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A Rigorously-Incremental Spatiotemporal Data
Fusion Method for Fusing Remote Sensing Images
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Abstract—The spatiotemporal remote sensing images have sig-
nificant importance in forest ecological monitoring, forest carbon
management, and other related fields. Spatiotemporal data fusion
technology of remote sensing images combines high spatiotempo-
ral and high temporal resolution images to address the current
limitation of single sensors in obtaining high spatiotemporal reso-
lution. This technology has gained widespread attention in recent
years. However, the current models still exhibit some shortcom-
ings in dealing with land cover changes, such as poor cluster-
ing results, inaccurate incremental spatiotemporal calculations,
and sensor differences. In this article, we propose a rigorously-
incremental spatiotemporal data fusion method for fusing remote
sensing images with different resolutions to address the aforemen-
tioned problems. The proposed method utilizes the particle swarm
optimization Gaussian mixture model to extract endmembers and
establishes a linear relationship between sensors to obtain accurate
time increments. Furthermore, bicubic interpolation is used instead
of thin plate spline interpolation for spatial interpolation, and also
support vector regression is used to calculate weights for obtaining
a weighted sum of temporal and spatial increments. In addition,
sensor errors are allocated to the calculation of residuals. The
experimental results show the efficacy of the proposed algorithm
for fusing fine image Landsat with coarse image MODIS data and
conclude that the proposed algorithm presents a better solution for
heterogeneous data with strong phenological changes and regions
with changes in surface types, which provides a better solution for
remote sensing image fusion and, hence, improves the accuracy,
stability, and robustness of data fusion.
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I. INTRODUCTION

FORESTS, as the largest carbon pool in terrestrial ecosys-
tems, have the characteristics of wide distribution and di-

verse types [1]. Therefore, accurate and comprehensive forest re-
source monitoring is significant for maintaining the ecosystem’s
capacity, but it also faces significant technical challenges [2],
[3], [4]. With the high development of satellite sensors in the
last decades, remote sensing images have provided a powerful
technical support for the dynamic monitoring of large-scale
forest resources and accurate forest observation data [5] and have
introduced many advantages such as wide coverage and high
precision [6], [7]. However, due to hardware and technological
limitations of sensors, a single-satellite product cannot obtain
remote sensing images with both high temporal and high spatial
resolution at the same time [8]. The emergence of spatiotemporal
fusion technology provides an effective solution for processing
remote sensing images [9].

The spatiotemporal fusion algorithm for remote sensing im-
ages has been developed since the 1990s and has made a sig-
nificant progress in the past decade [10]. The core idea behind
spatiotemporal fusion is to fuse remote sensing images from
multiple sensors to compensate their respective shortcomings
and generate high spatiotemporal resolution remote sensing
images [11], as illustrated in Fig. 1. For example, the reflectivity
images obtained by Landsat series, advanced land observation
satellite (ALOS), and GF series satellites have a good spatial
resolution of 3–30 m [12]. However, these images require long
satellite revisit cycles. The natural obscuration of clouds and
complex terrain limits the variety of high spatial resolution im-
ages in terms of fast surface features (these images are referred as
“fine images” in this article). While satellites such as moderate-
resolution imaging spectroradiometer (MODIS) have a revisit
time of one day (these images are referred as “coarse images”
in this article), and their spatial resolution is low, from 250 m
to 1 km, which cannot capture spatial details [13]. Therefore,
generating a remote sensing image with a resolution of 30 m
and a revisit period of 1 day by fusing fine and coarse images
can improve data accuracy, completeness, and timeliness. This
provides a reliable data support for accurately describing and
simulating changes on the Earth’s surface [14].
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Fig. 1. Schematic diagram of spatiotemporal fusion. TB stands for the base
date, and TP stands for the prediction date.

The traditional spatiotemporal fusion algorithms predomi-
nantly fall into three categories: 1) weight-based, 2) spectral-
unmixing-based, and 3) learning-based. The weight-based and
spectral-unmixing-based are two categories of the first spa-
tiotemporal fusion algorithm [15]. The weight-based meth-
ods calculate changes in surface emissivity by weighing
the pixel values of remote sensing images to predict corre-
sponding time images [16]. Typical-weight-based methods in-
clude the SpatioTemporal Adaptive Reflectance Fusion Model
(STARFM) [17], Enhanced STARFM (ESTARFM) [18], Fit-
FC [19], among others. These methods improve the accuracy of
the weighted spatiotemporal fusion algorithm, and they work
efficiently in homogeneous areas without requiring external
data support while also having high fusion efficiency. How-
ever, they do not perform well in heterogeneous areas and
have poor details in reconstructed images [20], [21]. Whereas
the spectral unmixing based on mixed pixel decomposition is
proposed to predict unknown fine images by spectral separation
and endmember abundance calculation of coarse images [22],
[23], [24]. However, a significant disadvantage of this method
is that it is carried out under the assumption that the land
type does not change, which cannot meet the occurrence of
sudden events. On the other hand, learning-based spatiotemporal
fusion algorithms are trained using existing datasets and treat
the prediction of high-resolution images as the generation of su-
pervised superresolution images [25], [26], [27]. Deep-learning-
based methods have powerful feature extraction capabilities, and
models such as the deep convolutional spatiotemporal fusion
network [28] and depth networks based on spatiotemporal data
fusion [29] have improved the accuracy of spatiotemporal
fusion by optimizing the network and loss function. However,
most deep-learning-based models are trained based on ideal-
ized datasets, which require at least three pairs of images as
input [30]. This ignores the difficulty of obtaining ideal data in
realistic studies due to weather and cloudiness. Furthermore,
in impact fusion, the architecture and loss functions should
be fully applied in the algorithm, which is computationally
intensive [31].

