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Recent Advances in Intelligent Processing of Satellite
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Abstract—Intelligent processing of satellite video focuses on ex-
tracting specific information of ground objects and scenes from
earth observation videos through intelligent image/video process-
ing technology, which has important applications in fields such as
traffic monitoring, resource monitoring, and environmental mon-
itoring. The integration of deep learning technology in satellite
video processing has led to significant advancements in tasks such
as object detection and object tracking, expanding into emerg-
ing research areas such as satellite video scene classification and
object segmentation. However, there is no comprehensive review
and summary in the intelligent processing of satellite video. This
article presents a systematic review and quantitative analysis of
the results published over the last decade, intending to further
promote the development of various intelligent processing tasks for
satellite video. It analyzes the current difficulties, challenges, and
the methodological system for each task. In addition, it provides
an in-depth analysis and summary of publicly available datasets
and evaluation benchmarks for each task, as well as classic algo-
rithm performance and application scenarios. Finally, this article
summarizes the current research status and looks forward to the
future development trend, hoping to inspire researchers in related
fields and jointly promote the development of intelligent processing
of satellite video.

Index Terms—Deep learning (DL), object detection,
object segmentation, object tracking, scene classification,
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I. INTRODUCTION

THE development of aerospace technology makes it possi-
ble for satellites to observe the earth by gaze. The emer-

gence of video satellites such as Jilin-1 and the Sky-Sat series has
gradually made video satellites an important means of earth ob-
servation, attracting widespread attention in various fields. Com-
pared with traditional satellite remote sensing images, video
satellite imaging can achieve a wide range of observations. More
importantly, it can continuously achieve gaze imaging within
the observation area and obtain earth observation dynamic in-
formation with high temporal resolution. Thus, video satellite
imaging has essential applications in transportation, security,
disaster monitoring, resources, and environment. Research on
object detection, object tracking, object segmentation, scene
classification, and other artificial-intelligence-based tasks using
video satellite earth observation data has become a frontier hot
spot in remote sensing [1], [2]. Most of the research topics in
satellite video before 2013 revolved around satellite video cod-
ing, satellite video communication, and satellite video stream-
ing. Subsequently, several earth observation video satellites and
satellite constellations were launched. Since 2013, Planet Labs
has successively launched the Skysat-1, Skysat-2, and Skysat-C
video satellites. Skysat-1 is the first submeter video satellite
with a spatial resolution of 1.1 m and a temporal resolution of
30 frame/s (FPS). It can capture high-quality black-and-white
visible light images. Urthecast uses International Space Station
(ISS) to embark on the world’s first spaceflight full-color video
camera Iris, with a spatial resolution of 1 m. Changguang Satel-
lite Company also launched the Jilin-1 video 01–08 satellites
between 2015 and 2018, the first spaceflight full-color video
camera outside North America with a spatial resolution of
1.13 m. Zhuhai 01 and 02 video satellites were launched in 2017
and 2018, respectively. Qilu 04 video satellite was launched in
2021 with a spatial resolution better than 0.7 m. Wuhan Uni-
versity launched the Luojia-3 video satellite in 2023, a satellite
in-orbit real-time processing technology breakthrough.

With the successful launch and in-orbit operation of the above
series of video satellites and satellite constellations, more and
more high-temporal-resolution satellite video earth observation
data can be obtained. The improved temporal resolution im-
proves the timeliness of some traditional remote sensing ap-
plications, such as disaster monitoring, ocean monitoring, and
ecosystem disturbance monitoring. It makes some applications
like traffic condition monitoring a reality where traditional
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Fig. 1. Summary of the development of satellite video intelligent processing. The dotted boxes mark the jobs that appear for the first time in each direction.

remote sensing cannot perform well [3], [4]. These applications
require the support of key technologies such as super-resolution
reconstruction and moving object detection, identification, and
tracking. Therefore, research into these technologies becomes
essential. There is an urgent need for intelligent real-time mon-
itoring of global hot spots and moving objects of interest, using
the continuously dynamic information in large amounts of satel-
lite video data.

With the significant increase in artificial intelligence com-
puting power, deep learning (DL) has been rapidly applied
in various fields such as computer vision, natural language
processing, and satellite remote sensing image processing. The
rapid increase in the number of satellite videos available has
also made it possible to apply data-driven DL techniques to the
intelligent processing of satellite video. In recent, DL algorithms
have been rapidly developed for intelligent processing tasks
such as object detection, object tracking and motion estimation,
and super-resolution of satellite video. Meanwhile, many excel-
lent works have emerged, attracting widespread attention from
academia and industry. There are also many emerging research
directions, such as satellite video scene classification (SVSC)
and object segmentation.

As shown in Fig. 1, research on satellite video object tracking
is divided into correlation-filtering-based and DL-based ways.
Du et al. [5] first used a correlation filter (CF)-based approach
to solve the single-object tracking (SOT) problem in 2018,
Shao et al. [6] proposed a DL-based PASiam method for solving
SOT tasks in 2019, Ao et al. [7] first proposed a network

named Tracking City-Scale Moving Vehicles From Continu-
ously Moving Satellite (TCSM) in 2020 for solving multiobject
tracking (MOT) tasks. For satellite video object detection tasks,
there are three main methods: background modeling, interframe
differencing, and DL-based methods. Kopsiaftis and Karantza-
los [3] first investigated satellite video object detection in 2015,
using background modeling for vehicle detection and further
achieving traffic density estimation. In 2018, Liu et al. [8] first
applied a single-shot multibox detector (SSD) to effectively
achieve satellite video aircraft detection. The spatiotemporal
dual-branch network (STDBN), proposed by Zhong et al. [9]
in 2022, performs effective segmentation for single aircraft and
train in satellite video. Zhang et al. [10] conducted the first DL
satellite video super-resolution (VSR) study based on Jinlin-1
data, and more works related to satellite VSR have sprung up
by 2022. Gu et al. [11] presented the first SVSC work in 2020.
Subsequently, a series of emerging directions, such as satellite
video object segmentation (VOS), motion estimation, and in-
trinsic decomposition, have occurred by 2022. Overall, many
aspects of satellite video intelligent processing research are still
in their infancy, and there is still much room for exploration and
development.

Several issues remain to be resolved in satellite video earth
observation. On the one hand, video satellite imaging suffers
from large variations in illumination, severe imbalances in
foreground and background, significant differences in object
scale, and insufficient spatial resolution due to its overhead
imaging mode and detector performance. It is a major challenge
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to design specific algorithms that are fully integrated with video
satellite imaging mechanisms and characteristics to solve the
common problems of low accuracy and poor robustness for mul-
tiple tasks such as object tracking, detection, super-resolution,
and segmentation, as well as the individual issues for different
tasks. On the other hand, temporal information is a unique
characteristic of satellite video data. While there is large re-
dundancy in satellite video data, how to fully use the temporal
dynamic information and background invariance information
in satellite video to optimize the model performance is also
a major difficulty. To advance the development of intelligent
satellite video processing, this article presents a review and mul-
tidimensional quantification of the current works on intelligent
satellite video processing. In addition, this article also compiles
and analyzes the evaluation results on public datasets, the pros
and cons of methods, application scenarios, and future research
directions. We hope that this article provides researchers in this
field with a comprehensive review of the intelligent processing
of satellite video. The work in this article can be summarized as
follows.

1) This survey conducts a comprehensive review of the rele-
vant works on the intelligent processing of satellite video.
We perform multidimensional quantitative statistics to
analyze the research hot spots and trends.

2) We summarize the difficulties and challenges currently
faced in intelligent processing of satellite video and the
methodological systems for different tasks such as object
detection, object tracking, super-resolution, scene classi-
fication, and object segmentation.

3) This survey collates publicly available datasets, evaluation
results, and analyzes benchmark methods’ advantages and
disadvantages for each satellite video intelligent process-
ing task.

4) This survey analyzes the application scenarios and chal-
lenges of intelligent processing tasks for satellite video
and looks at future research directions.

The rest of this article is organized as follows. Section II
presents a statistical and quantitative analysis of the existing
published literature and related research results in the field of
satellite video to visualize the distribution and development
trend of existing research work. Section III provides a detailed
analysis of the difficulties and challenges in the field of satellite
video. Section IV provides a detailed description of the method-
ology for specific tasks. Section V investigates the existing
public datasets and corresponding experimental results in the
field of satellite video. Sections VI and VII introduce typical
application scenarios of satellite video and look into future
research directions, respectively. Finally, Section VIII concludes
this article.

