# Encoding Human Visual Perception Into Deep Hashing for Aerial Image Classification

Minghui Xu<sup>10</sup>, Zhiming Wang, Yichuan Sheng, Zhanhua Gu, and Luming Zhang<sup>10</sup>

Abstract—Accurately calculating the labels of each highresolution image is an unavoidable technique in remote sensing. In this article, we propose a novel image assortment model that personate each aerial image by optimally encoding a gaze shifting path (GSP). At the same time, wrong semantic model can get absent with it. More specifically, for each aerial image, we reference visually/semantically noticeable representational rogue interiors. To encode their analysis attributes, we mean a small graph comprise of spatially conterminous motivational wall, and extract GSPs on it by active literature algorithm rules. GSP can accurately capture humans perception over many aerial image areas when the notice senses are placed in each image. Subsequently, a double deep learning framework is proposed to intelligently exploit the semantics of these GSPs, with three attributes: label noises reduction, visual manner-unchanging semantics, and adaptive data chart updates are seamlessly integrated. The proposed framework can iteratively solved, with each graphlet re-form into a base. Finally, the GSPcompliant summaries in each aerial have shown the quantized vectors for visual understanding. To qualitatively and quantitatively assess how GSP affects information aerial image classification, we notice that the phantom copy of our progress classification is more accurate than its competitors, and the GSPs propagated by Alzheimer's patients are discriminative from those produced by typical observers, making the classification competitive.

Index Terms—Aerial image, hashing, label noises, semantics.

## I. INTRODUCTION

**O** WING to the currency of surrender many satellites in a weak fly pierce, hundreds of ground remark satellites have been plunge in the above decades. These satellites capture the likeness of each region opposed with prevaricate spatial make; such as grate, star, and gore. Recognizing the semantic class of these dregs show by works their spatial make is a valuable technique in many crafty report (AI) systems. For example, by reexamining the spatial arrangement of different animals, woodland, due, and swamps, we can automatically track the biodiversity and wildlife run. This is instructive for maintaining habitats in each of its sanctuaries for those endangered species. Besides, intelligently psychoanalyze mortal visual discernment of aerial cast can sustain in track and response to illegitimate

Manuscript received 18 January 2023; revised 13 March 2023; accepted 30 March 2023. Date of publication 17 July 2023; date of current version 15 August 2023. This work was supported by Jinhua Science and Technology Plan under Grant 2022-2-025 and Grant 2022-2-015. (*Corresponding authors: Minghui Xu; Luming Zhang.*)

The authors are with the Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua 321016, China (e-mail: 35806481@qq.com; zhimingwang@jin12.cn; yichuansheng@jhc.edu. cn; 912350464@qq.com; zglumg@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2023.3284426

disasters, end combustion, diluvial, earthquakes, and disembark subsidence. In expertness, human gaze apportionment can be essentially typify by an also, wherein each face grounds pairwise sequentially intuit goal or their ability. In electronic computer specter, dozens of shallow/deep visual classification/parsing fashion have been proposed to describe airy photos. Representative performance intercept the following:

- multiple token science/convolutional nerve netting (CNN)-supported opposed localization second-hand weak compartmentalize [1], [2];
- graphical-pattern-based semantic propagation for aerial photo parsing [3], [4];
- 3) carefully purpose intense architectures for semantic annotation toward atmospheric picture [5], [6], [7].

Experiments and commercialized systems support their achievement, oblige, and extensibility. To our lite notice, however, the existent example cannot optimally particularize lofty images due to the following three reasons.

- 1) In manner, each aerial likeness may contain tens to hundreds of field objects with the spatial distributions. Efficiently and effectively exploiting their basic semantics is difficult. Potential challenges embody: a) how to mathematically fork the complex spatial interactions among estate objects, and b) how to design a deep architecture that transfigurate the sculpturesque spatial interactions into imovable-piece optic shape. Besides, encoding diverse spatial interactions within each aerial effigy into a test classifier (e.g., SVM or softmax [8]) is another challenge. The large numeral of show within each aerial image companion it impossible to enumeratively commentate all the ground aim at pixel-level. Owing to the remarkable progress in weakly inspection learning, only image-just category is required for draw region-flat semantics. In this way, in arrangement to uncover the regional semantics inside each high image, we have to exploit the weakly superintend user-provided labels associated with it. However, these use-provided labels might be subjective and even corrupted.
- 2) In artifice, constructing a cry-forbearing label purification works is a crabbed undertaking; toward an effective airy conception assortment pipeline, it is necessity to characterize the relish distributions in the feature space exactly. Nevertheless, due to the imperfect user-provided compartmentalize, the initially fitted prospect disposition might be grinder optimal. Actually, we trust an accurate design that adaptively updates the ideal swatch distribution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

during the label elegance. Apparently, constructing a solvent multi-attribute optimization model prescribes no-trivial expertise.

To handle or at least allay these challenges, we converse a biologically inhaled antenna appearance assortment framework. The key novelties are twofold: 1) sequentially selecting multiple visually/semantically prominent graphlets to establish gaze flitting paths (GSPs), and 2) a binary matrix factorization (MF) that intensely transnature the GSP from each airy image into the two silence digest, wherein the influential unbecoming semantic ticket can be jointly optimized. More specifically, given a large number of conceptions, each of which may enclose one or manifold pollute semantic price, we first descent a set of appearance-aware image patches (namely, goal patches) from each lofty image. Next, we torch a determine of spatially adjacent object patches to form multiple graphlets, supported on which an lively learning summon [9] algorithm is leveraged to construct a GSP that bag how humans sequentially notice visually/semantically jumping regions within each airy show. Noticeably, GPSs are more descriptive than the authoritative visual saliency plant since stare floating sequences can be encoded. Thereafter, a din-tolerant MF converts the graphlets into the corresponding dyadic hash digest, supported on which pairwise graphlets can be obtain quantitatively and rapidly. The MF can seamlessly combined three reputation, e.g., optimal category grid gentility, and effigy-level to patch-straightforward semantics coak. Based on the calculated dyadic digest of each graphlet, the Boolean codes of each GSP can be succeed wherefore. By calculating the binary comminuted digest from the entire training GSPs, we can vert the graphlets inside each ethereal appearance into the nucleus-induced shape vector, supported on which a several-sign SVM is well informed for aerial image classification. Extensive quantitative comparisons among the situation-of-the-art thorough recognition fashion have demonstrated the fight of our bluestocking classifier.

In addition, to qualitatively and quantitatively show the meaning of GSPs in aerial appearance assortment, we get the GSPs prediction by our advanced and those recorded from 37 exact observers. We observe that the soothsay GSPs are over 90% harmonious with those monument by humans. We also record GSPs from 33 Alzheimer's patients, wherein their GSPs are way dissimilar from our foreshow ones and the normal observers. Correspondingly, the accuracy is far from sufficient, contemplative that visual discernment impairment will hurt aerial semblance classification.

- Totally, this duty has the following three-pen contributions:
- an unhardy-supervised atmospheric appearance classification pattern that intelligently eschew incorrect pictureimpartial drip;
- 2) an upgraded MF that seamlessly encodes three attributes for calculating the comminuted codes of each graphlet;
- a wide use ponder by 70 normal observers and Alzheimer's patients that quantitatively analyzes the serviceableness of GSPs in aerial effigy assortment.

# II. RELATED WORK

Many graphical models [10] have been discussed to encode the sophisticated topologies of manifold idol patches. Demirci et al. [11] proposed to think the multiple relation between vertices from two boisterous and top-annotated graphs. Felzenszwalb and Huttenlocher [12] sculptured the deformable supercilious-mandate relationships of object ability by a spring and further established image-to-likeness writings by the cost service minimization. In [13], the diagram vertices present both the predictable and unpredictable show ability. Thereby, each object's type label is deduct by those of its spatial neighboring. Duchenne et al. [14] conversed a conception nucleus machine by deriving graphs' writing for labeling object categories. Lin et al. [15] formulated a semantic parsing algorithmic rule second-hand the oppose-informed depict graph. It dynamically updates the graphical model that progressively fuzes the in-front of-defined random grammar. Furthermore, Lin et al. [16] designed a hierarchical graphical standard by decay compositional end into different parts. The multiple show parts coupled with their relationships are delineate by an AND-OR diagram encoding the random reputation. Zhang et al. [17] proposed an intense diagram twin(prenominal) ecclesiology by prying the keypoints sunder from hominine posturize. Based on the delineation-nmoment quotepnp algorithm, this process can reckon the keypoints on show and the 6-D human poses. To aid graph matching, Tang et al. [18] integrated an analysis situs-informed tetragonal urgency into a unmixed fork. The outward is to enhance the unary geometrical prior and pairwise textural context. Notably, the abovementioned graphical models are all dataset specific. Actually, we penury a principled method that describes all types of aerial copy without any prior erudition.

Bronstein et al. [19] proposed the well-known obliquemodality measure learning, supported on which they bestow the unimodal hashing to the multimodal diverse. Kumar et al. [20] synthetic the flag unimodal spectral comminuted algorithmic program [21] to the multimodal scenario. Zhu et al. [4] modeled each form modality by a low-rank anchor diagram. Afterward, a divide hamming room is flow in the stop graph space. Finally, the intra- and intermodality correlations are simultaneously exploited worn a generative example. Yu et al. [22] sketched the distinguishing conjugate dictionary hashing framework for advance multiorigin media retrieval. They characterized multiple feature modalities by disperse codes lettered from the portion semantically distinctive dictionary. Song et al. [23] erected a hamming room by hypothesizing that the inter- and intramodality shapes are congruous. Correspondingly, the hash duty is calculated via a lineal retrogradation. Zhu et al. [4] represented each sample by a linear confederacy of its multiple adjoin. Afterward, they design each example onto the concealed space by MF, wherein the secret semantic shape can be implicitly uncovered. However, only a small scale of pattern is purchased for hashing model science in [4]. By hypothesizing that each specimen shares the unite hash digest across different form modalities, reasoning MF [24] was speak for hashish. Liu et al. [25] visited the fusion alikeness to form the Hamming space that marks the multimodal analogy. More recently, a stream of profound silence algorithms [26], [27], [28], [29], [30] has been designed. They typically focus on formulating the objective functions to calculate discriminative and compact silence digest, supported on which promising performances have been effect. Conclusively, the abovementioned ignorant/profound hashing



Fig. 1. GSP recorded from five volunteers are marked by differently colored arrows, and GSP predicted by our adopted active learning [9].



Fig. 2. Example of different geographies captured by graphlets.

example cannot thoroughly handle noisy labels (as shown in Fig. 2). Moreover, the data distribution cannot be suit updated for discriminatively learning hash digest.

# III. OUR PROPOSED METHOD

## A. GSP Extraction

Practically, there are many fate of end (or their parts) internal each airy image. According to the recent biological and psychological meditations [31], humans are propense to attend an unimportant lot of visually/semantically prominent motive during visible sensation. When interpreting each concept, human ken system will perceive the forefront jumping aspect beforehand, such as the morbific tissue. Meanwhile, the pause rear are kept almost unprocessed. Apparently, we have to associate such earthborn optical perceptual experience during ethereal appearance perception. In our employment, an immovable object proposals extract conjugate with a geometry-secure brisk learning algorithm is extend to select the foreground noticeable object patches. In aerial image categorization, it is sign to steadfast avow the complicated road plexure, e.g., \*-like, timber-like and grid-inclination topologies, as exemplified in Fig. 1. In artifice, these topologies can be really present by a small chart, wherein each feather-edge grounds pairwise spatially neighboring streets. In our duty, these small graphs are appeal to graphlets. We employ the well-understood BING [32] operator as the objectness measure. Noticeably, after visiting the BING speculator, there are still many oppose patches that entrail each antenna picture. In custom, humans nimbly attend to fewer than ten aspect within each high effigy. To imitate this, a powerful lively learning (for the geometry-preserved nimble literature, refer to [9]) is utilized to discover K(K < 10) representative end-beauty spot from each aerial image. It incorporates two features: 1) each aerial likeness's spatial layouts and 2) image-level semantics of object rogue, as shown in Fig. 3.



