trained in the first
fold and was validated in the second fold. We implemented this
procedure to estimate its hyperparameters (see Section III-C).
After estimating the LightGBM’s hyperparameters, we retrained
the algorithm using the final parameters in the union of the
first two folds. The algorithm was then tested in the third fold.
Predictions of LightGBM lower than 0 were transformed to 0
(it is well known that precipitation is a positive quantity), while
QRF did not issue negative precipitation predictions.

C. LightGBM Hyperparameter Optimization

LightGBM has multiple parameters that can be tuned. We
selected to optimize some of them, while we kept the default
values in the R software implementation [60] for the remain-
ing parameters. The selection of hyperparameters to be tuned
was directed by the algorithm’s documentation as well as the
experience in practical applications, since the algorithm has
been part of prize-winning solutions in international prediction
competitions. The parameters selected for tuning along with
their description based on software’s documentation (https://
lightgbm.readthedocs.io/en/v3.3.2/Parameters.html) are shown
in Table II.

The parameter space includes a grid with all possible com-
binations of parameter’s values, excluding a set of parame-
ters where num_leaves > 2max_depth. Furthermore, we ap-
plied the algorithms with early stopping, setting the parameter
early_stopping_round equal to 20. In this case, the algo-
rithm stops before reaching the specified number of iterations,
if for 20 iterations there is no improvement in the score. Early
stopping serves in reducing training time.

D. Performance Metrics and Assessment

We compared QRFs and LightGBM using the quantile scoring
function defined by

Sτ (x, y) := ρτ (x− y) (6)

here y is the materialization (observation) of the spatial pro-
cess and x is the predictive quantile at level τ . Hydrological
predictions should be probabilistic in nature taking the form
of probability distributions (see e.g., [23], [48]). Predicting
quantiles of the probability distribution at multiple levels is a
nice substitute of the full probability distribution. The quantile
scoring function is strictly consistent for the quantile functional

https://lightgbm.readthedocs.io/en/v3.3.2/Parameters.html
https://lightgbm.readthedocs.io/en/v3.3.2/Parameters.html
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TABLE II
LIGHTGBM PARAMETERS

of the predictive distribution, in the sense that if one receives
a directive to predict a quantile, the expected quantile score is
minimized when following the directive [22]. Therefore, when
receiving a directive to predict a quantile functional, it is natural
to train a model using the quantile scoring function as already
mentioned in Section II-C.

The performance criterion for the machine learning algo-
rithms at quantile level τ takes the form

S̄τ := (1/n)

n∑

i = 1

Sτ (xi, yi) (7)

where {xi, yi}, i = 1, …, n are the predictions and observations
for the ith sample and n is the size of the test fold. We computed
S̄τ at several quantile levels τ and for both algorithms. We
considered predictions issued by QRFs as reference predictions
and we computed a skill score for the reference algorithm at the
specified quantile level defined by

Sτ,skill := 1− S̄τ,LightGBM/S̄τ,QRF. (8)

In general, Sτ ,skill ≤ 1, while for an excellent forecast at level
τ , we have S̄τ,LightGBM = 0 and Sτ ,skill = 1. When Sτ ,skill >
0, LightGBM outperforms QRFs, while the higher the Sτ ,skill,
the better the LightGBM. We did not compare the algorithms
using alternative scoring functions (e.g., the squared error scor-
ing function, or a related skill score, e.g., the Nash-Suttcliffe
efficiency) because such functions are not consistent for the
quantile functional [22].

In addition, we computed a score for each algorithm that
characterizes how well each algorithm issues predictions with

the nominal frequencies. In particular, the respective score is
defined by

FRτ :=

∣∣∣∣∣(1/n)
n∑

i = 1

I (yi ≤ xi)− τ

∣∣∣∣∣ . (9)

To better understand the score, let τ = 0.95. Assum-
ing that perfect predictions have been issued, then (1/n)∑n

i = 1 I(yi ≤ xi) should be equal to 0.95 (i.e., 95% of obser-
vations should be lower or equal to respective predictions) and
FRτ should be equal to 0. Again, we computed the respective
skill score, with QRFs as reference algorithm

FRτ,skill := 1− FRτ,LightGBM/FRτ,QRF. (10)

In general, FRτ ,skill ≤ 1, while for an excellent forecast at
level τ , we have FRτ,LightGBM = 0 and FRτ ,skill = 1. When
FRτ ,skill > 0, LightGBM outperforms QRFs, while the higher
the FRτ ,skill, the better the LightGBM.