II. QUANTITATIVE ANALYSIS OF ARTICLES

This section is mainly based on the Web of Science (WOS)
and the China Knowledge Network (CNKI) to systematically
analyze the research trends and hot spots in satellite video
intelligence processing. WOS has more than 12 400 authoritative
and high-impact international academic journals in three major

Fig. 2. Number of publications of earth observation satellite video from 2014
to 2022. (a) Data source from WOS. (b) Data source from CNKI.

citation systems (SCIE, SSCI, and A&HCI) covering natural
sciences, engineering, social sciences, arts and humanities, and
other disciplines. The retrieval condition is set to (title=satellite
video) AND (duration=2014–2022), and finally, 119 valid arti-
cles on the intelligent processing of satellite video are obtained
through manual selection. CNKI contains a database of Chinese
journal articles, dissertations, and patents. The retrieval condi-
tion is set to (subject=satellite video) AND (duration=2014–
2022), obtaining 36 valid articles through manual selection.

Fig. 2 shows a quantitative analysis of published articles.
The number of articles shows a gradual increase in overall
publications since 2015, with rapid growth in 2022, reaching
50 articles.

Then, we perform statistical analysis on articles published
in different journals or conferences based on WOS and CNKI
retrieval results. As shown in Table I, IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING, Remote Sensing, IEEE
International Geoscience and Remote Sensing Symposium, and
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS are the
four journals/conferences with the largest number of published
articles. Among them, 26 papers are published in the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING AND

REMOTE SENSING, accounting for 20.8%. The total number of
articles in the four journals is nearly half of the available papers.

Moreover, based on WOS, this section presents a
statistical analysis of several main existing research
direction for intelligent processing of satellite video during
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TABLE I
NUMBER OF ARTICLES IN MAINSTREAM JOURNALS/CONFERENCES

Fig. 3. Statistics on papers and patents in different fields. (a) Data source from
WOS. (b) Data source from CNKI.

2014–2022. The retrieval condition is set to ((title=satellite
video) AND (title=tracking)), ((title=satellite video)
AND (title=detection)), ((title=satellite video) AND
(title=segmentation)), ((title=satellite video) AND (title=scene
classification)), and ((title=satellite video) AND (title=super
resolution)). Fig. 3(a) shows the number of published papers
and patents in different directions. Object tracking and object

detection have the highest number of relevant works, with 48
and 35 papers and 17 and 10 patents, respectively. The number
of works on the remaining emerging directions is inadequate.

Similarly, based on CNKI, this section also presents a sta-
tistical analysis of several main existing research directions for
intelligent processing of satellite video during 2014–2022 in
Fig. 3(b). The retrieval condition is set to (subject=satellite
video). Object tracking and object detection have the highest
number of relevant works, with 12 and 14 papers and 20 and 14
patents, respectively.

In addition, based on WOS keyword trend and hot-spot anal-
ysis, Fig. 4 visualizes the distribution of research hot spots in the
field of satellite video intelligent processing; object tracking is
a major hot-spot direction, while DL and feature extraction de-
rived from satellite video topics are also important research hot
spots. Super-resolution, object detection, and vehicle detection
are the next hot spots. Following closely behind, segmentation,
classification, and motion estimation are gradually increasing in
hotness. A number of methodological techniques derived from
these directions, such as optical flow, Kalman filtering, correla-
tion filtering, and video coding, have also drawn attention.

Fig. 5 shows the trend analysis of WOS-based keywords
over the years, with the vertical axis representing the number
of occurrences of the term in each year. Satellite video, object
tracking, and DL gaining in popularity in 2022.

Finally, this section also researches existing reviews in the
field of satellite video; setting the retrieval criteria (title=satellite
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Fig. 4. Distribution of keyword hot spots in the field of intelligent processing of satellite video.

Fig. 5. Keyword trend analysis.

video AND title=survey) OR (title=satellite video AND
title=benchmark) OR (title=satellite video AND title=dataset)
OR (title=satellite video AND title=review) OR (title=satellite
video AND title=research), five reviews are found (see
Table II). Paper [12] mainly focuses on object tracking in

satellite videos. Paper [13] proposes a method for monitoring
and analyzing urban traffic based on commercial video satellite
and intelligent image processing technology and develops the
calculation method of the traffic density, speed, and flow based
on the video satellite data. Paper [14] briefly summarizes the first
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TABLE II
STATISTICS OF AVAILABLE REVIEW ARTICLES

challenge on moving object detection and tracking in satellite
videos, and the top-performing methods and their results in each
track are described with details. This challenge establishes a
new benchmark for satellite video analysis on moving object
detection and tracking in satellite videos. In order to investigate
the adaptability to satellite video with low image quality, Liu
and Gu [15] mainly focuses on some classical learning-based
super-resolution methods, including sparse representation, col-
laborative representation, and DL methods. The survey [16]
systematically investigates current satellite-video-based track-
ing approaches and benchmark datasets and summarizes the
essential aspects of each tracking target (traffic target tracking,
ship tracking, typhoon tracking, fire tracking, and ice motion
tracking). It can be seen that each of the above reviews mainly
addresses a single aspect of satellite video field. However, dif-
ferent from them, this article gives a comprehensive research,
analysis, and summary for satellite video multitask intelligent
processing and applications, including challenges, methods, and
applications for different satellite video tasks.

According to the results of quantitative statistical analysis in
this section, we can summarize some conclusions.

1) After the relevant video satellites were launched and
satellite video data became available, researchers began
to initially conduct research on the intelligent processing
of satellite video data in 2015. The field has reached a
development climax in 2022 in terms of speed and heat.

2) Object tracking, object detection, and super-resolution
are the three directions that researchers have paid most
attention to, and the number of articles related to the three
directions is the largest.

3) First, the satellite video itself has the dynamic information
of the object, which can better focus on the movement of
the dynamic object. This enables the rapid development
of satellite video object tracking technology. At present,
the method represented by the combination of correlation
filtering and DL network has attracted more attention
and research. Second, the rich target information captured
by satellite video has also drawn more attention to the
research on satellite video object detection.

4) As satellite video gets more and more application and at-
tention, some expanded research directions, such as object
segmentation, scene classification, and motion estimation,
have gradually attracted the attention and exploration
of researchers. This enables the further development of

emerging application directions based on satellite video
intelligent processing technology.

Overall, with the development of satellite video technology
and satellite video constellation, the research represented by
intelligent processing technology will receive more and more
attention and research and will play an important role in the
applications of traffic detection density estimation, scene mon-
itoring, incident and disaster response, and land space use
regulation.

III. DIFFICULTIES AND CHALLENGES

Satellite videos have evolved from single still images to mul-
tiframe continuous image sequences. Compared with general
videos, satellite videos have the following characteristics, which
pose greater difficulties for various processing tasks.

1) Poor data continuity: The current video satellites usually
have continuous imaging times of the 90 and 120 s and
are unable to observe the same area for a long time,
which leads to poor data continuity. Although the video
satellite constellation formed by SkySat, Jilin-1, or other
video satellites shortens the reentry cycle, it is difficult to
meet the demand for the real-time observation of specific
objects [17].

2) Spatial resolution needs to be further improved: The spa-
tial resolution of satellite videos is usually about 1 m,
which is still lower than general videos and high-resolution
aerial remote sensing images. Therefore, the typical re-
mote sensing objects in satellite videos, such as vehicles,
ships, and trains, have few pixels and small sizes, and the
shape and textural features are not salient, resulting in low
contrast and difficulty in distinguishing the foreground and
background.

3) Global motion due to platform movement: The video is
collected from the sensor on the video satellite. The plat-
form is always in motion, and the imaging sensor needs to
continuously adjust the shooting angle and pitch attitude
along the direction of travel. The platform movement
causes the satellite video background to move continu-
ously and slowly, bringing the global motion of the video
content.

4) Large changes in illumination: Video satellites target
specific areas with dynamic imaging to capture dynamic
changes in the ground but also introduce changes in
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Fig. 6. Comparison of natural video and satellite video scenes. (a) Natural
video scenes. (b) Satellite video scenes.

lighting. Illumination changes produce occlusion of ob-
jects on the surface and even lead to image distortion,
seriously affecting video quality and content integrity.

5) Large redundancy between video frames: The frame rate
of continuous imaging satellite video is usually less than
25 FPS, while due to the long imaging distance, satel-
lite video content changes between adjacent frames are
small, and object movement within the field of view is
not apparent. There is a lot of redundancy in visual static
information.

In terms of the imaging source, the altitude at which the
satellite is located causes the scale of the obtained satellite videos
to be very different from the natural scene videos. Therefore, the
most notable difficulty in this field is that unlike targets in natural
videos, which occupy a larger area, the targets (e.g., vehicles,
ships, and aircraft) in satellite video often occupy only a few to a
few dozen pixels, and they will receive much more interference.
Besides, the complex background in the large scene of satellite
video also brings more noise interference. Fig. 6 shows the
comparison of natural video and satellite video scenes.