To address the deficiencies mentioned above in spatiotem-
poral fusion algorithms, researchers have started to combine
and optimize existing algorithms to enhance their generality by
integrating the advantages of two or more models. Better results
have been achieved in heterogeneous regions and regions with
sudden changes in land type [32]. Zhu et al. [33] proposed a Flex-
ible Spatiotemporal DAta Fusion (FSDAF) algorithm. FSDAF
combines STARFM [17] and the unmixing-based data fusion
[34] algorithms and integrates thin plate spline (TPS). Compared

to other spatiotemporal fusion algorithms, FSDAF only requires
the input of one pair of fine and coarse images at TB and the
coarse images at the moment of TP , which reduces the input
data needed [35]. FSDAF also performs well in heterogeneous
data, as it can capture more information on physical changes
in coarse images and has a high fusion accuracy. Recently,
several improved models based on FSDAF have been devel-
oped. For instance, Improved Flexible Spatiotemporal DAta
Fusion (IFSDAF) [36], which predicts the normalized difference
vegetation index (NDVI); subpixel class fraction-based flexible
spatiotemporal data fusion [37], which extracts endmember
abundance based on subpixel information that consequently
improves the accuracy of heterogeneous data prediction; FSDAF
2.0 [38], which solves the problem of boundary pixel mixing and
effectively restores land cover changes; and object-based spa-
tiotemporal fusion model [39] which combines nonpixel-based
image segmentation with a weighting function that achieves
good results in homogeneous physical changes. Like FSDAF, all
the aforementioned algorithms assume that there is no change
in land cover type during the temporal prediction phase and
calculate the change in fine images directly from the coarse
image change. However, this approach leads to bias in the
prediction results [40], [41].

In conclusion, the hybrid spatiotemporal data fusion model
has proven to be effective in dealing with land cover changes
and has become the mainstream approach for remote sensing
image fusion. It has been successfully applied in various fields
such as land surface temperature monitoring [42], [43], vegeta-
tion coverage detection [44], [45], and forest resource change
monitoring [46]. These applications demonstrate the potential
of hybrid algorithms in addressing practical problems in remote
sensing.

Currently, the hybrid spatiotemporal fusion algorithm, repre-
sented by FSDAF, still exhibits some shortcomings, which can
be classified into the following aspects.

1) In terms of temporal change dimension: Spectral un-
mixing can roughly preserve the surface cover structure.
However, poor clustering results due to randomly selected
initial values in the clustering algorithm can seriously af-
fect the accuracy of mixed image element decomposition,
leading to reduced prediction accuracy and stability of
the model. Additionally, this method tends to ignore the
details inside the image. The predicted time of FSDAF as-
sumes that there is no land type change occurring between
TB and TP , and also the change of each end element is
the same in the coarse resolution image. However, this
assumption can introduce a great uncertainty to the time
prediction.

2) In terms of spatial variation dimension: The rapid growth
of forest crops and human activities can cause significant
spectral changes on the surface. TPS interpolators are
commonly used in FSDAF and some existing algorithms
can perform well in homogeneous regions. However, their
interpolation results are often too smooth in heteroge-
neous regions, which ignores important spatial details.
Additionally, the assumption that fusion errors come from
homogeneous landscapes in FSDAF lacks the theoretical
basis.
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3) In terms of sensor differences: Existing spatiotemporal
fusion algorithms do not fully consider the differences
between sensors in fine and coarse images and their impact
on fusion. This issue has attracted many scholars’ atten-
tion, and a linear model has been developed to address the
problem of sensor differences between two sensors [47].
However, this solution does not completely solve the
problem of alignment errors.

To deal with the above difficulties and problems, this ar-
ticle proposes a rigorously-incremental spatiotemporal data
fusion (RISDAF) method for fusing remote sensing images
with different resolutions, which is verified by the fusion of
fine images and coarse image. The proposed algorithm pro-
vides a better solution for heterogeneous data with strong phe-
nological changes and areas with changes in surface types.
Moreover, the proposed algorithm exhibits good stability and
robustness.

In this article, Landsat and MODIS data are adopted as fine
and coarse images, respectively. The main contributions of this
work are concluded as follows.

1) To address the issue of inaccurate prediction of temporal
changes, we use a particle swarm optimized Gaussian
mixture model for end element extraction called parti-
cle swarm optimization Gaussian mixture model (PSO-
GMM). This method overcomes problems associated with
poor clusterings, such as unbalanced samples and non-
cylindrical data, and improves the accuracy and adaptabil-
ity of mixed image element decomposition. Additionally,
the linear regression algorithm is used to correct sensor er-
rors. Furthermore, the difference between fine and coarse
pixels is standardized when allocating time changes to fine
pixels.

2 To overcome the issue of inaccurate prediction of spatial
changes, we use bicubic interpolation for spatial interpo-
lation instead of TPS interpolation, which is commonly
used for spatial prediction. This method preserves the
connectedness of spatial increments and improves compu-
tational speed, scalability, and smoothness. Furthermore,
the article does not incorporate temporal and spatial pre-
diction results directly into the computational process.
Rather, a weighting algorithm is employed to combine the
weights of temporal and spatial increments. These weights
are calculated via the support vector regression (SVR)
algorithm, which enhances the robustness and accuracy
of data fusion.

3) To resolve the issue of sensor errors, this article introduces
sensor errors into the residuals and assigns them to each
fine pixel. This correction improves the spatial distribution
of image fusion results for reliability and reduces the
impact of sensor errors on image fusion.

The rest of this article is organized as follows. Section II
presents the specific architecture and implementation process
of the proposed algorithm RISDAF. Section III describes the
dataset and experimental settings, while Section IV presents
the experimental results and analysis. Section V provides a
discussion and shows some necessary intermediate experimental
results during the experiments. Finally, Section V concludes this
article.

II. METHODS

The proposed RISDAF algorithm takes the coarse and fine
images at the TB moment and the coarse image at the TP time
as inputs to predict the fine image at the TP time. Here, TB

and TP represent the base date and predicted date, respectively.
The proposed model aims to address the following problems:
inaccurate endmember division in unsupervised classification
during the spectral unmixing process, the accuracy deviation
of fusion results caused by sensor errors, and the difference in
spectral changes caused by strong spatial changes. The overall
idea can be summarized as shown in (1). The fine image pixel
value FP at the moment TP equals the sum of the fine image
pixel value FB at the moment TB , the increment ΔFST and the
residual ε is

FP = FB +ΔFST + ε. (1)

The proposed model can be divided into four main steps as
follows. The first step is the temporal prediction based on
spectral unmixing. The second step is the spatial variation based
on land cover combined with the temporal prediction results by
a weighting algorithm. The third step is the residual correction
that enhances the fusion accuracy by introducing the residual
ri and sensor error re. Finally, the last step is the enhanced
neighborhood prediction by spatial filtering. Fig. 2 shows the
flowchart of the proposed RISDAF.