Fig. 3. Elaboration of spatially adjacent object patches. The red box denotes object patch (3,2,3) while the green one represents object patch (2,2,1). They are spatially adjacent. In our work, if cell (i, j, k) is over 90% covered by an object patch, then we define this object patch's location as (i, j, k), where *i* denotes the pyramid level and *j* and *k* represent the *xy*-coordinates, respectively.

Based on the top K object patches, each graphlet is fabricated by violence wag mention [33] on the spatially near goal repair. By leveraging a three-seam spatial mount, pairwise motive beauty spots are opine as near when their cells (determined by their locations) are bordering. Next, a starting aim field is randomly selected, and a range walk process is hold to compile each graphlet. Based on the vector representation of each graphlet [34], a well-assumed active choice call [9] is adopted to select the K representative graphlets from each ethereal effigy. The quotation standard is that the K opt graphlets can maximally reconstruct the rest one within the unreal effigy. In supposition, the active learning [9] is a solution by an iterative algorithmic rule due to the intrinsic nonconvexity of its objective function, i.e., the K typical graphlets are selected sequentially based on their representativeness cut. Accordingly, we sequentially couple the K typical ones to form a gaze variable path, as typify on the true of Fig. 1.

## B. Deep Graphlet Hashing

To retentive and exactly obtain graphlets essence from ethereal appearance combined with clamorous idol-even tassel, we mean a base-2 MF (spreadsheet factorization)-supported obscure silence that can intelligently crop drip outcry. It spare the most significant number ownership of the binary star compartmentalize spreadsheet, which can be mathematically expressed as follows:

$$\min_{\mathbf{P},\mathbf{O}} \mathcal{J}(\mathbf{T}, \mathbf{P}\mathbf{Q}^T) + \Theta(\mathbf{Q}, \mathbf{P}), \text{ s.t., } \mathbf{P} \in \{-1, 1\}$$
(1)

where  $\mathbf{Q} \in \mathbb{R}^{c \times t}$  and  $\mathbf{P} \in \mathbb{R}^{n \times t}$  denote the image-level labels and aerial images in the latent space, respectively.  $\mathcal{J}$  quantifies the loss of MF while  $\Theta(\cdot)$  represents the regularization term. As aforementioned, the observable image-level labels  $\mathbf{T}$  might be contaminated. Apparently, this will lead to suboptimal factorization results. To theoretically handle this issue, we attempt to learn an optimal image-level label matrix  $\mathbf{L}$  from the observed one by sparse learning. Based on the construction of the label matrix, entity  $\mathbf{L}_{ij}$  is an indicator representing the relevance between the *i*th aerial image and the *j*th image-level label. In this way, we can obtain the following objective function:

$$\min_{\mathbf{L},\mathbf{P},\mathbf{Q}} \mathcal{J}(\mathbf{L},\mathbf{P}\mathbf{Q}^{T}) + \mathcal{J}_{l}(\mathbf{L},\mathbf{T}) + \Theta(\mathbf{Q},\mathbf{P})$$
  
s.t.  $\mathbf{L} \in \{-1,1\}, \ \mathbf{P} \in \{-1,1\}$  (2)

where  $\mathcal{J}_l$  penalizes the reconstruction of the optimal label matrix from the observed one with noises.

During the hashing process, it is generally recognized the importance of preserving the underlying data structure [9], e.g., the local structure between neighboring samples. Simultaneously, the hash function should be learned, which can make the graphlet-to-graphlet comparison scalable. The binary hash codes of each aerial image are calculated by hash function:  $\mathbf{h} = \text{sgn}(f(x)\mathbf{Z})$ . Totally, we formulate the following objective function:

$$\min_{\mathbf{H},\mathbf{Z},f} \beta \sum_{i=1}^{n} \mathcal{J}(\mathbf{h}^{i}, f(\mathbf{x}_{i})\mathbf{Z}) + \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{M}_{ij} || \mathbf{b}^{i} - \mathbf{b}^{j} ||$$
s.t.  $\mathbf{H} \in \{-1, 1\}^{n \times L}$ . (3)

Equation (3) can be reorganized into the matrix form as

$$\min_{\mathbf{H}, \mathbf{Z}, f} \beta \mathcal{J}(\mathbf{H}, f(\mathbf{X}\mathbf{Z})) + \gamma \operatorname{tr}(\mathbf{H}^T \mathbf{K}\mathbf{H})$$
  
s.t.  $\mathbf{H} \in \{-1, 1\}^{n \times L}$  (4)

where  $\beta$  and  $\gamma$  are no-denying parameters that infer the solicitation of the reciprocal condition. It is supported on which the sequential statement as

$$\min_{\mathbf{L},\mathbf{Q},\mathbf{H},\mathbf{Z},f} \mathcal{J}(\mathbf{L},\mathbf{H}\mathbf{Q}^{T}) + \mathcal{J}_{l}(\mathbf{L},\mathbf{T}) + \beta \mathcal{J}(\mathbf{H},f(\mathbf{X}\mathbf{Z})) + \frac{\gamma}{2} \operatorname{tr}(\mathbf{H}^{T}\mathbf{K}\mathbf{H})$$
  
s.t.  $\mathbf{L} \in \{-1,1\}^{n \times R}, \ \mathbf{H} \in \{-1,1\}^{n \times L}$  (5)

where R counts the aerial image categories.

It is worth accenting that the optimization undertaking (5) concentrate on letters checksum activity and binary star checksum codes with before-suited data diagram, which is originate worn perhaps pandemoniscal likeness-clear compartmentalize. Such prefitted data plot remains unchanged during the learning process, which might be subideal. Ideally, we defect to continuously update the data plot in the erudition projection. Aiming at this, we propose to together learn the data chart. More specifically, when clarifying these vociferous labels, we failure the data plot M to be highly congruous with the book-learned dummy. We respect that the comprehend of the similarities between one graphlet and other graphlets is embarrassed to be one, and  $M_{ii} = 0$ . Therefore, the goal duty in (5) can be upgraded into

$$\min_{\mathbf{L},\mathbf{Q},\mathbf{H},\mathbf{Z},\mathbf{M},f} \mathcal{J}(\mathbf{L},\mathbf{H}\mathbf{Q}^{T}) + \mathcal{J}_{l}(\mathbf{L},\mathbf{T}) + \alpha \mathcal{J}(\mathbf{M},\mathbf{M}_{0}) 
+ \beta \mathcal{J}(\mathbf{H},f(\mathbf{X})\mathbf{Z}) + \frac{\gamma}{2} \operatorname{tr}(\mathbf{H}^{T}\mathbf{K}\mathbf{H}) + \Theta(\mathbf{Q},\mathbf{Z}) 
s.t. \, \mathbf{L} \in \{-1,1\}^{n \times R}, \mathbf{H} \in \{-1,1\}^{n \times L}, \mathbf{M}^{i} > 0, 
\sum_{j=1}^{n} \mathbf{M}_{ij} = 1.$$
(6)

In the science procedure, the Laplacian array is updated by  $\mathbf{K} = \mathbf{A} - (\mathbf{M} + \mathbf{M}^T)/2$ .  $\mathbf{M}_0$  means the drop cap data graph that is keep supported on  $\mathbf{T}$ . The abovementioned external cosine seamlessly completes comminuted lore, semantics encoding, and optimum data diagram updating into a unified framework.

To clear up the subjective sine in (6), we have to define  $\mathcal{J}, \mathcal{J}_l$ , and  $\theta$ . Herein, the least quarrel failure  $\mathcal{J}(x, y) = \frac{1}{2}(x - y)^2$  is busy. To avoid the contaminated effigy-level tag, we embarrass  $\mathcal{J}_l(x, y) = \mu |x - y|$ . For the regularizer terms, we obstruct  $\Theta(\mathbf{X}, \mathbf{Y}) = \frac{\lambda}{2} ||\mathbf{X}||_F^2 + \frac{\eta}{2} ||\mathbf{Y}||_F^2$ . In this away, the unbiased activity can be upgraded into

$$\min_{\mathbf{L},\mathbf{Q},\mathbf{H},\mathbf{Z},\mathbf{M}} \frac{1}{2} ||\mathbf{L} - \mathbf{H}\mathbf{Q}^{T}|| + \mu ||\mathbf{L} - \mathbf{T}||_{1} + \frac{\alpha}{2} ||\mathbf{M} - \mathbf{M}_{0}||_{F}^{2}$$

$$+ \frac{\beta}{2} ||\mathbf{H} - f(\mathbf{X})\mathbf{Z}||_{F}^{2} + \frac{\gamma}{2} \operatorname{tr}(\mathbf{H}^{T}\mathbf{K}\mathbf{H}) + \frac{\lambda}{2} ||\mathbf{Q}||_{F}^{2} + \frac{\eta}{2} ||\mathbf{Z}||_{21}^{2}$$
s.t.  $\mathbf{L} \in \{-1, 1\}^{n \times R}, \mathbf{H} \in \{-1, 1\}^{n \times L},$ 

$$\mathbf{M}^{i} > 0, \sum_{j=1}^{n} \mathbf{M}_{ij} = 1.$$
(7)

We perceive that fair cosecant (7) is no-gibbose over all the variables. In our implementation, a repeating algorithmic program is improved to improve it. The nitty-gritty are cater in the Supplementary Material. Beyond the aforementioned simple shape engineering, to embodied cunning characteristic into our hashish scholarship framework, a several-bed profound building is adopted to spontaneously enlarge (7). More specifically,  $f(\mathbf{x})$ is beseech as the production of the uppermost belt.  $\mathbf{Z}_i$  depict the change matrices to manifold obscure footing [34]. Different sagacious mesh, e.g., CNNs [8], can be employed to study mysterious form from forward pass idol pixels. In detail, L,  $\mathbf{Q}, \mathbf{H}, \mathbf{Z}_i$ , and  $\mathbf{M}$  are iteratively suited. The parameters of our sagacious plexus are note by back-dissemination. The drilling of our purpose obscure comminuted framework is condensed in the following. The final optimization is instrument sequacious our preallable employment [34]. Once the cunning reticulum is drag, assumed an unworn graphlet  $x^*$ , its base-2 hashish digest is suited by  $\mathbf{b}^* = \operatorname{sgn}(f(\mathbf{x}^*) \prod_{i=1}^{F} \mathbf{Z}_i)$ , where F signify the amount of obscure sill. Based on the base-2 digest fitted for each graphlet, inclined a GSP rake K graphlets, we can connect the graphlet-open base-2 digest into a thirst base-2 vector that depicts the GSP.

## C. Image Kernel Calculation

As aforementioned, many graphlets are from each ethereal show and are afterward reborn into base-2 checksum digest. We discover that: 1) the graphlet numbers from other antenna copy are comprehensively irreconcilable; 2) the dimensionalities of two checksum digest suited from variously sized graphlets are separate. Thus, it is impracticable to absolutely input them into a flag classifier similar SVM for optic assortment. To wield this conclusion, we busy a nucleus-induced quantization mode to compute the picture-impartial exhibition, that is, nonvolatile-distance shape vector for each atmospheric show. Given an antenna copy, we first descent the BING [32] supported aim spot to make graphlets, which are afterward reborn into Boolean silence digest second-hand our thorough hashish. Finally, graphlets within the *i*th unreal conception are congregate into a nucleus-induced vector  $\mathbf{v}_i = v_{i1}, v_{i2}, \ldots, v_{iN}$ , where N compute the school forward pass idol. In detail, the *j*th subregion constitute of  $\mathbf{v}_i$  is fitted as

$$\mathbf{v}_{ij} \propto \exp\left(-\frac{1}{RR'}\sum_{u=1}^{R_i}\sum_{v=1}^{R_j} d_J\left(\mathbf{b}_u, \mathbf{b}_v\right)\right)$$
(8)

where R and R' show the number of justly sized graphlets from the *i*th and *j*th airy cast regardfully;  $d_J(\mathbf{b}_u, \mathbf{b}_v)$  reckon the Jaccard consimilarity between binary silence digest. Given N' testing atmospheric cast, succeeding (8), we can hold an  $N \times N$  kernel matrix at the manage tier and an  $N \times N'$  nucleus spreadsheet at the cupellation stage.