IV. RESULTS

Results of the applications of the algorithms are presented
here, while those results will be discussed in detail in the
next section, followed by respective explanations. Regarding
the performance of the algorithm in the test set, we tested
them at quantile levels τ � {0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.97,
0.99, 0.999}. Recall that skill scores higher than 0 indicate that
LightGBM outperforms QRF.

Regarding the case of the frequency skill score [recall the
explanation of values of the frequency skill score FRτ , after
(10)], presented in Fig. 3(a), the performance of both algorithms
is almost equal for τ ≤ 0.8, while there is a fluctuation around
0 for τ � (0.8, 0.95) and LightGBM outperforms QRF in
higher quantile levels. Recall from Section III-D, that the scoring
functions related to frequencies are not consistent for a function
of interest; therefore, a rigorous assessment of the algorithms is
possible using the quantile scoring function. Skill score values
for the quantile scoring function [recall the explanation of values
of the quantile skill score Sτ ,skill after (8)] are presented in
Fig. 3(b), where it seems that LightGBM outperforms QRF
for τ ≥ 0.97, while the performances of both algorithms are
approximately equal at lower quantile levels. In both cases of
skill scores, the score increases with τ increasing when τ ≥ 0.97.

It is of interest to understand how the algorithms behave
when the observed values in the test set are equal to 0. Zero
precipitation corresponds to approximately 72% of total daily
observations, while intermittency in time and space is a dominant
property of precipitation. Related skill scores for frequencies
as well as quantile scoring functions are presented in Fig. 4.
Regarding frequencies, the performances of both algorithms are
equal [Fig. 4(a)]. That is expected, since the algorithms issue
always predictions (for the case of LightGBM, after adjustment
of the predictions; see Section III-B) that are equal or higher than
0; see also discussion in the next section. However, QRF seems
to outperform LightGBM for τ ≥ 0.97, regarding the quantile
scoring function; see Fig. 4(b).
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Fig. 3. Skill scores for (a) frequencies and (b) quantile losses at different quantile levels τ for complete data in the test set.

Fig. 4. Skill scores for (a) frequencies and (b) quantile losses at different quantile levels for observed precipitation equal to zero in the test set.

Fig. 5. Skill scores for (a) frequencies and (b) quantile losses at different quantile levels for observed precipitation higher than zero in the test set.

The overall picture changes when testing the algorithms in
observed precipitation higher than 0; see Fig. 5. Here, Light-
GBM seems to outperform QRF for τ ≥ 0.95 referring to both
frequency and quantile scoring function based skill scores. In
both cases of skill scores, the score increases with τ increasing
when τ ≥ 0.97.

It is also of interest to understand how the algorithms perform
at each station separately; see Fig. 6. Here, we examine the
case of the quantile scoring function based skill score; recall
that the quantile scoring function is consistent for the quantile

functional. Stations with skill scores lower than –1 were removed
from Fig. 6. The reason is that, some skill score values were as
low as –10 or less, which would create some artifacts in the
representation of the results. The conclusions are not affected
by the removal, given that skill scores are skewed, since they
cannot exceed the value of 1, although they can be equal to –�.
Furthermore, we removed stations where both algorithms had
a mean score equal to 0 (in which case the skill score is not
defined). In Fig. 6, we observe that the skill score increases as
the quantile level τ → 1. Furthermore, we observe that the skill
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Fig. 6. Heatmap of skill scores for quantile losses at different quantile levels and each station.

score varies between stations at the same quantile level, although
the variation is relatively small. A notable departure of the skill
scores from 0 is observed for quantile levels τ ≥ 0.97.

V. DISCUSSION

Regarding the overall performance of the two methods, Light-
GBM is an algorithm particularly useful in large datasets with a
high number of dimensions. Furthermore, given that it belongs
to the highly parametrized family of boosting algorithms that
are characterized by high flexibility, it is not surprising that
it outperforms random forests on average. That is evident in
the case of complete data in which LightGBM, in general, per-
forms better when assessed with the quantile scoring function.
However, LightGBM does not uniformly outperform QRF at all
quantile levels. At lower quantile levels, the two algorithms seem
to behave similarly, while at higher quantile levels LightGBM
clearly outperforms QRF.