In general, the problems inherent in the field of satellite video
are challenging, such as large scenes, insignificant features,
small object areas, complex scenes, lighting variations, and
redundant information between frames. These challenges have
different impacts on different tasks.

Specific to each task, for satellite video object tracking, since
the size of each object is too small compared to the whole image,
and the object and background are very similar, tracking failure
is very easy to occur. For satellite video object detection, the size
of the moving objects of interest is often very small (e.g., most
of the moving vehicles in the Jilin-1 satellite video are smaller
than 20 pixels), resulting in a lack of texture and appearance

geometric information, and sometimes, there are motion artifacts
caused by nongeostationary satellite imaging platforms. These
issues make it difficult to achieve accurate positioning between
consecutive frames. For satellite VOS, the main problems are the
extreme imbalance in the front background due to small targets
and blurred boundaries caused by low resolution and motion
artifacts. These factors make high-precision segmentation dif-
ficult. For satellite VSR, the lower resolution of satellite video
frames leads to the lack of sufficient texture and detail infor-
mation, which makes feature extraction more difficult. Besides,
the huge scene size also makes super-resolution reconstruction
inefficient. Details are summarized as follows.

1) Extreme foreground–background imbalance: As shown in
Fig. 6, satellite videos usually have large scenes, with
typical moving objects such as vehicles and ships as
small as less than 10 pixels, resulting in an extremely
imbalanced distribution of positive and negative samples
in the scene. Moreover, even with 1-m spatial resolution,
small objects may lack shape, texture, and other features,
posing significant challenges for algorithms.

2) Complex background environment: The imaging area of
satellite videos is usually hundreds of times larger than that
of general videos, leading to a large amount of redundant
background information and various background interfer-
ences. These include situations where objects blend into
the background, are difficult to distinguish, and where
there are very similar interfering objects around the object,
as well as sudden changes in lighting conditions and
shadows.

3) Severe occlusion: Due to the complex traffic environment,
objects such as cars face more severe occlusion problems,
which means that algorithms are more likely to lose ob-
jects, especially for small and insignificant objects.

4) Huge scene size: Satellite videos typically have a large
imaging width, which increases the computational burden
on algorithms and requires longer processing times. More-
over, influenced by spatial resolution, the edge details of
typical objects such as buildings, water bodies, and roads
in large scenes are more blurred, posing enormous chal-
lenges for image quality restoration and feature extraction.

5) Large differences in object scales: Satellite videos have
both spatial and temporal dimensions. For spatial scales,
different objects have large differences in size, making
it difficult for algorithms to coordinate different feature
representations. In the temporal dimension, interframe
motion blur and different object speeds make it difficult
for algorithms to align on the time scale. Overall, the
efficiency of spatiotemporal information fusion is also a
challenge for algorithms.

IV. METHODOLOGICAL SYSTEM

A. Characteristics of Satellite Video Observation

Along with the rapid development of remote sensing technol-
ogy, the ability to acquire earth observation data from space has
increased. The imaging temporal resolution of land observation
satellites has been decreased, but the revisit of single-satellite
mode high-resolution satellites still takes two to five days. Even
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TABLE III
INTRODUCTION OF EXISTING HIGH-RESOLUTION VIDEO SATELLITES

TABLE IV
INTRODUCTION TO PUBLICLY AVAILABLE DATASETS

though the constellation formed by light and small satellites
has shortened the reentry cycle, it is still difficult to meet the
demand for continuous and long-time observation of specific
ground objects for the time being. Satellite video remote sensing
earth observation is a new type of remote sensing technology
that has been developed in the last decade. The major difference
between video imaging satellites and traditional optical earth
remote sensing satellites is that the former can continuously
observe a certain area and obtain more information about the
continuous movement of the object, such as the movement speed
and direction of the object. Moreover, video satellites are in an
almost gazing manner, which is particularly suitable for the per-
ception of moving objects, thus obtaining dynamic information
with a high temporal resolution. Dynamic information is difficult
to obtain with conventional ground-based optical remote sensing
satellites.

Several video satellites have been launched in recent years.
Planet Labs of the United States first launched Skysat-1 in 2013,
with a spatial resolution of 1.1 m and an imaging range of 2 km×
1.1 km. Changguang Satellite Company of China launched the
first color video satellite Jilin-1 in 2015, with a video resolution
of about 1 m and an imaging range of 4.6 km × 3.4 km. Qilu-
4 and Luojia-3 video satellites were both launched in January
2023, with a spatial resolution of 0.5–0.7 m. Details of existing
video satellites are shown in Table III.

Video images of natural scenes are usually not conducive to
studying large-scale moving objects due to the small shooting
range and the little information obtained, which is an advantage
of satellite video. However, as shown in Fig. 6, compared to the
natural scene video captured by the camera, the satellite video

has difficulties such as a low percentage of object foreground,
weak and insignificant object features, complex background,
blurred image, and low frame rate due to its unique imaging
mechanism of a long-range overhead view. Thus, generic intel-
ligent video processing algorithms for natural scenes cannot be
directly applied to satellite-video-related tasks. It is necessary to
consider the unique characteristics of satellite video for targeted
algorithm innovation and improvement.

B. Satellite Video Object Tracking and Motion Estimation

1) Satellite Video Object Tracking: Satellite video object
tracking aims to track moving objects of interest in satellite
videos, such as airplanes, ships, vehicles, and trains, and au-
tomatically estimate their states, such as position and size, in
the video. Depending on the number of tracking objects, it can
be generally divided into two tasks: SOT and MOT, as shown
in Fig. 7. Given the state of the object to be tracked in the
first frame, SOT algorithms need to locate the object frame by
frame in the video and provide the position and bounding box of
the object [12]. On the other hand, MOT simultaneously tracks
multiple objects of interest in the video of a specified category. It
distinguishes them by different labels and temporally associates
the objects between frames [18].

a) Single-object tracking: Researchers have recently pro-
posed several algorithms for SOT in satellite videos, mainly
including generative and discriminative methods. Generative
methods extract object features for modeling and find similar
objects frame by frame, including mean shift [19], particle filter-
ing [20], Kalman filtering [21], sliding window search [22], and
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Fig. 7. Overview of satellite video object tracking methods.

other methods. Generative methods ignore background informa-
tion, and their accuracy significantly decreases when objects un-
dergo significant deformation, similar objects in the background,
or shaking in the video. Compared with generative methods,
discriminative methods have higher accuracy and faster speed.
Typically, an object classifier is trained to classify objects as
foreground and enable tracking during the tracking process. Dis-
criminative correlation filtering methods [23], [24], [25], [26] are
the most representative. With the development of DL, some DL-
based trackers with stronger feature representations have been
proposed, including Siamese-based trackers [27], [28], [29],
deep discriminative CFs [30], [31], [32], online detection-based
trackers [33], reinforcement learning-based trackers [34], etc.

The correlation filtering methods are popular due to their
efficiency and accuracy. Some researchers have combined ob-
ject detection algorithms to improve the performance of satel-
lite video trackers. Du et al. [5] proposed a satellite video
tracker by combining the three-frame difference algorithm with
the CF tracker. Ahmadi and Mohammadzadeh [35] proposed
a method for detecting and tracking vehicles and ships in
satellite videos based on background subtraction technology.
Some algorithms track objects by extracting motion information.
Shao et al. [36] designed a velocity-related filtering algorithm
that utilizes velocity features obtained through optical flow and
inertial mechanisms. Du et al. [37] constructed a multiframe
optical flow tracker that combines optical flow and multiframe
difference methods for object tracking in satellite videos. Chen
and Sui [38] proposed a spatial mask to promote CF to give
different contributions based on spatial distance and then applied
a Kalman filter (KF) to predict the position of objects in large and
similar background regions. Later, Guo et al. [39] introduced the
global motion characteristics of moving vehicles to constrain the
tracking process and corrected the trajectories of moving objects
by integrating their positions and velocities. Xuan et al. [40]
proposed a motion estimation algorithm that combines a KF
and a motion trajectory averaging strategy to address occlusion
problems in satellite videos. Other methods track objects using
their features. Xuan et al. [41] proposed a rotation adaptive CF
tracking algorithm to solve the rotation problem of objects in
satellite videos. The proposed method maintains the stability of
the feature map for object rotation and achieves the ability to es-
timate changes in bounding box size. Chen et al. [42] decoupled

rotation and translation motion patterns and developed a new
rotation adaptive tracker with motion constraints. In addition, Pei
and Lu [43] designed a kernel correlation filter (KCF) based on
color name features and Kalman prediction. Liu et al. [44] fused
different features of the object based on the KCF and introduced
KF to compensate for motion position deviation. Wang et al. [45]
focused on sample training strategies and sample representa-
tion capabilities to enhance object tracking in satellite videos.
They established a filtering training mechanism for objects and
backgrounds to improve the discriminative ability of tracking
algorithms and constructed an object feature model using Gabor
filters to enhance the contrast between objects and backgrounds.