By operating leverage the abovementioned quantized feature vector, a several-categorise SVM is learned. Mathematically, when training an SVM distinctive between atmospheric conception from the *a*th and the *b*th categories, a binary SVM classifier can be compile as go after

$$\max_{c \in \mathbb{R}^{N_{ab}}} \quad \beta(c) = \sum_{i=1}^{N_{ab}} c_i - \frac{1}{2} \sum_{i=1}^{N_{ab}} \sum_{j=1}^{N_{ab}} c_i c_j l_i l_j k(\mathbf{v}_i, \mathbf{v}_j)$$
  
s.t.  $0 \le c_i \le C, \ \sum_{i=1}^{N_{ab}} c_i l_i = 0$  (9)

where  $l_i$  is the tribe label (that is, "+1" or "-1") of the *i*th manege aerial picture,  $\beta$  determines the hyperplane that separated airy images in the *a*th group from those in the *b*th type, C > 0 traffic the dress complicacy off the number of nonseparable aerial images, and  $N_{ab}$  reckoning the training lofty conception from either the *a*th or the *b*th type.

Given a quantized form vector procured from a trial lofty appearance, its label is calculated as follows:

$$\operatorname{sgn}\left(\sum_{i=1}^{N_{ab}} c_i l_i k(\mathbf{v}_i, \mathbf{v}^*) + e\right) \tag{10}$$

where the bias  $e = 1 - \sum_{i=1}^{N_{ab}} c_i l_i k(\mathbf{v}_i, \mathbf{v}_s)$  and  $\mathbf{v}_s$  signify the nurture vector whose tribe is tassel by "+1." In the testing level, we manage double star classification C(C-1)/2 clock. The terminal determination is adapted by voting, that is,  $\mathbf{v}^*$  is appurtenance by the category plant suffer the limit numeral of vow.

#### **IV. EMPIRICAL EVALUATIONS**

#### A. Comparative Performance

In this territory, we appraise our forward pass show assortment by comparing with its causativeness and effectiveness with a generous prepare of counterparts. We first vie our rule with cunning architectures that specifically mean for forward pass photo assortment. Subsequently, we occupy pomp-of-the-calling unmixed genera oppose/exhibition notice standard for similitude. First of all, we state our rule with septimal intricate optic assortment standard [35], [36], [37], [38], [39], [40], [41] that truly incorporeal some monk enlightenment of other categories of antenna appearance. We news that the spring digest of [37], [38], [39], [40] is openly presented. Based on this, we behavior an equal meditation wherein the feature coagulations of our process are:  $\mu = 0.1$ ,  $\beta = 0.2$ ,  $\gamma = 0.15$ , and  $\lambda = \eta = 0.05$ . For [35], [36], and [41], the origin digest are unavailable to our erudition. Thus, we refulfill them worn Python by ourselves. We have tested our flower to compel the reinstrument acknowledgment plan fulfill privately to the event tell in their publications.

Meanwhile, many modern graphical models sagacious genera optical notice fork achieve inculcate on group antenna copy. In this experience, we first compare our way with ten mysterious genera aspect categorization design: the spatial mount pooling CNN (SPP-CNN) [42], CleanNet [43], excludent strainer embank (DFB) [44], several-seam CNN-RNN (ML-CRNN) [45], several-ticket chart convolutional meshwork (ML-GCN) [46], semantic-discriminating chart (SSG) [47], and several-tassel transformer (MLT) [48]. Moreover, since ethereal picture assortment can be ponder as a subaltern-subject of scenery assortment, we also compare our means with three rank-of-the-contrivance exhibition assortment shapes. For these mold, it is discernible that only the ascent digest of [49] is unavailable. Thus, we reinstrument it second-hand C++. For the ocular notice plan accomplish by ourselves, the trial settings are compendious as succeed. In [35], we exploit the ResNet-152 [50] as the spinal column, which is afterward upgraded into a several-ticket changing. Except for the last maturely joined bed (one contain is established to 17), the other couch are initialized by ResNet-152 trail from ImageNet [51]. For [36], the power in the 2048-D LSTM stratum is initialized by a momentum contain between -0.2 and 0.2. Meanwhile, the Nestrov Adam is utilized as the optimizer, wherein the literature scold is put to 1e-4. For [41], the area arrangement is instrument from the RSSCN7 adduce[40] to our compose antenna likeness regulate. The ResNet-108 [50] is busy as the steadfastness and the conjectural walking declivity hone the pure reticulation. The scholarship proportion and load impair are curdle to 1e-3 and 0.05 regardfully. The netting detriment is adapted by the indicate level delusion. For [49] we retrain the deep model rampart [52] worn our cultured 18 atmospheric semblance categories, wherein the usual-pooling tactics is attach. The liblinear is utilized as the SVM solver and the seven-infold opposition validation is visit, as shown in Table I.

#### B. Componentwise Model Justification

In this proof, we validate the profit and inseparableness of the two essential modules in our aerial image assortment. They are GSP composition and deep hashing for double star digest generation relatively. We restore each model [36] by a functionally perverted one and story the categorization justness on the well-given SUN dataset.

To quantitatively show the cogency of the first model, three alternatives are betake. We first repay the BING mention [32], object spot by the well-known objectness mention [53] (intense