A possible explanation for the behavior at lower quantile
levels is based on the high proportion of zeros in the dataset.
In particular, QRF is an algorithm based on bootstrapping,
therefore, it is possible to resample zero values. On the other
hand, LightGBM is based on the minimization of the quantile
scoring function that may be suboptimal when the dataset is
highly intermittent. For instance, the median of the conditional
distribution of precipitation should be zero (since the number
of zero values in the dataset is higher than 50%). The quantile
scoring function at level τ = 0.5 is equivalent to the absolute
error scoring function which, in turn, may not be suitable in cases
where one should predict a median value of a probability distri-
bution with mass at zero. Nevertheless, the overall performances
of LightGBM and QRF at quantile level 0.5 remain similar. That
may be due to that, while QRF can better predict zeros, they fail
at a higher degree when they issue nonzero predictions.

At higher quantile levels, LightGBM clearly outperforms
QRF with regards to all skill scores while the difference increases
with increasing τ , while the skill score tends to 1 as τ → 1.
A possible explanation is that QRF cannot predict values that
are not in the range of the training set [26]. The weakness
becomes more pronounced at higher quantile levels, where high
values in the training set become rarer and the algorithm tends
to shift toward lower values. On the other hand, LightGBM is
based on addition of base learners to previous errors and despite

base learners being decision trees, it seems that it can better
extrapolate beyond the range of the training set. Furthermore,
the conditional probability distribution of precipitation at higher
quantile levels seems to comply with regularity conditions,
under which the quantile scoring function’s properties seem
to hold.

While QRF outperforms LightGBM with regards to the quan-
tile skill score at higher quantile levels when observed precipi-
tation is zero, the inverse happens when observed precipitation
is higher than zero. The performance of both algorithms in
the complete test set favors LightGBM, since absolute values
of quantile scores are lower in general when observed pre-
cipitation is zero compared to nonzero observed precipitation,
consequently the largest part of the average score belongs to
nonzero values.

Examining single algorithms is important to understand their
properties at hand. However, the combination of algorithms (en-
semble learning in machine learning literature, [57]), may result
in higher improvements. That has been proved in practice using
simple combinations (e.g., [47]) or stacking [69] for predicting
the mean functional of the conditional probability distribution.
Combinations of algorithms for probabilistic prediction (e.g.,
stacking, [36], [73], [82]), perhaps including spatial features
(e.g., [49]) is a topic worth examining and has been proven
successful in other hydrological applications [50], [67] as well
as in merging gauged-based and satellite precipitation datasets
(see [83] for the case of the mean functional). Predictions
of extreme quantile based on extreme value theory are also
worth examining, but it remains to assess in practice whether
the conditional distribution in spatial settings is heavy-tailed.
Nevertheless, extremal quantile regression has been applied in
post-processing applications in the time domain [66]. Assessing
other algorithms, e.g., deep learning ones [34], [58] in proba-
bilistic predictions of precipitation might also be a topic worth
examining.

VI. CONCLUSION

We proposed issuing probabilistic predictions of daily pre-
cipitation in spatial settings by merging gauge-based measure-
ments and satellite precipitation products using LightGBM.
LightGBM outperforms the state-of-the-art in such settings
QRFs (a variant of random forests) when predicting extreme
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quantiles of the conditional probability distribution of the re-
sponse variable, while both algorithms show similar perfor-
mance when predicting quantiles at the center of the probability
distribution. The difference in the performance of the methods
increases in favor of LightGBM as the quantile level (at which
the methods are compared) increases and tends to 1. Confidence
in the results is built through the comparison of the algorithms
in a large dataset that includes observed precipitation in the
CONUS.

An intuitive explanation of the results is also provided, ac-
cording to which LightGBM can better predict extreme quantiles
due to the inability of random forests to extrapolate beyond the
range of the training set combined with the improved ability of
LightGBM to issue accurate predictions due to its structure. On
the other hand, QRFs are equal to LightGBM when predicting
quantiles at the center of the conditional probability distribution,
due to the highly intermittent nature of precipitation, combined
with their bootstrap-based structure, which seems to be more
suitable in this case compared to algorithm structures that are
based on the quantile scoring function.

APPENDIX

We used the R programming language [56] to implement the
algorithms and to report and visualize the results.

For data processing and visualizations, we used the con-
tributed R packages data.table [15], elevatr [27],
ncdf4 [55], rgdal [8], sf [53], [54], spdep [5], [6], [7],
and tidyverse [70], [71].

The algorithms were implemented by using the contributed R
packages ranger [74], [75] and lightgbm [60].

The performance metrics were computed by implementing
the contributed R package scoringfunctions [64], [65].

Reports were produced by using the contributed R packages
devtools [72], knitr [76], [77], [78], and rmarkdown [2],
[79], [80].
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