With the development of DL and neural networks, some
researchers have used deep neural networks to enhance the
feature modeling process of trackers. Hu et al. [46] constructed
a convolutional regression network for satellite video object
tracking that uses a pretrained deep neural network to extract
appearance and motion features. Uzkent et al. [47] utilized a
convolutional neural network to extract hyperspectral domain
features and used the KCF to handle satellite video tracking
problems. Due to the significant efficiency advantage of Siamese
networks’ weight-sharing structure, some algorithms have built
Siamese network tracking frameworks. Shao et al. [6] proposed a
fully convolutional Siamese (Siamese-FC) network with shallow
features to extract fine-grained appearance features for satellite
video tracking. The network incorporates a Gaussian mixture
model (GMM) and utilizes Kalman filtering to handle tracking
occlusion and motion blur issues. Similarly, Zhu et al. [48]
proposed a deep Siamese network (DSN) with an interframe
difference centroid inertia motion model to alleviate model
drift and used a Siamese region proposal network to obtain
object location. In addition, Ruan et al. [49] proposed a two-
stream Siamese convolutional neural network that combines
Siamese networks and motion regression networks to achieve
satellite object tracking and further alleviate model drift by
using the trajectory fitting motion model based on historical
trajectories. Shao et al. [50] designed a high-spatial-resolution
lightweight parallel network and proposed a pixel-level re-
finement model based on online moving object detection and
adaptive fusion to enhance the tracking robustness in satellite
videos. Zhang et al. [51] learned the motion and background of
the object to help the tracker identify the object more accurately.
They predict the probability of the object position in each pixel of
the next frame using a fully convolutional network and introduce
a segmentation method to assign high probabilities to feasible
regions of the object in each frame. Bi et al. [52] proposed a
satellite video object tracking algorithm based on a variable-
angle adaptive Siamese network (VAASN). This method utilizes
a multifrequency feature representation method in the feature
extraction phase of a Siamese-FC network to reduce the impact
of complex backgrounds. It introduces a variable-angle adaptive
module to adapt to changes in object rotation during the tracking
phase.

b) Multiobject tracking: Compared to SOT, MOT in satel-
lite videos is still in its early stages of research. The methods
can be divided into two main trends: detection-based tracking
(TBD) methods and joint detection and tracking (JDT) methods.
TBD methods treat detection and tracking as two independent
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tasks and use external detectors to generate frame-by-frame
detection results, followed by applying additional models for
the interframe association. JDT methods also design models
to perform detection and association simultaneously for more
efficient tracking.

In the TBD framework, researchers usually utilize object
detectors to discover and detect potential objects in the scene
and then perform interframe associations to obtain tracking
trajectories. Some studies focus on the research of moving object
detection. Ao et al. [7] provided a vehicle detection algorithm
based on local noise modeling, which distinguishes potential
vehicles from noise patterns using an exponential probability
distribution. Feng et al. [53] performed cross-frame keypoint
detection through interframe information and constructed a two-
branch structure with long short-term memory (LSTM) to effec-
tively detect and track dense vehicles. Xiao et al. [54] proposed
a dynamic and static fusion dual-stream network (DSFNet) to
detect moving objects in satellite videos by extracting static
context information from a single frame and dynamic motion
clues from continuous frames.

In the JDT framework, algorithms perform JDT, combining
object detection with the temporal association. Zhou et al. [55]
proposed a synchronous detection and tracking algorithm that
applies keypoint detection models to image sequences and the
previous frame’s detection results, locating different objects by
associating keypoints to complete tracking. Wang et al. [56] and
Zhang et al. [57] extracted detection features and identity switch
(ID) features simultaneously using a shared network and associ-
ated the predicted IDs to complete tracking. He et al. [58] mod-
eled MOT as a graphical information reasoning process from
the perspective of multitask learning and proposed a graph-based
spatiotemporal reasoning module to explore potential high-order
correlations between video frames. These single-stage methods
save much inference time but are difficult to detect and associate
objects that lack appearance information.

2) Satellite Video Motion Estimation: Satellite video motion
estimation can give support to object tracking. However, the
background of satellite video scenes is complex and noisy, and
traditional methods cannot extract dense motions. In addition,
traditional methods are always time consuming in computing
motions, and it is also difficult to directly apply DL methods.
Appropriate features can solve the problem of complex back-
grounds, but they are powerless for small objects and noise.
Satellite video scenes, especially urban scenes, contain a large
number of small and fuzzy objects, and labeling the ground truth
of these object motions is challenging.

In summary, two challenges exist in extracting dynamic in-
formation in satellite video scenes: 1) how to extract the motion
of unlabeled small blurred objects and 2) how to extract the
accurate motion of blurred objects from the noisy background.

Xuan et al. [40] proposed the first novel motion estimation
algorithm by combining Kalman filtering and motion trajectory
averaging. Based on the assumption that the motion of the object
is a uniform linear motion in a relatively short time (even if the
object is in a turn, sharp stop or acceleration, etc.), the motion
trajectory averaging method is used to calculate the motion
state of the object before the KF converges. The average of

the displacement of the previous frames is used to estimate the
object’s velocity in the current frame, and the velocity of the
object and position in the previous frame are used to estimate
the position of the object in the current frame. After the KF
converges, the result of the KF is used as the output of the motion
estimation. Wang et al. [59] proposed MSSPWC-Net, which
consists of a sparse self-learning network, PWC-Net, and a
multiframe framework that uses a sparse warping loss function to
improve the sensitivity of small objects to self-learning methods.
Satellite video objects are sparse concerning the background,
and motion consistency constraints can be used to solve the
fuzzy object motion problem. With a multiframe framework,
the motions of adjacent frames are successfully fused to estimate
the accurate motion of the fuzzy objects. However, MSSPWC-
Net can only perform motion estimation based on depth features,
so the network must be trained to fine-tune the features to obtain
accurate results. In subsequent studies, sparse prior constraints
can be used to improve the segmentation results or increase the
cost volume to obtain more accurate information about small
objects.

C. Satellite Video Object Detection

Compared to the task of image-based object detection, the
most significant benefit of video object detection is the inclusion
of temporal contextual information, where each frame has a
temporal contextual association, correspondence, and similarity.
Since there is a subcontextual relationship, the detection results
of the adjacent frames can be used to improve the detection accu-
racy of the current frame. Since the adjacent frames have similar
continuity, the redundant information can be used to speed up
the detection of each frame. Compared to mainstream object
detection based on high-resolution remote sensing imagery, the
challenges of satellite video object detection are mainly reflected
in the object characteristics and data quality issues such as small
object size, low contrast, and poor clarity of video frames.

1) Satellite Video Object Detection Based on Conventional
Methods: Conventional methods perform object detection by
capturing the change region in the sequence image of the satellite
video and extracting the moving object from the background.
The main techniques include background modeling methods and
interframe differencing methods.

Several background-based modeling approaches were pro-
posed [60], [61], [62], [63], [64]. Ao et al. [60] proposed a
detection algorithm based on local noise modeling to correct
the detection results by distinguishing the latent probability dis-
tribution of the vehicle. Lei et al. [64] proposed a satellite video
vehicle detection method based on spatiotemporal information,
which combines the vital interframe temporal information to
optimize the detection. Zhang et al. [61], [62], [63] proposed
a set of detection methods based on low-rank structured sparse
decomposition for satellite video moving vehicle detection.

Some interframe differencing methods were also designed
for satellite video object detection [65], [66], [67], [68], [69].
Zhang et al. [65] segmented the image based on local variable
thresholding and combined the correlation between multiframe
object motion and satellite pose motion information to detect
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Fig. 8. Technical flow of the adaptive motion separation method for satellite
video detection [69].

the object. Li et al. [66] proposed an automatic detection and
tracking method for moving ships of various sizes in satellite
videos. Shi et al. [67] developed a normalized frame difference
tagging method to enable stable satellite video moving aircraft
detection. Shu et al. [68] reduced the false detection of vehicles
due to illumination changes and background movement by fus-
ing a GMM with three frames of differential detection results.
Chen et al. [69] proposed an adaptive motion separation method
for vehicle detection by accumulating object trajectories to help
separate moving objects from the background. The technical
flow of the method is shown in Fig. 8. Conventional satellite
video object detection methods do not rely on the object’s
annotation information to train the model but only on its motion
changes. Thus, they belong to the weakly supervised learning
type. The conventional methods can only detect moving objects
in the satellite video and are unable to distinguish the category of
the object, so most methods are currently used to detect moving
vehicles. In addition, currently published papers are validated
on small or nonpublic datasets, and there is a lack of benchmark
evaluation to measure the performance and robustness of the
methods.