A. Temporal Increment Prediction Based on Spectral
Unmixing

1) Mixed Pixel Decomposition Based on PSO-GMM: The
spectral unmixing of remote sensing images acquired by land
satellites is a challenging task due to multiple surface hetero-
geneous coverage types within a single pixel. In this regard,
we perform endmember determination and image boundary
extraction on the fine image at TB prior to spectral unmix-
ing. However, traditional clustering algorithms used in spectral
unmixing suffer from poor stability and sensitivity to cluster
center selection. To address this issue, the proposed approach
utilizes a PSO-GMM to extract endmembers. The PSO algo-
rithm optimizes the objective function in GMM clustering while
adjusting the position pbesti = (pi1, pi2, . . . , piD) and velocity
νi = (νi1, νi2, . . . , νiD) of each particle by t iterations to ensure
convergence of the algorithm within a certain range. PSO-GMM
addresses the problem of poor clustering for unbalanced sam-
ples and noncylindrical data, which are the most challenging
tasks for the traditional clustering algorithms such as ISODATA
and K-means algorithms. Using PSO-GMM to decompose the
surface reflectance, the endmember hard classification map is
generated, and the abundance value of each endmember is
calculated for each fine pixel. This method reduces the problem
of poor clustering results caused by the random selection of
initial values in the GMM clustering algorithm and improves
the accuracy of endmember extraction. The abundance value of
each endmember is expressed as shown in

AB
C (xi, yi) = NC (xi, yi) /k (2)
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Fig. 2. Flowchart of the proposed RISDAF method.

where NC(xi, yi) is the number of fine pixels belonging to m
class at the coarse pixel (xi, yi), and k is the number of fine
pixels in a coarse pixel.

The RISDAF algorithm assumes that the land type remains
unchangeable during the time prediction period. Based on the
mixed pixel theory, we assume that the pixel value of the image
is a linear combination of the endmember values and their cor-
responding abundances. Therefore, the pixel values of Landsat
and MODIS at TB can be expressed as

FB (xij , yij , b) =

n∑
m=1

AB
F (xij , yij ,m)× EB

F (m, b) + ϕ

(3)

CB (xi, yi,, b) =
1

k

1∑
i=1

FB (xij , yij , b) (4)

where b represents the band b, n represents the endmembers
of the fine image at TP , m represents the mth endmember
according to the linear mixed model.A represents the abundance
value of the endmember, E represents the reflectivity of each
endmember, and k represents a coarse-resolution pixel contain-
ing k fine-resolution pixels. As shown in the following equation,
in the mixed pixel decomposition, the time change of the coarse
pixel is the weighted sum of all the category changes that it
contains:

CB =
1

k

n∑
m=1

AB
F (xij , yij , b)× EB

F (m, b) + ϕ. (5)

2) Adjust the Differences of Sensors: Sensor errors can arise
from various sources, including the specific design of the sensor,
such as its bandwidth, imaging angle, and spectral response
function, among others. These errors can lead to nonuniform

reception of images that result in varying capabilities to capture
land surface information. Due to the inherent of sensor differ-
ences, errors are inevitable during the imaging stage. Therefore,
correcting the differences between the imaging of the two types
of sensors is crucial. In this article, we propose a linear model to
adjust the relationship between the two types of sensors, which
standardizes the differences and corrects the sensor errors, as
follows:

ΔEF (m, b) = a×ΔEC(m, b). (6)

3) Temporal Increment Prediction: In FSDAF, the time
change increment from TB to TP is assumed to be calculated
directly as the difference between the coarse images at the
two-time points, which can lead to significant uncertainty in
the time prediction results. To address this issue, we propose
to employ a subpixel-based approach for predicting the time of
fine images at TP . The proposed RISDAF algorithm assumes
that there is no change in land cover during the spatiotemporal
fusion process, which means that endmembers and abundances
of Landsat pixels remain constant. The time change from TB to
TP can then be calculated as follows:

ΔFT =

n∑
m=1

AB
F (xij , yij ,m)×ΔEF (m, b). (7)

Since A is only known in (7), the change in time cannot be
calculated. However, the time change of the coarse image can
be expressed as follows:

ΔCT =

n∑
m=1

AB
C (xij , yij ,m)×ΔEC(m, b). (8)

In this article, the SVR algorithm is selected instead of the tradi-
tional least squares method to solve for ΔEC , which improves
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the robustness of abnormal data. The preliminary results of the
time increment prediction can be shown as in

ΔT = ΔFT =

n∑
m=1

AB
F (xij , yij ,m)× a×ΔEC . (9)

B. Spatiotemporal Increment Prediction for Land Cover
Change at TP

If the land cover category within the coarse pixel scale under-
goes significant changes, it is demonstrated that the coarse image
contains information that can provide insight into the changes
in vegetation cover within the image. The incremental value of
spatial dependence can be estimated by interpolation as follows:

ΔS (xij , yij , b) = F I
P (xij , yij , b)− F I

B (xij , yij , b) . (10)

Therefore, the change information can be directly obtained.
However, previous studies have shown that the TPS interpolator
performs better in regions with similar characteristics but results
in oversmoothed interpolations in heterogeneous regions, disre-
garding important spatial details. To address this issue, we em-
ploy the bicubic interpolation method to interpolate the coarse
image at time TP to the fine scale, and hence obtaining spatial
prediction results for the time of TP . This method enhances the
information contained in the transition resolution image at TP

and also improves the accuracy of the spatial prediction results.
Since the temporal and spatial predictions are two separate

parts. The temporal prediction maximizes the spatial detail and
accuracy of remote sensing images but fails to capture the
overlay changes during the spectral unmixing. On the other hand,
the spatial prediction captures the overlay changes but ignores
the spatial details of the image. Therefore, the spatial prediction
results and temporal prediction results can be combined together
by a weighting algorithm to improve the robustness and accuracy
of the fusion algorithm. In this article, the SVR algorithm is used
to solve the optimal temporal and spatial incremental weights,
and the objective function of the weight increments can be
expressed as