 TABLE I

 Accuracies With Standard Errors of the 18 Categorization Models

| Category                                                                                                                                                                                                                                                                                                                                             | [37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [38]                                                                                                                                                                                                                                                                                                                                                               | [35]                                                                                                                                                                                                                                                                                                                                                              | [36]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [21]                                                                                                                                                                                                                                                                                                                                                                                                        | [44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SPP-CNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CleanNet                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tall building                                                                                                                                                                                                                                                                                                                                        | $0.612 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.565 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                  | 0.631±0.011                                                                                                                                                                                                                                                                                                                                                       | $0.589 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.620 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.584 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                           | $0.625 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.654 \pm 0.010$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.665 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                    |
| Residential                                                                                                                                                                                                                                                                                                                                          | 0.593±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.579 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                  | $0.602 \pm 0.014$                                                                                                                                                                                                                                                                                                                                                 | $0.573 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.614±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.607 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                           | $0.562 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.611 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.586 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                    |
| Intersection                                                                                                                                                                                                                                                                                                                                         | 0.708±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.703±0.011                                                                                                                                                                                                                                                                                                                                                        | 0.677±0.012                                                                                                                                                                                                                                                                                                                                                       | $0.665 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.709 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.655 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                           | 0.702±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.664 \pm 0.009$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.678 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                    |
| Forest                                                                                                                                                                                                                                                                                                                                               | 0.675±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.666 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                  | $0.664 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                 | $0.646 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0.682 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.634 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                           | $0.685 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.698 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.687 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                    |
| Sea                                                                                                                                                                                                                                                                                                                                                  | 0.674±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.653±0.012                                                                                                                                                                                                                                                                                                                                                        | 0.657±0.013                                                                                                                                                                                                                                                                                                                                                       | 0.621±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.632±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.621±0.011                                                                                                                                                                                                                                                                                                                                                                                                 | 0.662±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.635±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.676 \pm 0.008$                                                                                                                                                                                                                                                                                                                                                                                    |
| Soccer field                                                                                                                                                                                                                                                                                                                                         | 0.553±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.556±0.011                                                                                                                                                                                                                                                                                                                                                        | 0.564±0.012                                                                                                                                                                                                                                                                                                                                                       | 0.554±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.583±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.532±0.012                                                                                                                                                                                                                                                                                                                                                                                                 | 0.572±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.532±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.567±0.013                                                                                                                                                                                                                                                                                                                                                                                          |
| Aircraft                                                                                                                                                                                                                                                                                                                                             | 0.734±0.016                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.684±0.013                                                                                                                                                                                                                                                                                                                                                        | 0.713±0.012                                                                                                                                                                                                                                                                                                                                                       | 0.673±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.705±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.702±0.012                                                                                                                                                                                                                                                                                                                                                                                                 | 0.674±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.704 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.683±0.012                                                                                                                                                                                                                                                                                                                                                                                          |
| Railway                                                                                                                                                                                                                                                                                                                                              | 0.634±0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.602±0.011                                                                                                                                                                                                                                                                                                                                                        | 0.612±0.008                                                                                                                                                                                                                                                                                                                                                       | $0.627 \pm 0.013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.607±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.577±0.013                                                                                                                                                                                                                                                                                                                                                                                                 | 0.564±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.597±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.586 \pm 0.012$                                                                                                                                                                                                                                                                                                                                                                                    |
| Bridge                                                                                                                                                                                                                                                                                                                                               | 0.557±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.552±0.013                                                                                                                                                                                                                                                                                                                                                        | 0.563±0.009                                                                                                                                                                                                                                                                                                                                                       | 0.558±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.548±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.565±0.012                                                                                                                                                                                                                                                                                                                                                                                                 | 0.552±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.546±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.577±0.012                                                                                                                                                                                                                                                                                                                                                                                          |
| Road                                                                                                                                                                                                                                                                                                                                                 | 0.621±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.612±0.010                                                                                                                                                                                                                                                                                                                                                        | 0.616±0.012                                                                                                                                                                                                                                                                                                                                                       | $0.601 \pm 0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.625±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.608±0.012                                                                                                                                                                                                                                                                                                                                                                                                 | 0.587±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $0.613 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.612 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                    |