2) DL-Based Satellite Video Object Detection: Due to the
lack of large-scale publicly available annotated datasets for
object detection, DL-based methods for satellite video are still
in their infancy, with less published research than conventional
methods in general. Feng et al. [53] proposed a detection
and tracking framework for moving vehicles in satellite video,
consisting of a cross-frame keypoint-based detection network
(CKDNet) and a spatial-motion-information-guided tracking
network (SMTNet). Among them, a cross-frame module was

Fig. 9. Satellite video object detection with DSFNet [54].

designed to support keypoint detection, which effectively ex-
ploited the interframe complementary information in the detec-
tion network CKDNet. It optimized the results by combining
size prediction around keypoints and defining invalid match
suppression for oversized keypoint pairs. Liu et al. [8] proposed
the quality deconvolutional single-shot detector (QDSSD) based
on the SSD network for the problem of small-size objects,
which enriched the feature information by deconvolution and
significantly improved the aircraft detection results, especially
the small-size aircraft objects close to each other. Xiao et al. [54]
proposed a DSFNet with the network structure shown in Fig. 9,
where a 2-D backbone is used to extract static contextual infor-
mation in each frame, and a 3-D backbone extracts successive
dynamic motion cues of the video. Moving vehicle detection
in satellite video was efficiently performed by fusing static and
dynamic features. Pflugfelder et al. [70] proposed a DL-based
satellite video vehicle detection method, using a tight convo-
lutional kernel to extract spatiotemporal feature information,
ignored maximum pooling, and uses weak RLUs to improve
vehicle detection. Zhou et al. [71] proposed a detection method
with feature scale selection and contrastive proposal encoding.
By leveraging external remote sensing image datasets to ac-
complish the network pretraining, the aircraft detection can be
achieved by relying on only a small number of satellite video
annotated samples. To address the problem of unremarkable
vehicle appearance information, Pi et al. [72] designed a feature
interframe differential module to obtain neighboring motion
information, extracted semantic features, and further introduced
Transformer to refine the semantic features to achieve effective
vehicle detection.

Unlike conventional methods, which can only detect mov-
ing objects in satellite video and cannot distinguish between
categories, DL-based methods rely on annotated data to train
models that can learn distinguishable features of objects in a
supervised learning manner. With the continuous development
and expansion of datasets in the field, how to design algorithmic
networks for specific characteristics of satellite video is the
future research of satellite video object detection.
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Fig. 10. Overview of satellite VSR methods.

D. Satellite VSR

The task of VSR is an extension of image super-resolution,
which aims to reconstruct a high-resolution video from a low-
resolution video. VSR has a significant practical value as it
can improve the performance of high-level tasks such as object
detection, object tracking, and object segmentation. Moreover,
VSR can also be used for data compression. However, VSR
is more challenging than single-frame image super-resolution
(SISR) due to the extra temporal dimension. This dimension
makes it difficult for image super-resolution methods to achieve
satisfactory results on video. The high-resolution videos pro-
duced using these methods often suffer from artifacts that cause
video incoherence [73]. The overview of existing satellite VSR
methods is shown in Fig. 10

Despite these challenges, video possesses richer information
than the image, and exploiting this redundant information can
lead to higher upper limits in VSR. To better use interframe
information, scholars often include the step of alignment in their
methods and expand the length of the input sequence [74], [75].
These steps are not available in image super-resolution. DL has
become a popular approach for satellite VSR methods in recent
years and has shown excellent performance.

Earlier studies directly applied image super-segmentation
methods to satellite video [76], [77], while methods designed
specifically for video have only emerged recently. These meth-
ods can be broadly divided into alignment and no-alignment
methods, with methods with alignment being dominant. Meth-
ods with alignment typically include four basic parts: prop-
agation, alignment, aggregation, and upsampling. Alignment
is crucial in VSR, and the absence of proper alignment can
significantly degrade the results [74]. Alignment can be achieved
through image or feature alignment, and the primary means
of achieving alignment include optical flow and deformable
convolution.

Zhang et al. [10] were among the first to use satellite video
interframe information for super-resolution. They employed a
combined single-frame and multiframe network. The multi-
frame network was derived from the classical generic VSR net-
work EDVR [78] and used deformable convolution for feature
alignment. In contrast, the approach of He et al. [79] employed
optical flow estimation for alignment. Specifically, their method
upsamples the images and then passes them through an attention-
based residual network to obtain the final high-resolution image.
Xiao et al. [80] proposed a recurrent refinement network that

aligns the reference images by the optical flow method and
extracts information from them to add to the SISR of the object
frame. Another approach by this author, MSTDGP [81], pro-
posed a novel temporal grouping projection fusion strategy and a
DCN-based multiscale residual alignment module. Ni et al. [82]
also used DCN for alignment and proposed a scale-adaptive
feature extraction module, as well as an upsampling module
that allows arbitrary magnification. The method proposed by Liu
and Gu [83] consists of two subnetworks, one branch predicting
high-resolution images and one branch predicting fuzzy kernels,
coupled by a cross-task feature fusion module, whose alignment
is based on patch matching in the feature space and is more stable
than using optical flow. The method proposed by Shen et al. [84]
also utilizes dual branches, which adds an edge branch to EDVR
that can simultaneously predict high-resolution edge maps and
fuses features from both branches at the end of the network.

He et al. [85], [86] also proposed a no-alignment approach to
feature extraction and fusion using 3-D convolution directly. He
and He [85] proposed a network with arbitrary image magnifi-
cation implemented by subpixel convolution and Bicubic for
upsampling. In [86], they split the objective function of the
degraded model into two suboptimization problems. For the first
time, they proposed a fusion of DL and model-based methods
for the super-resolution of satellite video.

Furthermore, the method in [87] utilized unsupervised learn-
ing, consisting of a downsampling network and an upsampling
network that did not require low-resolution high-resolution
training pairs. This satellite VSR method [88] focused on mod-
eling and super-resolution of aircraft in videos. Graph neural
networks have also been applied to the super-resolution of
satellite videos [89], and another work by the same authors
implemented super-resolution of both time and space in a single
network, predicting unknown frames by coupling optical flow
and multiscale deformable convolution [90].

E. Satellite VOS

The unique temporal information of satellite videos makes
them more suitable for practical applications. Video object
and instance segmentation allow further refinement of object
processing and analysis, so studying satellite video object and
instance segmentation has important application value and sig-
nificance. However, typical objects in satellite video, such as
aircraft, vehicles, and trains, have small sizes and blurred ap-
pearance features. VOS requires pixel-level annotation, which is
difficult and costly. Besides, satellite videos are expensive to ac-
quire, and it is difficult to collect sufficient samples to support DL
model training. Therefore, the current related research has been
conducted in a small number of satellite video sequences for
training and evaluation [9]. The lack of open-sourced large-scale
satellite VOS dataset has seriously restricted the development of
satellite VOS.

The existing satellite VOS algorithms follow the definition
of semisupervised VOS, where the ground truth of a particular
object in the first frame is given in the test phase. The goal is
to segment the corresponding object in the whole video [91].
Zhong et al. [9] collected 17 satellite videos from SkySat,
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Fig. 11. Framework of the two-stream structure for SVSC [11].

UtherCast, and Jinlin-1 and constructed the DAVOS dataset.
They designed spatiotemporal dual-stream branches to learn
the spatiotemporal features of the object of interest in satellite
videos. They utilized the online learning method One-Shot
Video Object Segmentation (OSVOS) [92] for training. The
temporal consistency branch was pretrained in the ImageNet
Large Scale Visual Recognition Challenge 2015 object detection
from video dataset [93], and the spatial segmentation branch was
pretrained in the PASCAL VOC 2012 segmentation dataset [94].
Then, the model is trained on the DAVOS dataset and then
fine-tuned in the test phase based on the annotation mask in the
first frame of the video, ultimately achieving significant region
similarity and contour accuracy on aircraft and trains.