(ω̂s, ω̂t) = argmin
1

2
‖W‖2 +Q

k∑
n=1

�ε

(
ΔCh − ˆΔCh

)
(11)

in which

ΔCh = ωs ×ΔCS
h + ωt ×ΔCT

h (12)

ωt = 1− ωs (13)

whereW represents the weights of the features,Q is the regular-
ization constant, and �ε is the sitar insensitive loss function. ωs

and ωt represent the weights of the spatial and temporal incre-
ments, respectively. Theoretically, the sum of these two weights
is 1. ΔCS

h , ΔCT
h , and ˆΔCh are the spatially relevant increment,

the temporally relevant increment and the true increment of the
hth coarse pixel, respectively. The final incremental weighted
sum of spatial and temporal increments is shown as

ΔFST (xij , yij , b) = ωs ×ΔS + ωt ×ΔT. (14)

C. Distribution of Residuals

Although the incremental combination ΔFST after the
weight distribution combination can capture the fine change
increment, there are still some errors. This calculation process is
similar to FSDAF, we introduce a residual between TB and the
predicted value TP , assuming that the residual R is related to
the heterogeneity between the images, and calculates the spatial
distribution of the pixel residual of the fine image between the
predicted value and the real pixel value. The specific calculation
process can be referred to (14)–(19) in FSDAF [33] and assign
the residual distribution to each fine pixel in the image to obtain
ri(xij , yij , b).

Strong temporal variations and errors between sensors can
also lead to differences in data during the fusion process. TPS
interpolation is used in FSDAF to guide the residual distribution
by applying the equilibrium index HI from the classification
map of fine images at TB , but when the land type at TP changes,
there will be a large error in the estimation of residuals. In this
article, we propose new residuals by combining the differences
that exist between sensors in the fusion process to address the
issue of strong temporal variations and errors between sensors.
In the calculation of time prediction results, the reflectivity of the
m-terminal element in the b-band at the TB moment, denoted as
EB

F (m, b), can be calculated from (15). However, the calculated
result is not the pixel value at the realTB moment and it is instead
denoted by EB′

F (m, b). A linear model is constructed between
these two values to calculate the error value formula of each
pixel as

EB
F (m, b) = d× EB

F
′(m, b) + ε (15)

Δσ = d× EB
F

′(m, b) + ε− EB
F

′(m, b). (16)

Since σ only calculates the difference between the two, it does
not consider the impact of its difference on the spatiotemporal
fusion results. Therefore, on this basis, this article proposes the
reliability distribution residual rq(xi, yi, b) under the Gaussian
distribution to normalize it as

rq (xi, yi, b) = 1− Δσ ×meanΔσ

2× stddvΔσ ×meanΔC
(17)

where mean represents the standard deviation of the data and
stddv represents the standard deviation, to ensure that the
residual is within a reasonable range. Assigning it to the fine
pixels results in re(xij , yij , b). Ultimately, the overall residuals
assigned to each fine pixel are expressed by R(xij , yij , b) as

R (xij , yij , b) = ri (xij , yij , b) + re (xij , yij , b) . (18)

D. Spatial Filtering Based on Sliding Window

Due to spectral discontinuity at the boundary of low spatial
resolution pixels, there is a blocking effect when the image is
mixed, resulting in a loss of spatial details. Therefore, spatial
filtering is used to mitigate this problem and achieve fine image
prediction at TP . In spatial filtering, pixels with similar spectral
and land cover information are considered to be similar pixels. In
the sliding window, up to v adjacent pixels with similar spectra
are selected for each target fine pixel based on spectral distance.
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Fig. 3. Test data for Landsat and real MODIS imagery for a heterogeneous landscape. (a) MODIS image acquired on November 25, 2001. (b) MODIS image
acquired on January 12, 2002. (c) Landsat image acquired on November 25, 2001. (d) Landsat image acquired on January 12, 2002.

Fig. 4. Test data for Landsat and real MODIS imagery for a homogeneous landscape. (a) MODIS image acquired on November 26, 2004. (b) MODIS image
acquired on February 14, 2005. (c) Landsat image acquired on November 26, 2004. (d) Landsat image acquired on February 14, 2005.

The weight of each similar pixel is represented by the Euclidean
distance from it to the target fine pixel as follows:

Dv = 1 +

√
(xv − xij)

2 + (yv − yij)
2/L (19)

where L represents half of the sliding window size (for instance,
L= 10 represents the window size of 21× 21 fine pixels). There-
fore, the weight of each fine pixel benefits from the calculation
method in ESTARFM [18], which can be calculated as follows:

ωv = (1/Dv) /

v∑
v=1

(1/Dv) . (20)

In this article, the size of the sliding window is optimized through
a series of trial-and-error experiments. The experimental results
have led to the decision to set the sliding window size to 41× 41,
in order to balance the prediction accuracy and computational
efficiency in the fusion process. The details of the comparison
experiment can be found in Section IV. The threshold for similar
pixels is set to 10–30. If the number of similar pixels exceeded
30, only the top 30 pixels are used. The resulting high spatial
resolution image prediction at the final TP can be expressed as
follows:

ΔF =

n∑
v=1

ωv

[
ΔFST (xij , yij , b) +R (xij , yij , b)

]

(21)

F ′ (xij , yij , b) = FB (xij , yij , b) + ΔF. (22)

III. DATASET AND DESIGN OF EXPERIMENTS

A. Study Areas and Datasets

In the experiments, two publicly available datasets proposed
by Emelyanova et al. [48] are used to validate the effectiveness
and stability of the RISDAF. The dataset consists of two sites,
namely the heterogeneous Coleambally Irrigation Area (CIA)
and the homogeneous Lower Gwydir Catchment (LGC), which
have large-scale land cover changes.