| River                                                                                                                                                                                                                                                                                                                                                | 0.716±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.685±0.012                                                                                                                                                                                                                                                                                                                                                        | 0.708±0.011                                                                                                                                                                                                                                                                                                                                                       | $0.698 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.726±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.699±0.013                                                                                                                                                                                                                                                                                                                                                                                                 | 0.674±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.688±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.706±0.013                                                                                                                                                                                                                                                                                                                                                                                          |
| Park                                                                                                                                                                                                                                                                                                                                                 | 0.661±0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.644±0.015                                                                                                                                                                                                                                                                                                                                                        | 0.654±0.013                                                                                                                                                                                                                                                                                                                                                       | 0.676±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.673±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.685±0.011                                                                                                                                                                                                                                                                                                                                                                                                 | 0.654±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.675±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.668±0.010                                                                                                                                                                                                                                                                                                                                                                                          |
| Palace                                                                                                                                                                                                                                                                                                                                               | 0.671±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.626±0.013                                                                                                                                                                                                                                                                                                                                                        | 0.654±0.013                                                                                                                                                                                                                                                                                                                                                       | 0.613±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.626±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.647±0.014                                                                                                                                                                                                                                                                                                                                                                                                 | 0.636±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.623±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.605 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                    |
| Factory                                                                                                                                                                                                                                                                                                                                              | 0.632±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.612±0.012                                                                                                                                                                                                                                                                                                                                                        | 0.586±0.010                                                                                                                                                                                                                                                                                                                                                       | $0.602 \pm 0.011$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.627±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.612±0.012                                                                                                                                                                                                                                                                                                                                                                                                 | 0.587±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.586±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.608±0.012                                                                                                                                                                                                                                                                                                                                                                                          |
| Farmland                                                                                                                                                                                                                                                                                                                                             | 0.612±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.588±0.014                                                                                                                                                                                                                                                                                                                                                        | 0.596±0.011                                                                                                                                                                                                                                                                                                                                                       | 0.587±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.584±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.614±0.013                                                                                                                                                                                                                                                                                                                                                                                                 | 0.584±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.588±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.603±0.12                                                                                                                                                                                                                                                                                                                                                                                           |
| Vehicle                                                                                                                                                                                                                                                                                                                                              | 0.672±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.645±0.011                                                                                                                                                                                                                                                                                                                                                        | 0.644±0.012                                                                                                                                                                                                                                                                                                                                                       | 0.687±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.643±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.668±0.014                                                                                                                                                                                                                                                                                                                                                                                                 | 0.656±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.656±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.654±0.012                                                                                                                                                                                                                                                                                                                                                                                          |
| Yacht                                                                                                                                                                                                                                                                                                                                                | 0.693±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.706±0.013                                                                                                                                                                                                                                                                                                                                                        | 0.696±0.010                                                                                                                                                                                                                                                                                                                                                       | 0.719±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.703±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.708±0.013                                                                                                                                                                                                                                                                                                                                                                                                 | 0.705±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.688±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.697±0.012                                                                                                                                                                                                                                                                                                                                                                                          |
| Swim. pool                                                                                                                                                                                                                                                                                                                                           | 0.659±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.613±0.009                                                                                                                                                                                                                                                                                                                                                        | 0.634±0.012                                                                                                                                                                                                                                                                                                                                                       | 0.652±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.624±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.665±0.011                                                                                                                                                                                                                                                                                                                                                                                                 | 0.656±0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.612±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.622±0.013                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |
| Category                                                                                                                                                                                                                                                                                                                                             | DFB                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ML-CRNN                                                                                                                                                                                                                                                                                                                                                            | ML-GCN                                                                                                                                                                                                                                                                                                                                                            | SSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MLT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [41]                                                                                                                                                                                                                                                                                                                                                                                                        | [68]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [43]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ours                                                                                                                                                                                                                                                                                                                                                                                                 |