VOS of general domains is mainly divided into semisu-
pervised VOS, interactive VOS, and unsupervised VOS. The
various relevant tasks will provide new ideas for satellite VOS.
Meanwhile, the video instance segmentation task segments all
the objects of interest in each video frame and associates inter-
frame object ID [95], which will expand the application scenario
and practical value of satellite VOS. The existing satellite VOS
algorithms are limited by spatial resolution and lead to low
contour accuracy. The satellite VSR reconstruction will optimize
image quality and improve contour accuracy.

F. Satellite Video Scene Classification

SVSC plays a vital role in the intelligent interpretation of
satellite videos, which describes the semantic information of
ground contents in satellite video. Different from the remote
sensing image scene classification task, SVSC aims to describe
both static and dynamic semantic information of ground objects.
It can generate an overall description of the local ground area
within a certain time. In essence, it is similar to the video
classification task in general video understanding and is a fu-
ture research topic in satellite video intelligence understanding.
Existing studies rely on DL techniques and focus on the joint
representation of spatial and temporal features in satellite videos
to improve classification accuracy. They are mainly based on the
two-stream framework. In 2020, Gu et al. [11] first proposed an
SVSC method based on the two-stream framework to jointly
represent the spatial and temporal features of satellite videos, as
shown in Fig. 11. It consists of two stages: the keyframe selection

Fig. 12. Mainframe of the LSRTN [96].

and long-term sequence feature encoding. The keyframe is se-
lected based on fuzzy detection and the activity of ground objects
in satellite video scenes. Its feature extracted by the pretrained
VGGNet is treated as the spatial feature of the satellite video.
At the same time, an LSTM network is used to encode frame
features extracted by PCA and VGGNet, which is treated as the
video-level feature representation of the given satellite video.
The proposed method achieves 73.97% overall accuracy (OA)
on the proposed SVSC dataset, including 8 static scenes and
7209 videos, from the Jilin-1 video satellite.

To effectively represent the features of small moving objects
in satellite videos, Wang et al. [96] proposed a low-rank sparse
representation two-stream network (LSRTN) for satellite video
single-label scene classification, which consists of two parts:
low-rank sparse decomposition and the spatial and temporal
features representation in Fig. 12. A low-rank sparse component
analysis network (LSCAN) was designed to decompose satellite
videos into low-rank background images and sparse moving
object sequences. Then, a two-stream structure was applied to
obtain the spatial and temporal features based on original frame
images and the sparse moving object sequence images, which
was used for classification after feature fusion. The LSRTN
achieves 81.2% OA on the constructed dataset, demonstrating
its effectiveness in representing the features of small moving
objects in satellite video scenes.

G. Emerging Directions

In addition to intelligent processing of regions and objects
of interest for earth observation by satellite video, researchers
have also conducted research around the temporal character-
istics of satellite video itself, in which satellite video intrinsic
decomposition (SVID), as an auxiliary and enhancement type
method for precise object location and identification, provides
a new research direction for enhancing the extraction of static
and dynamic components by networks.

Establishing SVID can eliminate the effect of light interfer-
ence on the reflectance component because the light is mainly
concentrated on the shadow component rather than the re-
flectance component. SVID will help to build video algorithms
with light interference suppression and improve the effective-
ness of the related algorithms. SVID will also help to analyze
and extract the static components of satellite videos.

Gao et al. [97] proposed the first SVID algorithm to extract
reflectance and shadow information from satellite video scenes,
including stable static and sparse dynamic components, respec-
tively. First, the satellite video information is divided into four
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components: the intrinsic reflectance image of the static scene,
the sparse dynamic reflectance video, the shadow image of the
static scene, and the sparse dynamic shadow video. Second,
based on the above signal composition, the satellite video is
decomposed into intrinsic information for the invariance of the
scene and background. Although the algorithm can achieve the
intrinsic decomposition of satellite video, it cannot yet achieve
real-time processing for remote sensing satellite video with large
scenes and cannot extract the intrinsic information of contin-
uous shadow regions; and for some smaller dark objects, the
algorithm has limited improvement for the subsequent tracking
steps; meanwhile, the algorithm does not have good theoretical
processing capability for videos with severe platform vibration.
Pan et al. [98] proposed a satellite video intrinsic decomposition
model MTE-ISVD with moving object energy constraint to
maintain the temporal coherence of reflectivity and improve the
performance of moving objects. MTE-ISVD has four reasonable
constraints: retinex local constraint, absolute scale constraint,
reflectivity time constraint, and moving object energy constraint.
Eventually, the SVID becomes a closed-form solution, and
its computational speed is relatively improved. However, the
experimental results of MTE-ISVD are very dependent on the
parameter settings, and the real-time processing of large scenes
is still difficult to achieve. According to the retinex theory, the
illumination requirements are uniform and slowly changing, and
MTE-ISVD has limited improvement on the highlight or shadow
regions.

V. PUBLIC DATASETS AND EXPERIMENTAL RESULTS

A. Introduction to the Dataset

The field of satellite video is still in the development stage,
and the available public datasets are relatively small and not
comprehensive. Introduction to publicly available datasets is
shown in Table IV. There are four publicly available datasets,
all from Jilin-1, for detection, tracking, and super-resolution
missions, respectively. The VISO dataset, proposed by the
National University of Defence Technology in 2021, has four
categories: aircraft, vehicles, ships, and trains. VISO is derived
from 47 video segments, mainly for detection, SOT, and MOT
tasks (https://satvideodt.github.io/). The SatSOT dataset was
proposed in 2022 by the Space Applications Engineering and
Technology Centre of the Chinese Academy of Sciences (CAS)
for SOT missions, containing four categories, i.e., aircraft, ships,
trains, and cars, and derived from 105 video segments. The
dataset is publicly available and can be downloaded at http:
//www.csu.cas.cn/gb/jggk/kybm/sjlyzx/gcxx_sjj/sjj_wxxl/.

The Air-MOT dataset, proposed in 2022 by the Institute
of Air and Space Information Innovation, CAS, contains both
aircraft and ships and is mainly used for MOT missions (https:
//github.com/HeQibin/TGraM). Jilin-189 is a dataset proposed
by Wuhan University in 2022 for super-resolution research.
There are no publicly available datasets in the segmentation and
scene classification field. Examples of these datasets are shown
in Figs. 13–16 (https://github.com/XY-boy/MSDTGP).

Recently, the Space Applications Center of CAS has proposed
a large-scale multimission satellite video benchmark dataset

Fig. 13. Example data of SatSOT [99].

Fig. 14. Example data of VISO [18].

Fig. 15. Example data of AIR-MOT [58].

https://satvideodt.github.io/
http://www.csu.cas.cn/gb/jggk/kybm/sjlyzx/gcxx_sjj/sjj_wxxl/
http://www.csu.cas.cn/gb/jggk/kybm/sjlyzx/gcxx_sjj/sjj_wxxl/
https://github.com/HeQibin/TGraM
https://github.com/HeQibin/TGraM
https://github.com/XY-boy/MSDTGP
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Fig. 16. Example data of Jilin-189 [89].

TABLE V
VOLUME STATISTICS OF SAT-MTB

SAT-MTB, which contains 249 content-rich video scenes with
12 fine-grained categories of objects, including aircraft, ships,
cars, and trains, covering object tracking, detection, and seg-
mentation tasks [100]. The details of SAT-MTB are shown
in Table V. Example data of SAT-MTB is shown in 17. The
dataset is publicly available at http://www.csu.cas.cn/gb/kybm/
sjlyzx/gcxx_sjj/sjj_wxxl/. Based on the proposed SAT-MTB,
Li et al. [100] presented a comprehensive and adequate com-
parison of benchmark methods on detection, segmentation, and
tracking tasks.

B. Evaluation Metrics

This section addresses the evaluation metrics corresponding
to satellite video object tracking, object detection, and super-
resolution.

1) Single-Object Tracking: One-Pass Evaluation (OPE)
evaluation criteria include precision plot and success plot. The
precision plot shows the percentage of tracking results under a
given center location error threshold. The success plot shows the
percentage of tracking results with intersection over union (IoU)
greater than the given threshold. The tracker is initialized with
the given object in the first frame and evaluated on successive
frames without resetting.

Fig. 17. Example data of SAT-MTB [100].

Expected Average Overlap (EAO) evaluation criteria include
accuracy (A), robustness (R), and EAO. Accuracy is the average
overlap (AO) between the true value and the predicted bounding
box during successful tracking, equivalent to the success score
calculated in the OPE metric. Robustness counts the number
of times the tracker loses the object during tracking. EAO is the
AO estimate for a large number of short-term sequences. During
the evaluation, the tracker is reset each time there is no overlap
between the predicted bounding box and the true value. And the
FPS metric refers to the frame rate at which the algorithm runs
and measures the speed of the algorithm.