The first study area CIA is located in the southern region
of New South Wales, Australia, which is located at 34.0034E,
145.0675S and covers an area of 2193 km2. The CIA dataset
mainly covers areas of agricultural rice fields and woodlands
with neat boundaries and large extent, and after the summer
season, the plants grow luxuriantly, and the landmarks have more
obvious physical and spatial changes. In this experiment, Land-
sat images from Landsat-7 ETM+ are used as fine images while
MODIS images from Terra MODTRAN4 are used as coarse
images. The CIA dataset uses the image pairs on November 25,
2001, and the MODIS image on January 12, 2002, as shown in
Fig. 3 to predict the Landsat image on January 12, 2002. The
actual Landsat image on January 12, 2002, as shown in Fig. 3(d)
is used for verification.

The second study area, LGC data are located in the northern
region of New South Wales, Australia, which is located at
149.2815E, 299.0855S, and covers an area of 5440 km2. In
this experiment, Landsat images from Landsat-5 TM are used
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as fine images, while MODIS images from Terra MOD09GA are
used as coarse images. Due to the flood disaster in December
2004 in the study area, the dynamic changes in the time domain
are obvious, and the types of ground objects change significantly,
which is representative of the research. The LGC dataset uses the
image pairs on November 26, 2004, and the MODIS image on
February 14, 2005, as shown in Fig. 4 to predict the Landsat
image on February 14, 2005. The actual Landsat image on
February 14, 2005, as shown in Fig. 4(d) is used for verification.

The MODIS and Landsat images in the dataset are acquired on
the same date and undergo preprocessing, including atmospheric
and geographic correction. To match the bands in the dataset,
six groups of bands similar to Landsat and MODIS are selected,
and a scale factor of 20 is applied between the two images. The
image size of the CIA dataset is 800 × 800 pixels, and the image
size of the LGC dataset is 1200 × 1200 pixels. To meet the
experimental requirements and match the Landsat resolution,
the MODIS image is upsampled to 25-m resolution through
nearest-neighbor interpolation. In this article, all images use
the combination of NIR-red-green bands for RGB visualization,
thereby facilitating more straightforward identification of land
object types such as vegetation and water.

B. Experimental Settings

1) Implementation Details: The experiments are conducted
on A620-G30 servers, each of which is configured with two
AMD EPYC 7281 16-Core processors and 256 GB memory. In
order to ensure fair comparisons, we use the same settings for all
methods that we replicate. Experimental parameters are set to
default values, as specified by the authors of each corresponding
paper.

2) Experimental Design: In this article, we design a three-
part experiment to verify the proposed RISDAF method. First,
RISDAF is compared with several widely used algorithms,
including the traditional weight-based algorithm STARFM, the
flexible mixing-solution-based spatiotemporal fusion algorithm
FSDAF, and all of the above algorithms using fine and rough pair
of images as input. Although there are many scholars making
improvements based on the FSDAF algorithm, the overall algo-
rithm structure is similar, and FSDAF has representativeness and
stability, and it has been widely used in various fields. Therefore,
FSDAF is chosen as a benchmark algorithm for experimental
comparisons. To ensure the fairness and authenticity of the com-
parative experiments, all algorithms use the default parameters
provided by their respective authors during the experimentation
process. First, quantitative metrics are employed to compare and
analyze the prediction results of the three algorithms. Second,
the experimental results are compared at the visual level by
visualizing the partially enlarged results within their respective
subregions. Scatter plots of the predicted and measured data
in NIR bands are also plotted to aid in the analysis. Finally,
the usability of the proposed algorithm is separately analyzed
through ablation experiments.

3) Accuracy Assessment: To evaluate the effectiveness of the
proposed method, we conduct a computational comparison of

the experimental results with the corresponding real images.
Five metrics are used to measure accuracy in the experiments:
the root-mean-square error (RMSE), the correlation coefficient
(CC), the structure similarity (SSIM), the spectral angle map-
per (SAM), and the enhanced reconstruction of grayscale and
aerial signal (ERGAS). These metrics are commonly used for
evaluating the spatiotemporal fusion of remote sensing images.
Specifically, RMSE and CC measure the differences between
predicted values while SAM indicates the degree of spectral
distortion, and SSIM measures the degree of texture similarity
between spectra. A smaller value of RMSE, SAM, and ERGAS
typically corresponds to a larger value for CC and SSIM, which
indicates better fusion results.

IV. RESULT AND ANALYSIS

A. Results and Analysis of Heterogeneous Regions

The quantitative measures of the CIA dataset are presented in
Table I, and the best results are indicated in bold font. Overall,
compared with STARFM and FSDAF, the proposed RISDAF
algorithm has the lowest RMSE, ERGAS, and SAM, and the
highest CC and SSIM. Among the results calculated in six
bands, most of them are the best, except for the ERGAS of
the blue and green bands, indicating the overall best perfor-
mance of the predicted results. As the two sets of data in the
experiment are collected during the vegetation growth period,
as the cell structure in the vegetation leaves will strongly reflect
near-infrared light, resulting in very bright reflections in the NIR
band. Therefore, the NIR band is extensively used in vegetation
growth monitoring. We calculated the percentage improvement
of RISDAF over FSDAF in the six bands across four metrics:
1) RMSE, 2) CC, 3) SSIM, and 4) ERGAS. We found that the
improvements in the NIR band outperformed the remaining five
bands, with percentage increases sequentially reaching 12.2%,
12.1%, 11.5%, and 11.1%. As vegetation rapidly grows, the NIR
band exhibits the greatest uncertainty in RISDAF, indicating that
RISDAF is more accurate in capturing heterogeneous land and
ecological changes.

In this experiment, the heterogeneous dataset CIA does not
undergo any significant category changes, but there are obvious
physical changes in two time periods. Therefore, the experi-
mental results focus on observing the ecosystem dynamics of
the predicted images and processing the image edges. Fig. 5
shows the original Landsat image and the prediction results of
the three algorithms. The experimental outcomes from STARFM
exhibit substantial boundary blurring, and distortion is evident
in some images. Considering the CIA dataset, which lacks
prominent changes in land cover types, the predicted images
generated by RISDAF demonstrate higher precision across the
full spectral range compared to FSDAF. Compared to FSDAF,
the predicted images produced by RISDAF demonstrate higher
precision across the entire spectral range. RISDAF more accu-
rately models and predicts spectral diversity under conditions of
spatiotemporal heterogeneity.