| Category<br>Tall building                                                                                                                                                                                                                                                                                                                            | DFB<br>0.604±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ML-CRNN<br>0.651±0.011                                                                                                                                                                                                                                                                                                                                             | ML-GCN<br>0.632±0.010                                                                                                                                                                                                                                                                                                                                             | SSG<br>0.687±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MLT<br>0.673±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [41]<br>0.618±0.011                                                                                                                                                                                                                                                                                                                                                                                         | [68]<br>0.621±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [43]<br>0.654±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ours 0.716±0.007                                                                                                                                                                                                                                                                                                                                                                                     |
| Category<br>Tall building<br>Residential                                                                                                                                                                                                                                                                                                             | DFB<br>0.604±0.011<br>0.578±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                   | ML-CRNN<br>0.651±0.011<br>0.605±0.012                                                                                                                                                                                                                                                                                                                              | ML-GCN<br>0.632±0.010<br>0.613±0.012                                                                                                                                                                                                                                                                                                                              | SSG<br>0.687±0.010<br>0.634±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MLT<br>0.673±0.014<br>0.613±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [41]<br>0.618±0.011<br>0.573±0.012                                                                                                                                                                                                                                                                                                                                                                          | [68]<br>0.621±0.012<br>0.593±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [43]<br>0.654±0.012<br>0.594±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ours<br>0.716±0.007<br>0.664±0.009                                                                                                                                                                                                                                                                                                                                                                   |
| Category<br>Tall building<br>Residential<br>Intersection                                                                                                                                                                                                                                                                                             | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009                                                                                                                                                                                                                                                                                                                                                                                                                    | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014                                                                                                                                                                                                                                                                                                               | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.711±0.012                                                                                                                                                                                                                                                                                                               | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MLT<br>0.673±0.014<br>0.613±0.014<br>0.733±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $[41] \\ 0.618 \pm 0.011 \\ 0.573 \pm 0.012 \\ 0.684 \pm 0.014$                                                                                                                                                                                                                                                                                                                                             | [68]<br>0.621±0.012<br>0.593±0.011<br>0.665±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [43]<br>0.654±0.012<br>0.594±0.013<br>0.672±0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ours<br>0.716±0.007<br>0.664±0.009<br>0.768±0.008                                                                                                                                                                                                                                                                                                                                                    |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest                                                                                                                                                                                                                                                                                   | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009<br>0.682±0.012                                                                                                                                                                                                                                                                                                                                                                                                     | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014<br>0.714±0.011                                                                                                                                                                                                                                                                                                | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.711±0.012<br>0.701±0.011                                                                                                                                                                                                                                                                                                | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011<br>0.722±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MLT<br>0.673±0.014<br>0.613±0.014<br>0.733±0.013<br>0.705±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [41]<br>0.618±0.011<br>0.573±0.012<br>0.684±0.014<br>0.652±0.012                                                                                                                                                                                                                                                                                                                                            | [68]<br>0.621±0.012<br>0.593±0.011<br>0.665±0.012<br>0.667±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [43]<br>0.654±0.012<br>0.594±0.013<br>0.672±0.010<br>0.657±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ours<br>0.716±0.007<br>0.664±0.009<br>0.768±0.008<br>0.759±0.011                                                                                                                                                                                                                                                                                                                                     |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea                                                                                                                                                                                                                                                                            | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009<br>0.682±0.012<br>0.661±0.011                                                                                                                                                                                                                                                                                                                                                                                      | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014<br>0.714±0.011<br>0.634±0.013                                                                                                                                                                                                                                                                                 | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.711±0.012<br>0.701±0.011<br>0.642±0.012                                                                                                                                                                                                                                                                                 | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011<br>0.722±0.012<br>0.675±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MLT<br>0.673±0.014<br>0.613±0.014<br>0.733±0.013<br>0.705±0.014<br>0.657±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.012 \\ 0.663 {\pm} 0.013 \end{array}$                                                                                                                                                                                                                                                                | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.667 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} [43] \\ 0.654 {\pm} 0.012 \\ 0.594 {\pm} 0.013 \\ 0.672 {\pm} 0.010 \\ 0.657 {\pm} 0.012 \\ 0.672 {\pm} 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ours           0.716±0.007           0.664±0.009           0.768±0.008           0.759±0.011           0.698±0.008                                                                                                                                                                                                                                                                                   |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field                                                                                                                                                                                                                                                            | $\begin{array}{c} DFB \\ 0.604 \pm 0.011 \\ 0.578 \pm 0.012 \\ 0.704 \pm 0.009 \\ 0.682 \pm 0.012 \\ 0.661 \pm 0.011 \\ 0.574 \pm 0.010 \end{array}$                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \text{ML-CRNN} \\ 0.651\pm 0.011 \\ 0.605\pm 0.012 \\ 0.677\pm 0.014 \\ 0.714\pm 0.011 \\ 0.634\pm 0.013 \\ 0.543\pm 0.012 \end{array}$                                                                                                                                                                                                          | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.711±0.012<br>0.701±0.011<br>0.642±0.012<br>0.573±0.011                                                                                                                                                                                                                                                                  | $\begin{array}{c} \text{SSG} \\ 0.687 {\pm} 0.010 \\ 0.634 {\pm} 0.011 \\ 0.734 {\pm} 0.011 \\ 0.722 {\pm} 0.012 \\ 0.675 {\pm} 0.011 \\ 0.573 {\pm} 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MLT<br>0.673±0.014<br>0.613±0.014<br>0.733±0.013<br>0.705±0.014<br>0.657±0.012<br>0.583±0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} [41]\\ 0.618 {\pm} 0.011\\ 0.573 {\pm} 0.012\\ 0.684 {\pm} 0.014\\ 0.652 {\pm} 0.012\\ 0.663 {\pm} 0.013\\ 0.562 {\pm} 0.014 \end{array}$                                                                                                                                                                                                                                                 | $\begin{array}{c} [68] \\ 0.621 \pm 0.012 \\ 0.593 \pm 0.011 \\ 0.665 \pm 0.012 \\ 0.667 \pm 0.012 \\ 0.654 \pm 0.011 \\ 0.543 \pm 0.010 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} [43]\\ 0.654{\pm}0.012\\ 0.594{\pm}0.013\\ 0.672{\pm}0.010\\ 0.657{\pm}0.012\\ 0.672{\pm}0.011\\ 0.536{\pm}0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ours<br>0.716±0.007<br>0.664±0.009<br>0.768±0.008<br>0.759±0.011<br>0.698±0.008<br>0.617±0.010                                                                                                                                                                                                                                                                                                       |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft                                                                                                                                                                                                                                                | $\begin{array}{c} DFB \\ 0.604 \pm 0.011 \\ 0.578 \pm 0.012 \\ 0.704 \pm 0.009 \\ 0.682 \pm 0.012 \\ 0.661 \pm 0.011 \\ 0.574 \pm 0.010 \\ 0.663 \pm 0.011 \end{array}$                                                                                                                                                                                                                                                                                             | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014<br>0.714±0.011<br>0.634±0.013<br>0.543±0.012<br>0.671±0.014                                                                                                                                                                                                                                                   | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.711±0.012<br>0.701±0.011<br>0.642±0.012<br>0.573±0.011<br>0.675±0.013                                                                                                                                                                                                                                                   | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011<br>0.722±0.012<br>0.675±0.011<br>0.573±0.011<br>0.728±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MLT<br>0.673±0.014<br>0.613±0.014<br>0.733±0.013<br>0.705±0.014<br>0.657±0.012<br>0.583±0.014<br>0.721±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} [41]\\ 0.618 {\pm} 0.011\\ 0.573 {\pm} 0.012\\ 0.684 {\pm} 0.014\\ 0.652 {\pm} 0.012\\ 0.663 {\pm} 0.013\\ 0.562 {\pm} 0.014\\ 0.623 {\pm} 0.012\\ \end{array}$                                                                                                                                                                                                                           | [68]<br>0.621±0.012<br>0.593±0.011<br>0.665±0.012<br>0.657±0.012<br>0.654±0.011<br>0.543±0.010<br>0.675±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [43]<br>0.654±0.012<br>0.594±0.013<br>0.672±0.010<br>0.657±0.012<br>0.672±0.011<br>0.536±0.009<br>0.685±0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ours<br>0.716±0.007<br>0.664±0.009<br>0.768±0.008<br>0.759±0.011<br>0.698±0.008<br>0.617±0.010<br>0.759±0.007                                                                                                                                                                                                                                                                                        |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway                                                                                                                                                                                                                                     | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009<br>0.682±0.012<br>0.661±0.011<br>0.663±0.011<br>0.663±0.011                                                                                                                                                                                                                                                                                                                                                        | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014<br>0.714±0.011<br>0.634±0.013<br>0.671±0.014<br>0.671±0.014                                                                                                                                                                                                                                                   | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.711±0.012<br>0.701±0.011<br>0.642±0.012<br>0.573±0.011<br>0.675±0.013<br>0.626±0.011                                                                                                                                                                                                                                    | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011<br>0.722±0.012<br>0.675±0.011<br>0.733±0.011<br>0.728±0.011<br>0.617±0.