2) Multiobject Tracking: Multiobject tracking accuracy
(MOTA) assesses tracking accuracy, which combines false posi-
tives (FPs), false negatives (FNs), and IDs. Multiobject tracking
precision measures the tracker’s precision in estimating object
position. Mostly tracked trajectories, partially tracked trajecto-
ries, and mostly lost trajectories are used to measure the quality
of the tracked trajectory. IDF1 indicates the tracker’s recogni-
tion performance, which balances identification precision and
identification recall by harmonic average. MOTA focuses more
on detection performance, while IDF1 is an important measure
for long-term tracking. The FPS is also used in MOT to measure
the speed.

3) Object Detection: Object detection is usually evaluated
using the Pascal VOC evaluation criteria: mean average preci-
sion (mAP). The mAP is obtained by calculating the average
precision (AP) for all the classes and averaging them. The AP
represents the area under the precision–recall curve. The larger
area means more accurate detection. The recall and precision

http://www.csu.cas.cn/gb/kybm/sjlyzx/gcxx_sjj/sjj_wxxl/
http://www.csu.cas.cn/gb/kybm/sjlyzx/gcxx_sjj/sjj_wxxl/
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are calculated as follows:

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)

where true positive (TP) represents the number of correctly
detected objects, FN represents the number of missed objects,
and FP is the number of false predictions. Whether a prediction
object is correctly detected is determined by calculating the IoU
ratio between the prediction and the ground truth. The prediction
objects with greater IoU than the particular threshold is correctly
detected, and vice versa. The AP and mAP obtained at different
IoU thresholds are also different. For example, the AP and mAP
obtained at a threshold of IoU = 0.5 are usually expressed as
AP50 and mAP50.

4) Super-Resolution: In the field of super-resolution, the
most commonly used evaluating metrics with reference images
are peak signal-to-noise ratio (PSNR) and structure similar-
ity index measure (SSIM). The PSNR is based on the mean
square error (MSE) and measures the ratio of the maximum
possible signal power to the noise power. SSIM measures
the similarity of the images based on a perceptual model.
Both the metrics represent better super-resolution with higher
values.

For image X and Y with m× n size, the MSE and PSNR are
calculated as follows:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[X(i, j)− Y (i, j)]2 (3)

PSNR = 10 · log10

(
MAX2

MSE

)
(4)

where MAX is the maximum of image pixel.
The formula of SSIM used in engineering is

SSIM =
(2μXμY + c1)(2σXY + c2)

(μ2
X + μ2

Y + c1)(σ2
X + σ2

Y + c2)
(5)

where μX and μY are the average of X and Y . σX and σY are
the standard deviation of X and Y . σXY is the covariance of X
and Y . c1 and c2 are constants. Natural image quality evaluator
is more commonly used for blind super-resolution, which does
not require a reference image and is more in line with human
visual habits. It constructs a series of features that measure image
quality and calculates the difference in the distribution of images.
The lower the value, the better the image quality.

C. Experimental Results

1) Single/Multiobject Tracking: Previous research has
shown that several datasets for satellite video object tracking
exist to provide a fair and standardized assessment of object
tracking algorithms. The SatSOT dataset released in 2022 by
the Space Applications Center of CAS [99] is a dataset that
focuses on satellite video SOT. It contains 105 video sequences
from three commercial satellite sources: Jilin-1, Skybox, and
Carbonite-2. The dataset contains aircraft, cars, boats, and

Fig. 18. Tracking speed using GPU (FPS) of each tracker on SatSOT and
VISO.

trains with a video frame rate of 10 or 25 FPS and a total of
27 664 frames. The results of the experiments on the classic
methods ATOM [31], DCFNet [101], DiMP [32], ECO [30],
MDNet [33], SiamFC [29], SiamRPN [102], SiamRPN++ [28],
STARK [103], and GlobalTrack [104] are shown in Fig. 18.

The VISO [18] dataset, released by the National University of
Defense Technology in 2021, is a large-scale dataset for moving
object detection and tracking in satellite video. For the SOT task,
the dataset provides 3159 video sequences. For the MOT task,
the dataset collected 47 video segments captured by the Jilin-1
satellite, containing 3711 individual example objects, including
aircraft, cars, ships, and trains. Each full scene in VISO has a
resolution of 12 000 × 5000 pixels and contains a large number
of objects at different scales, and the video has a frame rate of 10
FPS. The data organization corresponding to the detection task
is also provided in VISO, with 1 646 038 annotated instances.
The dataset is only annotated with objects in motion in the video,
and over 90% of the instances are vehicles.

Over the past few years, several benchmarks have been devel-
oped for satellite video. Generally, DSFNet [54] and CFME [40]
are for object detection and SOT, respectively. DeepSORT [105]
is generally chosen as the benchmark for MOT. Table VI shows
these benchmark experimental results on SatSOT and VISO.

AIR-MOT [58], released in 2022 by the Institute of Air
and Space Information of the CAS, contains a total of ten
complete scenes and 149 videos collected by the Jilin-1 satel-
lite. The dataset has 5736 instances labeled using axis-aligned
bounding boxes and contains aircraft and ships. Each video
has a frame rate of 5–10 FPS and a resolution of 1920 ×
1080 pixels. Test accuracy of different MOT algorithms (e.g.,
DeepSORT [105], RAN [106], HOGM [107], DAN [108],
Tracktor+CTdet [109], CKDNet+SMTNet [53], TubeTK [110],
CTracker [111], JDE [56], UMA [112], CenterTrack [55],
GSDT [113], FairMOT [57], TraDeS [114], and TGraM [58])
on AIR-MOT is shown in Fig. 19.

2) Super-Resolution: The majority of satellite VSR datasets
were constructed from videos captured by the Jilin-1 and OVS-1
satellites. Still, only a few are publicly available, and there is a
lack of widely used publicly available datasets.

Xiao et al. [89] provided a publicly available satellite VSR
dataset Jilin-189, which consists of ten Jilin-1 videos cropped
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TABLE VI
PRECISION AND SUCCESS OF OPE ON SATSOT AND VISO

Fig. 19. Test accuracy of different methods on AIR-MOT.

Fig. 20. Speed and performance comparison on the Jilin-189.

and divided into 189 training sets and ten test sets, each with 640
× 640 resolution and 100 frames in length, and its low-resolution
videos are obtained by quadruple downsampling through Bicu-
bic. Fig. 20 shows the performance of some VSR methods on
the Jilin-189 dataset, where SOF-VSR [115] and EDVR-L [78]
have the fastest speed and RBPN [116] is the slowest. SOF-VSR,
EDVR-L, MSDTGP [81], and RBPN all have good accuracy,
while TDAN [117] and DUF [118] perform poorly on this
task, with MSDTGP being the most balanced, with a PSNR
of 35.71 dB, achieving the highest accuracy while having good
speed.

VI. TYPICAL APPLICATION SCENARIOS

The development of video satellite technology has led to
an increasingly wide range of applications in traffic detection
density estimation, scene monitoring, automatic 3-D model
construction, global change research, and disaster monitoring.
This section introduces the typical applications of satellite video

Fig. 21. Jilin-1 satellite video multiobjective dynamic monitoring heat
map [119].

Fig. 22. Jilin-1 satellite video traffic flow statistics analysis [120].

Fig. 23. Example of monitoring of Zondervoort Correctional Center [120].

in traffic detection density estimation, scene monitoring, and
automatic 3-D model construction.
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Fig. 24. Left: Jilin-1 video satellite image single frame and digital surface
model. Right: Image single frame and digital surface model building partial
Automatic construction of 3-D models of Jilin-1 video satellite images [121].

Fig. 25. Oil spill and fire incident monitoring [122].

A. Traffic Detection Density Estimation

Using the high-resolution satellite video, Jilin-1, the motor
vehicles driving on the traffic road within the satellite video are
detected, and their geographical location and semantic features
are obtained. At the same time, multiple motor vehicles driving
in the traffic road within the satellite video are tracked, and
their dynamic information, such as motion object, direction,
trajectory, and speed, is extracted and analyzed to generate a
video and heat map. Using the video data returned by the Jilin-1
video satellite in real time, the moving vehicles in the video can
be automatically detected, tracked, and located. According to
the detection results, the traffic heat map, traffic flow statistics
map, and the video analyzing the vehicles’ motion postures are
generated, thus realizing intelligent analysis of road condition
information and traffic flow information, reducing human cost,
and realizing the intelligent transportation system. Fig. 21 shows
the Jilin-1 satellite video multiobjective dynamic monitoring
heat map.