Fig. 6 shows the zoomed-in orange and yellow areas of Fig. 5
to compare the differences between the predicted results and
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TABLE I
RESULTS OF CONTRAST EXPERIMENT ON CIA DATASET

Fig. 5. Original Landsat image of January 12, 2002, and the prediction results of the three algorithms. (a) Original Landsat image. (b) Predicted images by
STARFM. (c) Predicted images by FSDAF. (d) Predicted images by proposed RISDAF.

the actual images. Both regions exhibit significant phenological
changes during the vegetation growth period, and the predictions
generated by the three algorithms are generally consistent with
the real Landsat images. Based on visual interpretation, all three
methods accurately capture the phenological changes between
November 25, 2001, and January 12, 2002. However, the struc-
ture of the proposed RISDAF algorithm is seemed to be closer
to the original images than those of STARFM and FSDAF. The
enlarged orange area is shown in Fig. 6(a)–(d). The RISDAF
algorithm can capture the small irregular objects and pixel value
changes more accurately and has more significant advantages
in monitoring small farmland. Only the proposed method can
correctly predict the physical changes and boundary areas in the
orange area in Fig. 5(a), STARFM and FSDAF boundaries are
blurred. This is because the proposed RISDAF combines tem-
poral and spatial increments in its computation process, leading
to advancements in restoring spatial details. Additionally, the
magnified yellow regions in Fig. 5(a)–(d) correspond to what
is shown in Fig. 6(e)–(h). Although the results after spectral
rendering imaging predicted by the three algorithms are not
exactly close to the original image, the image predicted by the
proposed RISDAF algorithm has the clearest image structure as
well as acquires sharper image boundaries, which is superior to
STARFM and FSDAF.

In vegetation remote sensing, the reflection in the near-
infrared region is highly influenced by the internal structure of
the leaves. Therefore, we select the predicted and actual data
of the near-infrared band to create a scatter plot. In the CIA
dataset, the scatter plots of the NIR bands based on STARFM,
FSDAF, and the proposed RISDAF are shown in Fig. 7. As can

be seen from Fig. 7, there is no significant bias among the three
algorithms. However, by calculating R2, the results from the
proposed RISDAF are superior to STARFM and FSDAF, being
closer to the 1:1 line, indicating better fitting performance and
smaller errors between the actual values and predicted values.

B. Results and Analysis of Homogeneous Regions

The experimental quantitative evaluation indicators of the
homogeneous LGC dataset are shown in Table II. Compared
with STARFM and FSDAF, the results of RISDAF prediction
have the lowest RMSE, ERGAS, and SAM, the highest CC
and SSIM, and the best effect. This shows that the proposed
RISDAF algorithm has more powerful spectral retrieval and
image reconstruction capabilities when the land scale changes
on a large scale. The NIR band shows the most tremendous
uncertainty in RISDAF and FSDAF, and the prediction effect is
the best. In addition to the NIR band, each band also shows a
good performance. The accuracy improvement in SWIR1 band
and SWIR2 band is obvious, second only to the NIR band, and
the RMSE single band index is increased by 5.5%. Therefore,
the proposed RISDAF algorithm can predict large-scale land
changes better compared with other algorithms.

Fig. 8 shows the Landsat image on February 14, 2005, and the
prediction results of the three algorithms. It can be seen from
the map that due to the impact of floods in two time periods,
after the flood, the recovery of the surface caused the change of
land cover to a certain extent, and some features did not recover
as before. Fig. 9 shows the enlarged orange and yellow areas of
Fig. 8 to compare the differences between the predicted results
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Fig. 6. Zoomed images of subareas in orange and yellow shown in Fig. 5. The corresponding results for the subarea in orange in Fig. 5(a)–(d) are (a)–(d), the
corresponding results for the subarea in yellow in Fig. 5(a)–(d) are (e)–(h).

Fig. 7. Scatter plots of the actual and predicted values in the experiment feeding simulated coarse data for the NIR band in the CIA dataset (Closer to red indicates
a higher density of points, the line is 1:1 line). (a) STARFM. (b) FSDAF. (c) Proposed RISDAF.

TABLE II
RESULTS OF CONTRAST EXPERIMENT ON LGC DATASET
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Fig. 8. Original Landsat image of February 14, 2005, and the prediction results of the three algorithms. (a) Original Landsat image. (b) Predicted images by
STARFM. (c) Predicted images by FSDAF. (d) Predicted images by RISDAF.

Fig. 9. Zoomed images of subareas in orange and yellow shown in Fig. 8. The corresponding results for the subarea in orange in Fig. 8(a)– (d) are (a)–(d), the
corresponding results for the subarea in yellow in Fig. 8(a)–(d) are (e)–(h).

and the actual images. As can be seen in Fig. 9(a)–(d), Although
STARFM and FSDAF also accurately capture physical changes
due to seasonal changes, the predictions in the border areas are
not accurate, small fields in some areas appear to be mixed,
and there are traces of flooding that have not recovered in the
FSDAF predicted images. By visual comparison, the STARFM
predictions are largely accurate in Fig. 9(e)–(h), but the results
of STARFM and FSDAF simulations generate images with less
spatial detail, compared to RISDAF, which retains more image
details with sufficient spectral similarity.

In the LGC dataset, the scatter plots of the NIR bands based on
STARFM, FSDAF, and RISDAF are shown in Fig. 10. It can be
seen from Fig. 10 that the proposed RISDAF is obviously closer
to the 1:1 line. Furthermore, R2 reached 0.91628, which was

notably higher than that of STARFM and FSDAF, indicating
that the detailed information can be better retained and the
prediction accuracy can be improved in the case of surface-type
mutation.

C. Algorithm Ablation Experiment

Fig. 11 shows the intermediate results of the proposed RIS-
DAF algorithm on the CIA dataset, including time prediction,
joint spatial prediction, residual correction, and spatial filtering
prediction based on mixed pixel decomposition. The RMSE
values are 0.04314, 0.04179, 0.04092, and 0.03961, respectively,
which indicate that the prediction accuracy of the model is
gradually increasing. Based on the fact that global phenological
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Fig. 10. Scatter plots of the actual and predicted values in the experiment feeding simulated coarse data for the NIR band in the LCG dataset (Closer to red
indicates a higher density of points, the line is 1:1 line). (a) STARFM. (b) FSDAF. (c) Proposed RISDAF.

Fig. 11. RMSE of the prediction results of the four different stages of the proposed RISDAF algorithm for heterogeneous sites. (a) Time prediction. (b) Spatial
prediction. (c) Residual compensation. (d) Spatial filtering.

Fig. 12. RMSE of the prediction results of the four different stages of the proposed RISDAF algorithm for homogeneous sites. (a) Time prediction. (b) Spatial
prediction. (c) Residual compensation. (d) Spatial filtering.

changes can be captured after decomposing mixed pixels, spatial
prediction better preserves the spatial structure and details of the
original image, making them clearer. Residual distribution can
weaken the impact of time and space prediction as well as sensor
differences. Final spatial filtering can eliminate the impact of the
block effect. The classification of ground objects is clearer with

more distinct boundaries and stronger spatial consistency, which
results in more clear images.

Fig. 12 shows the time prediction, joint spatial prediction,
residual correction, and spatial filtering prediction results of the
proposed RISDAF algorithm on the LGC dataset based on mixed
pixel decomposition. The RMSE values are 0.02988, 0.02706,
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0.02673, and 0.02580, respectively. The predicted fine image
results on February 14, 2005, gradually converge to accuracy.
During the period of image prediction, changes occurred due to
flooding, leading to alterations in the types of ground cover. As
a result, the focus of the ablation study results was on how to
restore the flood-stricken areas, track the phenological changes
of vegetation, and predict changes in types of ground cover.
While the temporal prediction based on spectral unmixing can
roughly predict the cover status and physical changes after the
flood. However, since the assumption in the temporal prediction
is that the type of coverage has not changed, the areas affected
by the flood are somewhat blurred, resulting in low precision of
the experimental results and poor model robustness and stability.
Following spatial prediction, the accuracy of the experimental
results significantly improved, the RMSE value increases by
9.4% compared to the first step, which is higher than the CIA
dataset, due to the occurrence of flooding. However, RISDAF is
able to retain better mutation details and predict more accurately
for feature types covered by floods. To account for sensor error
and spatiotemporal prediction error, residual correction is em-
ployed to recover the previously unrecovered portion. Spatial
filtering is also applied to retain more spatial details, which
result in improving prediction accuracy and phenological change
trend.

V. DISCUSSION

As remote sensing technology continues to develop, numer-
ous spatiotemporal fusion model algorithms have been proposed
to integrate remote sensing images with different temporal and
spatial resolutions. This integration enables the monitoring of
long-time series through remote sensing images. However, in
practical applications, fusion accuracy is often compromised by
strong surface cover type shape changes, such as floods and
disturbances. Through the extensive experiments conducted in
this article, the proposed RISDAF algorithm achieves better
prediction in both late recovery and strong physical change
prediction of heterogeneous data. Our ablation experiments have
proven the algorithm’s indispensability in every part. In this
article, we analyze and discuss the parts that are not analyzed
in detail in the previous studies and present some necessary
intermediate experimental results during the experiments.

A. Difference Between Proposed RISDAF and FSDAF in Time
Increment Prediction

In the process of mixed pixel decomposition, clustering algo-
rithms play a crucial role in endmember extraction and assigning
each pixel to appropriate categories based on the similarity of
pixels within the same category. However, calculating temporal
increments is based on the similarity of pixels within the same
category, making clustering algorithms very important. Our arti-
cle proposes a new approach, the Gaussian mixture model clus-
tering algorithm based on particle swarm optimization (PSO-
GMM), to replace the ISODATA clustering algorithm in FSDAF.
The ISODATA algorithm requires manual parameter tuning and
is vulnerable to noise interference in large-scale calculations. In
contrast, the PSO-GMM algorithm is capable of better exploring

space [49], allowing the GMM clustering algorithm to quickly
converge to optimal solutions and adaptively adjust parameters
for different types and scales of datasets. Moreover, running
the PSO-GMM algorithm multiple times reduces the impact
of random initialization on clustering results and enhances the
robustness of the clustering process. By accurately extracting
different endmembers, this method significantly improves the
accuracy of spectral unmixing.

Traditional temporal increment calculations in spatiotempo-
ral fusion typically involve directly converting coarse pixel
changes into fine pixel changes within a certain timeframe.
This approach, however, overlooks the characteristic differences
between various sensors and their response disparities to specific
cover types, which could lead to errors in the fusion results. Fur-
thermore, the alignment error between remote sensing images
can impact the accuracy of spatiotemporal fusion outcomes, as it
reflects the discrepancy between observed and underlying vari-
ables. To address these issues, our research introduces a linear
model that registers the coarse and fine pixels and includes them
in the computation of the temporal increment. This allows the
model to consider the characteristic differences among sensors
during the calculation process, thereby enhancing the precision
of the fusion results. Experimental results show that, compared
to FSDAF, the proposed RISDAF more effectively retains in-
traclass spatial details, particularly in predicting images after
sudden changes in cover type. RISDAF demonstrates superior
adaptability and accuracy, implying that the proposed RISDAF
has greater adaptability and predictive capabilities in handling
complex spatiotemporal fusion challenges. This offers a novel,
more precise solution for spatiotemporal fusion in remote sens-
ing imagery.