B. Scene Monitoring

By planning the operation sequence and operation time of
the satellites, the Carbonite series satellites can achieve multiple
visits to a specific earth location during the time of day, allowing
for uninterrupted monitoring of regional hot spots, as well as the
detection of changes in hot-spot areas using uninterrupted mon-
itoring video synthesized from multiple satellites. Fig. 22 shows
the Jilin-1 satellite video traffic flow statistics analysis. Fig. 23
shows an example of monitoring of Zondervoort Correctional
Center.

C. Automatic Construction of 3-D Models

Through absolute orientation and image stabilization process-
ing of satellite video, the matching success rate is improved using
multiview stereo matching, giving faith to generating dense
matching results of the same name image points and forming
digital surface models through the rendezvous of images to
realize the automatic construction of ground 3-D models. Fig. 24
shows the automatic construction of 3-D models of Jilin-1 video
satellite images.

D. Incident and Disaster Response

The time-continuous nature of video satellite observation of
the earth makes it useful for many emergency and disaster re-
sponse applications. When natural disasters such as earthquakes,
tsunamis, typhoons, and forest fires occur, satellite video can
help locate the disaster’s location quickly, support subsequent
rescue, and help disaster relief departments make quick de-
cisions. In significant accidents, such as city fires, hazardous
materials explosions, offshore oil leaks, and other occurrences,
satellite video can not only help determine the level of the
accident and assist firefighters to rescue but also provide a
solid basis for the post-accident analysis of the cause of the
accident and find the party responsible for the accident, while
also providing experience in the prevention of similar accidents.
The image above is an example of an image sequence taken
by the PlanetScope series of satellites, a time series of images
taken in 2018 in Balikpapan Bay, Indonesia, monitoring an oil
spill fire event in the area, and providing assistance in locating
and tracking oil slicks, locating oil spill vessels, and future
accident prevention. Fig. 25 shows the oil spill and fire incident
monitoring.

E. Land Space Use Regulation

Land space use regulation regulates the sustainable use of
natural resource carriers based on spatial use, development, and
utilization restrictions determined by land space planning. Geo-
logical environment disaster prevention and mitigation, ecolog-
ical restoration, and law enforcement supervision belong to the
land space use supervision field, while the object identification
of the above application scenarios mainly relies on manual image
interpretation and field investigation.

DL-based object detection technology can accurately identify
all the object categories and scenes of interest in satellite images
and quickly determine their locations and sizes. It can accurately
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identify multiple natural resource objects and scene categories
and assist in land space use control, ecological restoration,
geological disaster control, and law enforcement inspection
by determining the locations and interrelationships of crucial
natural resource objects [123].

F. Maritime Vessel Situational Awareness

China has a vast marine area and rich marine resources, and
it is of great strategic significance to strengthen the rational
use of resources for the development of China. Maritime ship
situational awareness is an essential maritime safety and security
research direction. It senses the ship itself and the surrounding
environmental factors through intelligent analysis technology
and then understands and analyzes the sensed situational ele-
ments to make predictions on the movement trend of the ship
to avoid maritime accidents. Traditional maritime navigation
safety assurance usually relies on commanders to make a judg-
ment with the assistance of AIS, radar, and remote sensing
images with high labor costs.

As intelligent information processing technology is widely
used in navigation safety, the DL-based technology of com-
puter vision scene analysis plays a crucial role in maritime
ship situational awareness tasks such as ship detection and
heading prediction. The team of Hainan University designed
a multitasking panoramic ship situational awareness intelligent
model integrating ship detection, sea, land segmentation, and
heading prediction, which can predict the driving status and
movement trend of ships under different weather conditions. It
developed a panoramic marine ship situational awareness system
to realize accurate sensing of ship situational and surrounding
environment situational and other elements and assist navigation
commanders in making more accurate, reasonable, and fast
decisions. The actual application of maritime ship situational
awareness can achieve an accuracy of not less than 90% at 12
FPS [124].

VII. FUTURE OUTLOOK

It should be emphasized that it is necessary to consider the
practical application requirements of remote sensing scenarios
and the unique properties of the targets of interest in satellite
video. For example, most targets are rigid bodies; problems
of deformation, occlusion, and scale transformation are not
common; and problems of small target occupancy and sparse
temporal information are more common.

Based on the above analysis, this section proposes some un-
solved tasks and future possible development directions, hoping
to provide some ideas and inspiration for researchers to jointly
promote the innovative development of satellite video intelligent
processing direction. The details are as follows.

1) Establishing satellite video datasets for multiple tasks and
unifying annotation formats: In the field of satellite video,
although some datasets have been constructed for various
research tasks, they are oriented to fewer task categories
and cannot meet the needs of multiple satellite video tasks.
Moreover, the available data sources of satellite video are
limited, and constructing a dataset only for a single task

cannot fully utilize the existing satellite video data. At the
same time, the existing satellite video public datasets have
low category richness, nonuniform annotation format, and
a large gap in the number of annotations compared with
image-based datasets, so it is crucial to building a large-
scale satellite video dataset with rich object categories and
uniform annotation format that integrates multiple tasks
for future research in various satellite video tasks.

2) Enhancing the robustness of the algorithm and improving
the upper limit of the satellite video task in practical
applications: In practical scenarios, due to factors such as
lighting changes, cloud occlusion, and different geograph-
ical locations of satellite photography, satellite video has
problems such as complex background environment and
unstable video quality, which seriously affect the accuracy
of the satellite video processing algorithm. At the same
time, the labeling noise brought by the imaging quality
and manual labeling errors also makes the algorithm easily
interfered with by irrelevant noise features. Therefore,
how to improve the robustness of algorithm learning from
coarse labeled samples is an urgent problem for each task
algorithm in the satellite video field.

3) Few-sample and zero-sample learning: The existing algo-
rithms usually define small samples as hundreds of labeled
samples. This experimental setup may sometimes be un-
realistic. On the one hand, satellite video data are harder to
obtain and smaller in amount compared to general-purpose
video data. On the other hand, there is a large gap between
the number of training samples required by algorithms
and practical applications in the existing satellite video
datasets, where some categories have only a few videos.
Therefore, with the need to reduce the training samples
for video understanding, less and zero-sample learning
applicable to the satellite video domain is a promising
direction.

4) Weakly supervised and unsupervised learning: In the
field of satellite video, the leading algorithms are still
supervised algorithms based on a large amount of fully
labeled data, which are more effective but require the
use of datasets that take a lot of time and manpower to
label, and the small size of the objects in satellite video
data can cause a great burden for labelers when per-
forming data labeling for tasks with intensive prediction
requirements such as segmentation. Meanwhile, the small
size of objects in satellite video data can cause a great
burden to the annotators when annotating data for tasks
with intensive prediction needs, such as segmentation, and
affect the accuracy of annotation. At the same time, the
fine-grained annotation of objects also requires a lot of
reliance on the empirical knowledge of experts. Therefore,
weakly supervised learning and unsupervised learning
methods that require little manpower for annotation are
one of the future directions for each task of satellite
video.

5) Using multimodal satellite video data to achieve multi-
modal fusion of data and cross-modal migration of mod-
els: With the development of in-orbit technology, more
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and more video satellites can support other modal video
capture besides visible videos, such as SAR video, infrared
video, etc. The learning of multimodal data can make
up for the deficiencies of models in feature extraction
completeness and resistance to noise; different modal
data complement each other. Most current satellite video
algorithms are only applicable to a single modality and
cannot migrate to other modalities, so multimodal data
fusion and cross-modal model migration is a research
direction for satellite video algorithms for each task, which
is important to achieve multidimensional satellite video
understanding [122].

VIII. CONCLUSION

Intelligent processing of satellite video has made rapid de-
velopment in the past decade. For different demands, satel-
lite video intelligent processing has derived more and more
task directions, especially object tracking, object detection, and
super-resolution, the three most popular directions. This article
introduced and summarized the latest progress in the field of
intelligent processing of satellite video, including the existing
challenges, existing methods, and relevant application scenarios.
First, we quantitatively and statistically analyzed the relevant
research results on the topic of satellite video intelligence pro-
cessing, conducted statistical analysis on the distribution of the
year of publication, journal distribution, and task-specific direc-
tion distribution of articles on the topic of satellite video, and
showed the keyword hot-spot distribution and development trend
in this field. Then, this article introduced the research progress
and methodological systems for satellite video object tracking
and motion estimation, satellite video object detection, satellite
VSR, satellite VOS, and scene classification tasks. Next, to make
a fair comparison of the performance of existing methods, we
investigated the existing public datasets under different tasks
and compared the experimental results of different methods on
each dataset. Furthermore, this article introduced the typical
application scenarios of satellite video intelligent processing
in real life. Finally, taking into account the current challenges
and practical needs in this field, this article discussed several
promising directions that can be explored and studied.
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