B. Advantages of Combining Time and Space Increments

Most hybrid spatiotemporal data fusion algorithms such as
FSDAF can capture land cover changes through spatial incre-
ments [50]. The IFSDAF builds on this by introducing con-
strained least squares (CLS) to combine the temporal predictions
after spectral unmixing with the number of spatial changes
after TPS interpolation to obtain the best predicted amount.
In contrast, the RISDAF proposed in this article applies bicu-
bic interpolation to calculate spatial increments, which has
the following advantages over TPS interpolation in predicting
spatial increments. 1) Due to the variety of surface types of
datasets, the bicubic interpolation considers more surrounding
data points, leading to the better fitting of local variations and
generating smoother results. 2) On large-scale datasets measured
in pixels, TPS interpolation requires solving a large-scale linear
equation system, which can be relatively slow, especially on
large datasets. In contrast, bicubic interpolation can precompute
the coefficient matrix and perform interpolation using simple
matrix multiplication, resulting in faster computation. The CLSs
method is replaced by an SVR algorithm to solve the weights
and combine the temporal and spatial increments. The SVR is
based on the idea of a support vector machine (SVM), which
has better generalization ability on multidimensional data. It
maps low-dimensional data to high-dimensional data through
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kernel functions and flexibly controls the fitting accuracy and
robustness of outliers by setting the parameters of the loss
function. The proposed RISDAF improves the performance and
robustness of the model by calculating the weighted sum of
temporal and spatial increments through weight allocation. This
approach enables the provision of more accurate and robust
prediction results.

C. Improvement of Residual Allocation

In the spatiotemporal fusion model, the residual is defined as
the difference between the predicted image and the true image,
which is used to guide the generation of the predicted image [51].
Residual correction, as an important step to improve model
accuracy, has been widely applied in spatiotemporal fusion
algorithms. FSDAF introduces the homogeneity index (HI) for
residual allocation to capture land cover changes. However, FS-
DAF suffers from serious collinearity problems where changes
in independent variables can cause variance changes in residuals,
thereby affecting the accuracy and reliability of spatiotemporal
fusion models.

The proposed RISDAF algorithm introduces sensor errors
into the residual calculation to address this issue. As different
types of errors exist between different sensors such as systematic
errors and random errors, it is necessary to consider their effects
when allocating residuals. Linear correction is used to adjust
differences between different sensors, and residual coefficients
(re) are proposed to convert them into the same reflectance
values. Specifically, a fitting method is used for linear correction
to establish reflectance conversion between different sensors and
ensure that residuals are evenly distributed, thereby improving
the accuracy and reliability of model prediction results.

D. Algorithm Performance Analysis Influenced by Moving
Window Size

Consideration of the remote sensing imaging edge effect is
crucial in the spatiotemporal fusion of remote sensing images.
Due to the intricate classification of image features, the features
of the image typically change during prediction. In computing
the pixel value of the target pixel, neighboring pixels with similar
spectra within the sliding window can be selected for computa-
tion. Generally, selecting a large sliding window increases the
computational workload within the window and decreases the
correlation between the center target pixel and the edge pixel.
On the other hand, selecting a small sliding window may not
yield distinct feature calculation results for the central target
pixel. Therefore, choosing an appropriate sliding window size to
select similar pixels can significantly improve image prediction
accuracy.

In this experiment, the heterogeneous dataset CIA and homo-
geneous dataset LGC are used for the calculation under different
window sizes, which are 11 × 11, 21 × 21, 31 × 31, 41 ×
41, 51 × 51, and 71 × 71. The experimental results of the
CIA dataset with different sliding window sizes on January 12,
2002, are shown in Table III. The experimental accuracy does
not improve because the sliding window size increased, and the
five evaluation metrics of the proposed RISDAF algorithm are

TABLE III
RESULTS OF MOVING WINDOW SIZE EXPERIMENT ON CIA DATASET

TABLE IV
RESULTS OF MOVING WINDOW SIZE EXPERIMENT ON LGC DATASET

optimal when the sliding window size is 41 × 41 OLI pixels.
The experimental results of the LGC dataset with different
sliding window sizes are shown in Table IV. The experimental
accuracy is optimal when the sliding window size is 41 × 41
OLI pixels, and compared with the window size of 11 × 11
OLI pixels, RMSE improves by 3.78%, CC improves by 3.81%,
SSIM improves by 3.39%, ERGAS improves by 5.19%, and
SAM improves by 8.02%. Therefore, the sliding window of 41×
41 OLI pixels is the best parameter for the experiment, which
achieves the smoothing effect while retaining the spatial details.

E. Further Improvement of RISDAF

The aforementioned experimental results and analysis
demonstrate that the proposed spatiotemporal fusion algorithm
RISDAF provides an improved solution for heterogeneous data
with strong phenological changes and regions with surface-type
variations. This enhancement improves the accuracy of fusion,
yet it is undeniable that the algorithm has certain limitations.
Most of the current spatiotemporal fusion algorithms, including
the one presented in this article, are predominantly based on
public datasets for experiments and analysis, thereby heavily
relying on the quality of the input data. In the process of
spectral unmixing, RISDAF depends on the accuracy of land
classification. If applied in real-world scenarios, the algorithm’s
effectiveness might be reduced due to the possibility of multiple
types coexisting within a single pixel in a heterogeneous land-
scape. Furthermore, when handling large real-world datasets or
generating and analyzing long-term sequence data, the algorithm
demands substantial computational resources. This constrains
the feasibility of the model in scenarios where resources or pro-
cessing time are limited. Therefore, improving model precision
and fusion efficiency for real data types will be the focal point
of future research.
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VI. CONCLUSION

This article proposes a RISDAF method to address the dif-
ficulties and problems of fusing remote sensing images with
different resolutions. The RISDAF uses Landsat and MODIS
data as fine and coarse images, which are compared with two
excellent spatiotemporal fusion algorithms in terms of quantita-
tive metrics and visual interpretation experiments. The RISDAF
method provides a better solution for heterogeneous data with
strong phenological changes and areas with changes in surface
types, improving the accuracy and adaptability of mixed image
element decomposition, scalability, and smoothness. Further-
more, through ablation experiments, it has been verified that each
part of the proposed model in this article has an irreplaceable
role.

In summary, RISDAF provides a more reliable solution to
improve the accuracy of mixed pixel decomposition, optimize
spatial details by calculating the weighted sum of temporal and
spatial increments, and reduce the impact of sensor differences
on spatiotemporal fusion, which improves the stability and
robustness of the algorithm. This improvement is beneficial
for effective dynamic land surface monitoring through satellite
imagery.
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