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.013 \\ 0.562 {\pm} 0.013 \\ 0.562 {\pm} 0.014 \\ 0.623 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \end{array}$                                                                                                                                                                                                 | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.654 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} [43] \\ 0.654 {\pm} 0.012 \\ 0.594 {\pm} 0.013 \\ 0.672 {\pm} 0.010 \\ 0.672 {\pm} 0.010 \\ 0.672 {\pm} 0.011 \\ 0.536 {\pm} 0.009 \\ 0.685 {\pm} 0.013 \\ 0.596 {\pm} 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                           | Ours<br>0.716±0.007<br>0.664±0.009<br>0.768±0.008<br>0.759±0.011<br>0.698±0.008<br>0.617±0.010<br>0.759±0.007<br>0.685±0.011                                                                                                                                                                                                                                                                         |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge                                                                                                                                                                                                                           | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009<br>0.682±0.012<br>0.661±0.011<br>0.663±0.011<br>0.618±0.012<br>0.554±0.011                                                                                                                                                                                                                                                                                                                                         | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014<br>0.714±0.011<br>0.634±0.013<br>0.674±0.012<br>0.671±0.014<br>0.618±0.012<br>0.532±0.013                                                                                                                                                                                                                     | $\begin{array}{c} ML\text{-}GCN\\ 0.632\pm0.010\\ 0.613\pm0.012\\ 0.711\pm0.012\\ 0.701\pm0.011\\ 0.642\pm0.012\\ 0.573\pm0.011\\ 0.675\pm0.013\\ 0.626\pm0.011\\ 0.574\pm0.010\\ \end{array}$                                                                                                                                                                    | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011<br>0.722±0.012<br>0.675±0.011<br>0.728±0.011<br>0.617±0.012<br>0.579±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.012 \\ 0.663 {\pm} 0.013 \\ 0.562 {\pm} 0.014 \\ 0.623 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \end{array}$                                                                                                                                                                            | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.667 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} [43] \\ 0.654 {\pm} 0.012 \\ 0.594 {\pm} 0.013 \\ 0.672 {\pm} 0.010 \\ 0.657 {\pm} 0.012 \\ 0.672 {\pm} 0.011 \\ 0.536 {\pm} 0.009 \\ 0.685 {\pm} 0.013 \\ 0.596 {\pm} 0.011 \\ 0.517 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} Ours \\ 0.716 {\pm} 0.007 \\ 0.664 {\pm} 0.009 \\ 0.768 {\pm} 0.008 \\ 0.759 {\pm} 0.011 \\ 0.698 {\pm} 0.008 \\ 0.617 {\pm} 0.010 \\ 0.759 {\pm} 0.007 \\ 0.685 {\pm} 0.0011 \\ 0.598 {\pm} 0.008 \end{array}$                                                                                                                                                                    |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road                                                                                                                                                                                                                   | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009<br>0.682±0.012<br>0.661±0.011<br>0.574±0.010<br>0.663±0.011<br>0.518±0.012<br>0.554±0.011<br>0.604±0.013                                                                                                                                                                                                                                                                                                           | ML-CRNN<br>0.651±0.011<br>0.605±0.012<br>0.677±0.014<br>0.714±0.011<br>0.634±0.013<br>0.671±0.014<br>0.618±0.012<br>0.532±0.013<br>0.611±0.012                                                                                                                                                                                                                     | $\begin{array}{c} \text{ML-GCN} \\ 0.632\pm 0.010 \\ 0.613\pm 0.012 \\ 0.711\pm 0.012 \\ 0.701\pm 0.011 \\ 0.642\pm 0.012 \\ 0.573\pm 0.011 \\ 0.675\pm 0.013 \\ 0.626\pm 0.011 \\ 0.574\pm 0.010 \\ 0.588\pm 0.012 \end{array}$                                                                                                                                  | SSG           0.687±0.010           0.634±0.011           0.734±0.011           0.722±0.012           0.675±0.011           0.728±0.011           0.617±0.012           0.679±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.012 \\ 0.663 {\pm} 0.013 \\ 0.562 {\pm} 0.014 \\ 0.623 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.614 {\pm} 0.013 \end{array}$                                                                                                                                                       | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.667 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \\ 0.613 {\pm} 0.009 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} [43] \\ 0.654\pm 0.012 \\ 0.594\pm 0.013 \\ 0.672\pm 0.010 \\ 0.657\pm 0.012 \\ 0.672\pm 0.011 \\ 0.536\pm 0.009 \\ 0.685\pm 0.013 \\ 0.596\pm 0.011 \\ 0.517\pm 0.012 \\ 0.612\pm 0.013 \end{array}$                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} Ours \\ 0.716 {\pm} 0.007 \\ 0.664 {\pm} 0.009 \\ 0.768 {\pm} 0.008 \\ 0.759 {\pm} 0.011 \\ 0.698 {\pm} 0.008 \\ 0.617 {\pm} 0.010 \\ 0.759 {\pm} 0.007 \\ 0.685 {\pm} 0.011 \\ 0.598 {\pm} 0.008 \\ 0.684 {\pm} 0.007 \end{array}$                                                                                                                                                |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River                                                                                                                                                                                                          | DFB<br>0.604±0.011<br>0.578±0.012<br>0.704±0.009<br>0.682±0.012<br>0.661±0.011<br>0.574±0.010<br>0.663±0.011<br>0.518±0.012<br>0.554±0.011<br>0.604±0.013<br>0.713±0.011                                                                                                                                                                                                                                                                                            | $\begin{array}{c} ML\text{-}CRNN\\ 0.651\pm0.011\\ 0.605\pm0.012\\ 0.677\pm0.014\\ 0.714\pm0.011\\ 0.634\pm0.013\\ 0.543\pm0.012\\ 0.671\pm0.014\\ 0.618\pm0.012\\ 0.532\pm0.013\\ 0.611\pm0.012\\ 0.706\pm0.010\\ \end{array}$                                                                                                                                    | ML-GCN<br>0.632±0.010<br>0.613±0.012<br>0.701±0.011<br>0.642±0.012<br>0.573±0.011<br>0.675±0.013<br>0.626±0.011<br>0.574±0.010<br>0.588±0.012<br>0.713±0.013                                                                                                                                                                                                      | SSG<br>0.687±0.010<br>0.634±0.011<br>0.734±0.011<br>0.722±0.012<br>0.675±0.011<br>0.573±0.011<br>0.617±0.012<br>0.579±0.011<br>0.648±0.012<br>0.674±0.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \\ 0.705 {\pm} 0.013 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.012 \\ 0.663 {\pm} 0.013 \\ 0.562 {\pm} 0.013 \\ 0.663 {\pm} 0.013 \\ 0.613 {\pm} 0.012 \\ 0.613 {\pm} 0.012 \\ 0.614 {\pm} 0.013 \\ 0.672 {\pm} 0.012 \end{array}$                                                                                                                                  | $\begin{array}{c} [68] \\ \hline 0.621 {\pm} 0.012 \\ \hline 0.593 {\pm} 0.011 \\ \hline 0.665 {\pm} 0.012 \\ \hline 0.667 {\pm} 0.012 \\ \hline 0.654 {\pm} 0.011 \\ \hline 0.634 {\pm} 0.010 \\ \hline 0.675 {\pm} 0.011 \\ \hline 0.606 {\pm} 0.012 \\ \hline 0.547 {\pm} 0.010 \\ \hline 0.613 {\pm} 0.009 \\ \hline 0.654 {\pm} 0.013 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} [43] \\ \hline 0.654 {\pm} 0.012 \\ \hline 0.594 {\pm} 0.013 \\ \hline 0.672 {\pm} 0.013 \\ \hline 0.672 {\pm} 0.011 \\ \hline 0.672 {\pm} 0.011 \\ \hline 0.536 {\pm} 0.009 \\ \hline 0.685 {\pm} 0.013 \\ \hline 0.596 {\pm} 0.013 \\ \hline 0.612 {\pm} 0.012 \\ \hline 0.612 {\pm} 0.013 \\ \hline 0.665 {\pm} 0.013 \end{array}$                                                                                                                                                                                                                               | $\begin{array}{c} Ours \\ 0.716 {\pm} 0.007 \\ 0.664 {\pm} 0.009 \\ 0.768 {\pm} 0.008 \\ 0.759 {\pm} 0.011 \\ 0.698 {\pm} 0.008 \\ 0.617 {\pm} 0.010 \\ 0.759 {\pm} 0.007 \\ 0.685 {\pm} 0.011 \\ 0.598 {\pm} 0.008 \\ 0.684 {\pm} 0.008 \\ 0.684 {\pm} 0.007 \\ 0.748 {\pm} 0.008 \end{array}$                                                                                                      |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park                                                                                                                                                                                                  | $\begin{array}{c} ${\rm DFB}$\\ 0.604 {\pm} 0.011$\\ 0.578 {\pm} 0.012$\\ 0.704 {\pm} 0.002$\\ 0.661 {\pm} 0.011$\\ 0.661 {\pm} 0.011$\\ 0.574 {\pm} 0.010$\\ 0.663 {\pm} 0.011$\\ 0.618 {\pm} 0.012$\\ 0.554 {\pm} 0.011$\\ 0.604 {\pm} 0.013$\\ 0.713 {\pm} 0.011$\\ 0.654 {\pm} 0.012$\\ \end{array}$                                                                                                                                                            | $\begin{array}{c} ML\text{-}CRNN \\ 0.651\pm0.011 \\ 0.605\pm0.012 \\ 0.677\pm0.014 \\ 0.714\pm0.011 \\ 0.634\pm0.013 \\ 0.543\pm0.012 \\ 0.671\pm0.014 \\ 0.618\pm0.012 \\ 0.532\pm0.013 \\ 0.611\pm0.012 \\ 0.706\pm0.010 \\ 0.647\pm0.012 \end{array}$                                                                                                          | $\begin{array}{c} ML\text{-GCN} \\ 0.632\pm0.010 \\ 0.613\pm0.012 \\ 0.701\pm0.011 \\ 0.642\pm0.012 \\ 0.573\pm0.011 \\ 0.675\pm0.013 \\ 0.626\pm0.011 \\ 0.578\pm0.012 \\ 0.713\pm0.013 \\ 0.677\pm0.013 \\ 0.677\pm0.012 \\ \end{array}$                                                                                                                        | $\frac{SSG}{0.687\pm0.010}\\ 0.634\pm0.011\\ 0.734\pm0.011\\ 0.734\pm0.011\\ 0.722\pm0.012\\ 0.675\pm0.011\\ 0.573\pm0.011\\ 0.573\pm0.011\\ 0.617\pm0.012\\ 0.579\pm0.011\\ 0.648\pm0.012\\ 0.714\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.687\pm0.011\\ 0.688\pm0.011\\ 0.688\pm0.011\\ 0.688\pm0.001\\ 0.688\pm0.$ | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \\ 0.705 {\pm} 0.013 \\ 0.687 {\pm} 0.013 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.012 \\ 0.663 {\pm} 0.013 \\ 0.562 {\pm} 0.014 \\ 0.623 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.614 {\pm} 0.013 \\ 0.672 {\pm} 0.012 \\ 0.688 {\pm} 0.012 \end{array}$                                                                                                             | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.667 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.011 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \\ 0.613 {\pm} 0.009 \\ 0.654 {\pm} 0.013 \\ 0.665 {\pm} 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} [43] \\ 0.654\pm 0.012 \\ 0.594\pm 0.013 \\ 0.672\pm 0.010 \\ 0.672\pm 0.012 \\ 0.672\pm 0.011 \\ 0.536\pm 0.009 \\ 0.685\pm 0.013 \\ 0.596\pm 0.011 \\ 0.517\pm 0.012 \\ 0.612\pm 0.013 \\ 0.665\pm 0.013 \\ 0.667\pm 0.012 \\ \end{array}$                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} Ours \\ 0.716 {\pm} 0.007 \\ 0.664 {\pm} 0.009 \\ 0.768 {\pm} 0.008 \\ 0.759 {\pm} 0.011 \\ 0.698 {\pm} 0.008 \\ 0.617 {\pm} 0.010 \\ 0.759 {\pm} 0.007 \\ 0.685 {\pm} 0.011 \\ 0.598 {\pm} 0.008 \\ 0.684 {\pm} 0.007 \\ 0.734 {\pm} 0.008 \\ 0.703 {\pm} 0.008 \end{array}$                                                                                                      |
| Category         Tall building         Residential         Intersection         Forest         Sea         Soccer field         Aircraft         Railway         Bridge         Road         River         Park         Palace                                                                                                                       | $\begin{array}{c} ${\rm DFB}$\\ 0.604 {\pm} 0.011$\\ 0.578 {\pm} 0.012$\\ 0.704 {\pm} 0.009\\ 0.682 {\pm} 0.012$\\ 0.661 {\pm} 0.011$\\ 0.574 {\pm} 0.010$\\ 0.663 {\pm} 0.011$\\ 0.618 {\pm} 0.012$\\ 0.554 {\pm} 0.011$\\ 0.604 {\pm} 0.013$\\ 0.713 {\pm} 0.011$\\ 0.654 {\pm} 0.012$\\ 0.652 {\pm} 0.012$\\ 0.612 {\pm} 0.009$\\ \end{array}$                                                                                                                   | $\begin{array}{c} ML\text{-}CRNN \\ 0.651\pm 0.011 \\ 0.605\pm 0.012 \\ 0.677\pm 0.014 \\ 0.714\pm 0.011 \\ 0.634\pm 0.013 \\ 0.543\pm 0.012 \\ 0.671\pm 0.014 \\ 0.618\pm 0.012 \\ 0.532\pm 0.013 \\ 0.611\pm 0.012 \\ 0.706\pm 0.010 \\ 0.647\pm 0.012 \\ 0.631\pm 0.012 \end{array}$                                                                            | $\begin{array}{c} ML\text{-GCN} \\ 0.632\pm0.010 \\ 0.613\pm0.012 \\ 0.711\pm0.012 \\ 0.701\pm0.011 \\ 0.642\pm0.012 \\ 0.573\pm0.011 \\ 0.675\pm0.013 \\ 0.626\pm0.011 \\ 0.574\pm0.010 \\ 0.588\pm0.012 \\ 0.713\pm0.013 \\ 0.677\pm0.012 \\ 0.611\pm0.013 \end{array}$                                                                                         | $\frac{\text{SSG}}{0.687\pm0.010}\\ \frac{0.634\pm0.011}{0.734\pm0.011}\\ \frac{0.734\pm0.011}{0.722\pm0.012}\\ \frac{0.675\pm0.011}{0.573\pm0.011}\\ \frac{0.573\pm0.011}{0.579\pm0.011}\\ \frac{0.617\pm0.012}{0.579\pm0.011}\\ \frac{0.688\pm0.012}{0.687\pm0.011}\\ \frac{0.687\pm0.011}{0.625\pm0.010}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \\ 0.705 {\pm} 0.013 \\ 0.687 {\pm} 0.013 \\ 0.632 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.013 \\ 0.562 {\pm} 0.013 \\ 0.562 {\pm} 0.014 \\ 0.623 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.614 {\pm} 0.012 \\ 0.688 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \end{array}$                                                                                        | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.654 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \\ 0.613 {\pm} 0.009 \\ 0.654 {\pm} 0.013 \\ 0.665 {\pm} 0.011 \\ 0.596 {\pm} 0.012 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} [43] \\ 0.654\pm 0.012 \\ 0.594\pm 0.013 \\ 0.672\pm 0.010 \\ 0.672\pm 0.011 \\ 0.536\pm 0.009 \\ 0.685\pm 0.013 \\ 0.596\pm 0.011 \\ 0.517\pm 0.012 \\ 0.612\pm 0.013 \\ 0.665\pm 0.013 \\ 0.675\pm 0.012 \\ 0.576\pm 0.013 \\ \end{array}$                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} Ours \\ 0.716 {\pm} 0.007 \\ 0.664 {\pm} 0.009 \\ 0.768 {\pm} 0.008 \\ 0.759 {\pm} 0.011 \\ 0.698 {\pm} 0.008 \\ 0.617 {\pm} 0.010 \\ 0.759 {\pm} 0.007 \\ 0.685 {\pm} 0.011 \\ 0.598 {\pm} 0.008 \\ 0.684 {\pm} 0.007 \\ 0.748 {\pm} 0.008 \\ 0.703 {\pm} 0.008 \\ 0.672 {\pm} 0.008 \end{array}$                                                                                 |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park<br>Palace<br>Factory                                                                                                                                                                             | $\begin{array}{c} ${\rm DFB}$\\ 0.604 {\pm} 0.011$\\ 0.578 {\pm} 0.012$\\ 0.704 {\pm} 0.009$\\ 0.682 {\pm} 0.012$\\ 0.661 {\pm} 0.011$\\ 0.574 {\pm} 0.010$\\ 0.663 {\pm} 0.011$\\ 0.618 {\pm} 0.012$\\ 0.554 {\pm} 0.011$\\ 0.604 {\pm} 0.013$\\ 0.713 {\pm} 0.011$\\ 0.654 {\pm} 0.012$\\ 0.612 {\pm} 0.009$\\ 0.597 {\pm} 0.012$\\ \end{array}$                                                                                                                  | $\begin{array}{c} ML\text{-CRNN} \\ 0.651\pm 0.011 \\ 0.605\pm 0.012 \\ 0.677\pm 0.014 \\ 0.714\pm 0.011 \\ 0.634\pm 0.013 \\ 0.543\pm 0.012 \\ 0.671\pm 0.014 \\ 0.618\pm 0.012 \\ 0.532\pm 0.013 \\ 0.611\pm 0.012 \\ 0.706\pm 0.010 \\ 0.647\pm 0.012 \\ 0.601\pm 0.012 \\ 0.601\pm 0.014 \\ \end{array}$                                                       | $\begin{array}{c} ML\text{-}GCN\\ 0.632\pm0.010\\ 0.613\pm0.012\\ 0.701\pm0.011\\ 0.642\pm0.012\\ 0.573\pm0.011\\ 0.675\pm0.013\\ 0.626\pm0.011\\ 0.574\pm0.010\\ 0.588\pm0.012\\ 0.713\pm0.013\\ 0.677\pm0.012\\ 0.611\pm0.013\\ 0.609\pm0.011\\ \end{array}$                                                                                                    | $\frac{\text{SSG}}{0.687\pm0.010}\\ \frac{0.634\pm0.011}{0.734\pm0.011}\\ \frac{0.734\pm0.011}{0.722\pm0.012}\\ \frac{0.675\pm0.011}{0.573\pm0.011}\\ \frac{0.573\pm0.011}{0.579\pm0.011}\\ \frac{0.617\pm0.012}{0.579\pm0.011}\\ \frac{0.648\pm0.012}{0.648\pm0.012}\\ \frac{0.687\pm0.011}{0.625\pm0.010}\\ \frac{0.613\pm0.011}{0.613\pm0.011}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.013 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \\ 0.627 {\pm} 0.013 \\ 0.637 {\pm} 0.013 \\ 0.632 {\pm} 0.012 \\ 0.612 {\pm} 0.012 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.013 \\ 0.562 {\pm} 0.013 \\ 0.562 {\pm} 0.014 \\ 0.623 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.614 {\pm} 0.013 \\ 0.672 {\pm} 0.012 \\ 0.688 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.612 {\pm} 0.012 \\ \end{array}$                                                                | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.655 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \\ 0.613 {\pm} 0.009 \\ 0.655 {\pm} 0.011 \\ 0.596 {\pm} 0.011 \\ 0.596 {\pm} 0.011 \\ 0.509 {\pm} 0.011 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} [43] \\ 0.654\pm 0.012 \\ 0.594\pm 0.013 \\ 0.672\pm 0.010 \\ 0.672\pm 0.010 \\ 0.672\pm 0.011 \\ 0.536\pm 0.009 \\ 0.685\pm 0.013 \\ 0.596\pm 0.011 \\ 0.517\pm 0.012 \\ 0.612\pm 0.013 \\ 0.665\pm 0.013 \\ 0.674\pm 0.012 \\ 0.576\pm 0.013 \\ 0.632\pm 0.012 \\ \end{array}$                                                                                                                                                                                                                                                                                    | $\begin{array}{c} Ours \\ 0.716 {\pm} 0.007 \\ 0.664 {\pm} 0.009 \\ 0.768 {\pm} 0.008 \\ 0.759 {\pm} 0.011 \\ 0.698 {\pm} 0.008 \\ 0.617 {\pm} 0.010 \\ 0.759 {\pm} 0.007 \\ 0.685 {\pm} 0.011 \\ 0.598 {\pm} 0.008 \\ 0.684 {\pm} 0.008 \\ 0.684 {\pm} 0.008 \\ 0.732 {\pm} 0.008 \\ 0.732 {\pm} 0.008 \\ 0.672 {\pm} 0.008 \\ 0.662 {\pm} 0.009 \\ \end{array}$                                    |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park<br>Palace<br>Factory<br>Farmland                                                                                                                                                                 | $\begin{array}{c} ${\rm DFB}$\\ 0.604\pm0.011$\\ 0.578\pm0.012$\\ 0.704\pm0.009$\\ 0.682\pm0.012$\\ 0.661\pm0.011$\\ 0.574\pm0.010$\\ 0.663\pm0.011$\\ 0.618\pm0.012$\\ 0.618\pm0.011$\\ 0.654\pm0.011$\\ 0.604\pm0.013$\\ 0.713\pm0.011$\\ 0.654\pm0.012$\\ 0.612\pm0.002$\\ 0.597\pm0.012$\\ 0.582\pm0.011$\\ \end{array}$                                                                                                                                        | $\begin{array}{c} ML\text{-}CRNN \\ 0.651\pm0.011 \\ 0.605\pm0.012 \\ 0.677\pm0.014 \\ 0.714\pm0.011 \\ 0.714\pm0.011 \\ 0.634\pm0.013 \\ 0.543\pm0.012 \\ 0.671\pm0.014 \\ 0.618\pm0.012 \\ 0.532\pm0.013 \\ 0.611\pm0.012 \\ 0.706\pm0.010 \\ 0.647\pm0.012 \\ 0.601\pm0.014 \\ 0.587\pm0.012 \\ \end{array}$                                                    | $\begin{array}{c} \text{ML-GCN} \\ 0.632\pm 0.010 \\ 0.613\pm 0.012 \\ 0.701\pm 0.011 \\ 0.701\pm 0.011 \\ 0.675\pm 0.011 \\ 0.675\pm 0.013 \\ 0.626\pm 0.011 \\ 0.574\pm 0.010 \\ 0.588\pm 0.012 \\ 0.713\pm 0.013 \\ 0.677\pm 0.012 \\ 0.611\pm 0.013 \\ 0.609\pm 0.011 \\ 0.576\pm 0.012 \\ \end{array}$                                                       | $\frac{\text{SSG}}{0.687\pm0.010}\\ \frac{0.637\pm0.010}{0.634\pm0.011}\\ \frac{0.734\pm0.011}{0.722\pm0.012}\\ \frac{0.675\pm0.011}{0.573\pm0.011}\\ \frac{0.573\pm0.011}{0.617\pm0.012}\\ \frac{0.579\pm0.011}{0.648\pm0.012}\\ \frac{0.714\pm0.011}{0.667\pm0.011}\\ \frac{0.613\pm0.011}{0.616\pm0.012}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.014 \\ 0.657 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.524 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \\ 0.627 {\pm} 0.013 \\ 0.632 {\pm} 0.013 \\ 0.612 {\pm} 0.012 \\ 0.612 {\pm} 0.012 \\ 0.613 {\pm} 0.011 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.013 \\ 0.562 {\pm} 0.013 \\ 0.562 {\pm} 0.013 \\ 0.623 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.614 {\pm} 0.013 \\ 0.672 {\pm} 0.012 \\ 0.688 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.612 {\pm} 0.012 \\ 0.585 {\pm} 0.013 \end{array}$                                              | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.665 {\pm} 0.012 \\ 0.654 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \\ 0.613 {\pm} 0.009 \\ 0.655 {\pm} 0.011 \\ 0.596 {\pm} 0.012 \\ 0.609 {\pm} 0.011 \\ 0.565 {\pm} 0.012 $ | $\begin{array}{c} [43] \\ 0.654\pm 0.012 \\ 0.594\pm 0.013 \\ 0.672\pm 0.010 \\ 0.657\pm 0.012 \\ 0.672\pm 0.011 \\ 0.536\pm 0.009 \\ 0.685\pm 0.013 \\ 0.596\pm 0.011 \\ 0.517\pm 0.012 \\ 0.612\pm 0.013 \\ 0.665\pm 0.013 \\ 0.674\pm 0.012 \\ 0.576\pm 0.013 \\ 0.632\pm 0.012 \\ 0.612\pm 0.013 \\ 0.612\pm 0.013 \\ \end{array}$                                                                                                                                                                                                                                                | $\begin{array}{c} Ours \\ \hline Ours \\ 0.716 \pm 0.007 \\ 0.664 \pm 0.009 \\ 0.768 \pm 0.008 \\ 0.759 \pm 0.011 \\ 0.698 \pm 0.008 \\ 0.617 \pm 0.010 \\ 0.759 \pm 0.007 \\ 0.685 \pm 0.011 \\ 0.598 \pm 0.008 \\ 0.684 \pm 0.007 \\ 0.748 \pm 0.008 \\ 0.703 \pm 0.008 \\ 0.672 \pm 0.008 \\ 0.662 \pm 0.009 \\ 0.662 \pm 0.009 \\ 0.627 \pm 0.010 \end{array}$                                   |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park<br>Palace<br>Factory<br>Farmland<br>Vehicle                                                                                                                                                      | $\begin{array}{c} ${\rm DFB}$\\ 0.604 {\pm} 0.011$\\ 0.578 {\pm} 0.012$\\ 0.704 {\pm} 0.009$\\ 0.682 {\pm} 0.012$\\ 0.661 {\pm} 0.011$\\ 0.574 {\pm} 0.010$\\ 0.663 {\pm} 0.011$\\ 0.618 {\pm} 0.012$\\ 0.554 {\pm} 0.011$\\ 0.604 {\pm} 0.013$\\ 0.713 {\pm} 0.011$\\ 0.654 {\pm} 0.012$\\ 0.612 {\pm} 0.002$\\ 0.597 {\pm} 0.012$\\ 0.582 {\pm} 0.011$\\ 0.643 {\pm} 0.012$\\ \end{array}$                                                                        | $\begin{array}{c} ML\text{-}CRNN \\ 0.651\pm0.011 \\ 0.605\pm0.012 \\ 0.677\pm0.014 \\ 0.714\pm0.011 \\ 0.634\pm0.013 \\ 0.543\pm0.012 \\ 0.671\pm0.014 \\ 0.618\pm0.012 \\ 0.611\pm0.012 \\ 0.706\pm0.010 \\ 0.647\pm0.012 \\ 0.631\pm0.012 \\ 0.631\pm0.012 \\ 0.631\pm0.012 \\ 0.631\pm0.012 \\ 0.675\pm0.013 \\ 0.675\pm0.013 \\ \end{array}$                  | $\begin{array}{c} ML\text{-GCN} \\ 0.632\pm 0.010 \\ 0.613\pm 0.012 \\ 0.701\pm 0.011 \\ 0.701\pm 0.011 \\ 0.642\pm 0.012 \\ 0.573\pm 0.011 \\ 0.675\pm 0.013 \\ 0.626\pm 0.011 \\ 0.574\pm 0.010 \\ 0.588\pm 0.012 \\ 0.713\pm 0.013 \\ 0.667\pm 0.012 \\ 0.611\pm 0.013 \\ 0.609\pm 0.011 \\ 0.576\pm 0.012 \\ 0.664\pm 0.013 \\ \end{array}$                   | $\begin{array}{c} SSG \\ \hline 0.687 \pm 0.010 \\ \hline 0.634 \pm 0.011 \\ \hline 0.734 \pm 0.011 \\ \hline 0.722 \pm 0.012 \\ \hline 0.675 \pm 0.011 \\ \hline 0.675 \pm 0.011 \\ \hline 0.675 \pm 0.011 \\ \hline 0.617 \pm 0.012 \\ \hline 0.579 \pm 0.011 \\ \hline 0.648 \pm 0.012 \\ \hline 0.714 \pm 0.011 \\ \hline 0.687 \pm 0.011 \\ \hline 0.625 \pm 0.010 \\ \hline 0.613 \pm 0.011 \\ \hline 0.613 \pm 0.011 \\ \hline 0.643 \pm 0.014 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} MLT \\ 0.673 \pm 0.014 \\ 0.613 \pm 0.014 \\ 0.733 \pm 0.013 \\ 0.705 \pm 0.014 \\ 0.657 \pm 0.012 \\ 0.583 \pm 0.014 \\ 0.721 \pm 0.011 \\ 0.614 \pm 0.012 \\ 0.524 \pm 0.012 \\ 0.627 \pm 0.012 \\ 0.627 \pm 0.013 \\ 0.632 \pm 0.013 \\ 0.632 \pm 0.012 \\ 0.613 \pm 0.011 \\ 0.672 \pm 0.012 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} [41] \\ 0.618 \pm 0.011 \\ 0.573 \pm 0.012 \\ 0.684 \pm 0.014 \\ 0.652 \pm 0.012 \\ 0.663 \pm 0.013 \\ 0.562 \pm 0.014 \\ 0.623 \pm 0.012 \\ 0.613 \pm 0.012 \\ 0.613 \pm 0.012 \\ 0.614 \pm 0.013 \\ 0.672 \pm 0.012 \\ 0.688 \pm 0.012 \\ 0.593 \pm 0.011 \\ 0.612 \pm 0.012 \\ 0.585 \pm 0.013 \\ 0.634 \pm 0.012 \\ \end{array}$                                                      | $\begin{array}{c} [68] \\ \hline 0.621 \pm 0.012 \\ \hline 0.593 \pm 0.011 \\ \hline 0.665 \pm 0.012 \\ \hline 0.667 \pm 0.012 \\ \hline 0.667 \pm 0.011 \\ \hline 0.654 \pm 0.011 \\ \hline 0.675 \pm 0.011 \\ \hline 0.675 \pm 0.011 \\ \hline 0.606 \pm 0.012 \\ \hline 0.613 \pm 0.009 \\ \hline 0.654 \pm 0.013 \\ \hline 0.665 \pm 0.011 \\ \hline 0.565 \pm 0.011 \\ \hline 0.563 \pm 0.012 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} [43] \\ \hline 0.654\pm 0.012 \\ \hline 0.594\pm 0.013 \\ \hline 0.672\pm 0.010 \\ \hline 0.672\pm 0.011 \\ \hline 0.672\pm 0.011 \\ \hline 0.536\pm 0.009 \\ \hline 0.685\pm 0.013 \\ \hline 0.596\pm 0.011 \\ \hline 0.517\pm 0.012 \\ \hline 0.612\pm 0.013 \\ \hline 0.665\pm 0.013 \\ \hline 0.674\pm 0.012 \\ \hline 0.576\pm 0.013 \\ \hline 0.632\pm 0.012 \\ \hline 0.612\pm 0.012 \\ \hline 0.612\pm 0.013 \\ \hline 0.612\pm 0.013 \\ \hline 0.612\pm 0.013 \\ \hline 0.643\pm 0.012 \\ \hline \end{array}$                                              | $\begin{array}{c} Ours \\ Ours \\ 0.716 \pm 0.007 \\ 0.664 \pm 0.009 \\ 0.768 \pm 0.008 \\ 0.759 \pm 0.011 \\ 0.698 \pm 0.008 \\ 0.617 \pm 0.010 \\ 0.759 \pm 0.007 \\ 0.685 \pm 0.011 \\ 0.598 \pm 0.008 \\ 0.685 \pm 0.001 \\ 0.688 \pm 0.007 \\ 0.748 \pm 0.008 \\ 0.662 \pm 0.008 \\ 0.667 \pm 0.010 \\ 0.627 \pm 0.010 \\ 0.699 \pm 0.012 \\ \end{array}$                                       |
| Category<br>Tall building<br>Residential<br>Intersection<br>Forest<br>Sea<br>Soccer field<br>Aircraft<br>Railway<br>Bridge<br>Road<br>River<br>Park<br>Palace<br>Factory<br>Farmland<br>Vehicle<br>Yacht                                                                                                                                             | $\begin{array}{c} ${\rm DFB}$\\ 0.604\pm0.011$\\ 0.578\pm0.012$\\ 0.704\pm0.009$\\ 0.682\pm0.012$\\ 0.661\pm0.011$\\ 0.574\pm0.010$\\ 0.663\pm0.011$\\ 0.618\pm0.012$\\ 0.554\pm0.011$\\ 0.604\pm0.013$\\ 0.713\pm0.011$\\ 0.604\pm0.012$\\ 0.612\pm0.009$\\ 0.597\pm0.012$\\ 0.582\pm0.011$\\ 0.643\pm0.012$\\ 0.714\pm0.012$\\ 0.714\pm0.012$\\ \hline \end{array}$                                                                                               | $\begin{array}{c} ML-CRNN\\ 0.651\pm 0.011\\ 0.605\pm 0.012\\ 0.677\pm 0.014\\ 0.714\pm 0.011\\ 0.634\pm 0.013\\ 0.543\pm 0.012\\ 0.671\pm 0.014\\ 0.618\pm 0.012\\ 0.611\pm 0.012\\ 0.706\pm 0.010\\ 0.647\pm 0.012\\ 0.631\pm 0.012\\ 0.631\pm 0.012\\ 0.631\pm 0.012\\ 0.675\pm 0.012\\ 0.675\pm 0.013\\ 0.709\pm 0.014\\ \end{array}$                          | $\begin{array}{c} ML\text{-GCN} \\ 0.632\pm0.010 \\ 0.613\pm0.012 \\ 0.711\pm0.012 \\ 0.701\pm0.011 \\ 0.642\pm0.012 \\ 0.573\pm0.011 \\ 0.675\pm0.013 \\ 0.626\pm0.011 \\ 0.578\pm0.012 \\ 0.713\pm0.013 \\ 0.677\pm0.012 \\ 0.611\pm0.013 \\ 0.609\pm0.011 \\ 0.576\pm0.012 \\ 0.664\pm0.013 \\ 0.703\pm0.012 \\ \end{array}$                                   | $\frac{\text{SSG}}{0.687\pm0.010}\\ \frac{0.634\pm0.011}{0.734\pm0.011}\\ \frac{0.734\pm0.011}{0.722\pm0.012}\\ \frac{0.675\pm0.011}{0.675\pm0.011}\\ \frac{0.675\pm0.011}{0.617\pm0.012}\\ \frac{0.617\pm0.012}{0.779\pm0.011}\\ \frac{0.648\pm0.012}{0.648\pm0.011}\\ \frac{0.613\pm0.011}{0.613\pm0.011}\\ \frac{0.613\pm0.014}{0.611\pm0.012}\\ \frac{0.643\pm0.014}{0.711\pm0.012}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} MLT \\ 0.673 {\pm} 0.014 \\ 0.613 {\pm} 0.014 \\ 0.733 {\pm} 0.013 \\ 0.705 {\pm} 0.014 \\ 0.657 {\pm} 0.012 \\ 0.657 {\pm} 0.012 \\ 0.583 {\pm} 0.014 \\ 0.721 {\pm} 0.011 \\ 0.614 {\pm} 0.012 \\ 0.627 {\pm} 0.012 \\ 0.627 {\pm} 0.013 \\ 0.632 {\pm} 0.013 \\ 0.632 {\pm} 0.012 \\ 0.613 {\pm} 0.011 \\ 0.672 {\pm} 0.012 \\ 0.67 {\pm} 0.012 \\ 0.67 {\pm} 0.012 \\ 0.714 {\pm} 0.012 \\ 0$ | $\begin{array}{c} [41] \\ 0.618 \pm 0.011 \\ 0.573 \pm 0.012 \\ 0.684 \pm 0.014 \\ 0.652 \pm 0.012 \\ 0.663 \pm 0.013 \\ 0.562 \pm 0.013 \\ 0.562 \pm 0.014 \\ 0.623 \pm 0.012 \\ 0.613 \pm 0.013 \\ 0.526 \pm 0.013 \\ 0.672 \pm 0.012 \\ 0.688 \pm 0.012 \\ 0.593 \pm 0.011 \\ 0.612 \pm 0.012 \\ 0.585 \pm 0.013 \\ 0.634 \pm 0.012 \\ 0.685 \pm 0.010 \\ \end{array}$                                   | $\begin{array}{c} [68] \\ 0.621 \pm 0.012 \\ 0.593 \pm 0.011 \\ 0.665 \pm 0.012 \\ 0.667 \pm 0.012 \\ 0.654 \pm 0.011 \\ 0.543 \pm 0.010 \\ 0.675 \pm 0.011 \\ 0.606 \pm 0.012 \\ 0.613 \pm 0.009 \\ 0.613 \pm 0.009 \\ 0.654 \pm 0.013 \\ 0.665 \pm 0.011 \\ 0.596 \pm 0.011 \\ 0.596 \pm 0.011 \\ 0.609 \pm 0.011 \\ 0.639 \pm 0.012 \\ 0.625 \pm 0.013 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} [43] \\ \hline 0.654 \pm 0.012 \\ \hline 0.594 \pm 0.013 \\ \hline 0.672 \pm 0.010 \\ \hline 0.672 \pm 0.011 \\ \hline 0.672 \pm 0.011 \\ \hline 0.536 \pm 0.009 \\ \hline 0.685 \pm 0.013 \\ \hline 0.596 \pm 0.011 \\ \hline 0.517 \pm 0.012 \\ \hline 0.612 \pm 0.013 \\ \hline 0.665 \pm 0.013 \\ \hline 0.674 \pm 0.012 \\ \hline 0.576 \pm 0.013 \\ \hline 0.632 \pm 0.012 \\ \hline 0.612 \pm 0.013 \\ \hline 0.612 \pm 0.013 \\ \hline 0.614 \pm 0.012 \\ \hline 0.612 \pm 0.013 \\ \hline 0.614 \pm 0.012 \\ \hline 0.712 \pm 0.011 \\ \hline \end{array}$ | $\begin{array}{c} Ours \\ Ours \\ 0.716 \pm 0.007 \\ 0.664 \pm 0.009 \\ 0.768 \pm 0.008 \\ 0.759 \pm 0.011 \\ 0.698 \pm 0.008 \\ 0.617 \pm 0.010 \\ 0.759 \pm 0.007 \\ 0.685 \pm 0.011 \\ 0.598 \pm 0.008 \\ 0.684 \pm 0.007 \\ 0.684 \pm 0.008 \\ 0.674 \pm 0.008 \\ 0.672 \pm 0.006 \\ 0.662 \pm 0.009 \\ 0.627 \pm 0.010 \\ 0.699 \pm 0.012 \\ 0.779 \pm 0.007 \end{array}$                       |
| Category           Tall building           Residential           Intersection           Forest           Sea           Soccer field           Aircraft           Railway           Bridge           Road           River           Park           Palace           Factory           Farmland           Vehicle           Yacht           Swim. pool | $\begin{array}{c} ${\rm DFB}$\\ 0.604 \pm 0.011$\\ 0.578 \pm 0.012$\\ 0.704 \pm 0.009$\\ 0.682 \pm 0.012$\\ 0.661 \pm 0.011$\\ 0.574 \pm 0.010$\\ 0.663 \pm 0.011$\\ 0.554 \pm 0.012$\\ 0.5554 \pm 0.011$\\ 0.604 \pm 0.013$\\ 0.713 \pm 0.011$\\ 0.654 \pm 0.012$\\ 0.612 \pm 0.009$\\ 0.597 \pm 0.012$\\ 0.582 \pm 0.011$\\ 0.643 \pm 0.012$\\ 0.582 \pm 0.011$\\ 0.643 \pm 0.012$\\ 0.544 \pm 0.012$\\ 0.504 \pm 0.012$\\ 0.506 \pm 0.012$\\ \hline \end{array}$ | $\begin{array}{c} \text{ML-CRNN} \\ 0.651\pm 0.011 \\ 0.605\pm 0.012 \\ 0.677\pm 0.014 \\ 0.714\pm 0.011 \\ 0.634\pm 0.013 \\ 0.543\pm 0.012 \\ 0.671\pm 0.014 \\ 0.618\pm 0.012 \\ 0.611\pm 0.012 \\ 0.706\pm 0.010 \\ 0.647\pm 0.012 \\ 0.601\pm 0.012 \\ 0.601\pm 0.014 \\ 0.587\pm 0.012 \\ 0.675\pm 0.013 \\ 0.709\pm 0.014 \\ 0.632\pm 0.012 \\ \end{array}$ | $\begin{array}{c} ML\text{-GCN} \\ 0.632\pm0.010 \\ 0.613\pm0.012 \\ 0.711\pm0.012 \\ 0.701\pm0.011 \\ 0.642\pm0.011 \\ 0.642\pm0.011 \\ 0.675\pm0.013 \\ 0.626\pm0.011 \\ 0.573\pm0.011 \\ 0.578\pm0.012 \\ 0.713\pm0.013 \\ 0.677\pm0.012 \\ 0.611\pm0.013 \\ 0.609\pm0.011 \\ 0.576\pm0.012 \\ 0.664\pm0.013 \\ 0.703\pm0.012 \\ 0.631\pm0.013 \\ \end{array}$ | $\frac{\text{SSG}}{0.687\pm0.010}\\ \frac{0.634\pm0.011}{0.734\pm0.011}\\ \frac{0.734\pm0.011}{0.722\pm0.012}\\ \frac{0.675\pm0.011}{0.573\pm0.011}\\ \frac{0.573\pm0.011}{0.579\pm0.011}\\ \frac{0.617\pm0.012}{0.579\pm0.011}\\ \frac{0.648\pm0.012}{0.648\pm0.012}\\ \frac{0.714\pm0.011}{0.665\pm0.010}\\ \frac{0.613\pm0.011}{0.616\pm0.012}\\ \frac{0.643\pm0.014}{0.711\pm0.012}\\ \frac{0.653\pm0.012}{0.653\pm0.012}\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} MLT \\ 0.673 \pm 0.014 \\ 0.613 \pm 0.014 \\ 0.733 \pm 0.013 \\ 0.705 \pm 0.014 \\ 0.657 \pm 0.012 \\ 0.657 \pm 0.012 \\ 0.583 \pm 0.014 \\ 0.721 \pm 0.011 \\ 0.614 \pm 0.012 \\ 0.627 \pm 0.012 \\ 0.627 \pm 0.013 \\ 0.687 \pm 0.013 \\ 0.632 \pm 0.012 \\ 0.613 \pm 0.011 \\ 0.672 \pm 0.012 \\ 0.613 \pm 0.011 \\ 0.672 \pm 0.012 \\ 0.613 \pm 0.011 \\ 0.621 \pm 0.011 \\ 0.621 \pm 0.011 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} [41] \\ 0.618 {\pm} 0.011 \\ 0.573 {\pm} 0.012 \\ 0.684 {\pm} 0.014 \\ 0.652 {\pm} 0.013 \\ 0.663 {\pm} 0.013 \\ 0.562 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.613 {\pm} 0.013 \\ 0.526 {\pm} 0.012 \\ 0.614 {\pm} 0.013 \\ 0.672 {\pm} 0.012 \\ 0.688 {\pm} 0.012 \\ 0.585 {\pm} 0.011 \\ 0.685 {\pm} 0.012 \\ 0.685 {\pm} 0.010 \\ 0.605 {\pm} 0.011 \\ \end{array}$ | $\begin{array}{c} [68] \\ 0.621 {\pm} 0.012 \\ 0.593 {\pm} 0.011 \\ 0.665 {\pm} 0.012 \\ 0.665 {\pm} 0.012 \\ 0.664 {\pm} 0.012 \\ 0.654 {\pm} 0.011 \\ 0.543 {\pm} 0.010 \\ 0.675 {\pm} 0.011 \\ 0.606 {\pm} 0.012 \\ 0.547 {\pm} 0.010 \\ 0.613 {\pm} 0.009 \\ 0.654 {\pm} 0.013 \\ 0.665 {\pm} 0.011 \\ 0.596 {\pm} 0.012 \\ 0.609 {\pm} 0.011 \\ 0.565 {\pm} 0.011 \\ 0.639 {\pm} 0.012 \\ 0.625 {\pm} 0.013 \\ 0.625 {\pm} 0.013 \\ 0.625 {\pm} 0.013 \\ 0.608 {\pm} 0.010 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} [43] \\ 0.654\pm 0.012 \\ 0.594\pm 0.013 \\ 0.672\pm 0.010 \\ 0.672\pm 0.011 \\ 0.536\pm 0.009 \\ 0.685\pm 0.013 \\ 0.596\pm 0.011 \\ 0.517\pm 0.012 \\ 0.612\pm 0.013 \\ 0.665\pm 0.013 \\ 0.665\pm 0.013 \\ 0.665\pm 0.013 \\ 0.632\pm 0.012 \\ 0.612\pm 0.013 \\ 0.632\pm 0.012 \\ 0.612\pm 0.011 \\ 0.613\pm 0.012 \\ 0.618\pm 0.012 \\ \end{array}$                                                                                                                                                                                                            | $\begin{array}{c} Ours \\ Ours \\ 0.716 \pm 0.007 \\ 0.664 \pm 0.009 \\ 0.768 \pm 0.008 \\ 0.759 \pm 0.011 \\ 0.698 \pm 0.008 \\ 0.617 \pm 0.010 \\ 0.759 \pm 0.007 \\ 0.685 \pm 0.011 \\ 0.598 \pm 0.008 \\ 0.684 \pm 0.007 \\ 0.748 \pm 0.008 \\ 0.703 \pm 0.008 \\ 0.662 \pm 0.009 \\ 0.662 \pm 0.009 \\ 0.662 \pm 0.009 \\ 0.669 \pm 0.012 \\ 0.779 \pm 0.007 \\ 0.680 \pm 0.011 \\ \end{array}$ |

We repeat each experiment ten times and report the average accuracies, and each bold number represents the best result.

TABLE II Performance Decrements ("-") and Increments ("+") by Replacing Each of the Two Key Modules

|    | S1      | S2      |
|----|---------|---------|
| 01 | -3.434% | -4.120% |
| 02 | -1.876% | -4.221% |
| 03 | -0.912% | -3.326% |
| 04 | -2.032% | N/A     |
| 05 | -4.224% | N/A     |
| 06 | -3.226% | N/A     |
| 07 | -2.216% | N/A     |

by "S11"), the several-dish combinatorial group (MCG) motive advancement enjoin [36] (S12), and the AttentionMask [?] (S13), respectively. Next, in order to quantitate the contribution of aspect piece' semblance and topology in atmospheric conception modeling, we abandon the name  $G_1$  (S14) and  $G_2$  (S15) particularly. Third, we repay our adopted geometry-preserved active erudition by RankNet [54] (S16) and chart-supported violent [55] (S17) particularly. We present the vicissitude of assortment accuracy in Table II, where the intersection of column "Si" and rough "Oj" corresponds to experimental configuration "Sij." We see that worn the objectness [53] equivalent to our adopted BING [32] results in a sharp classification accuracy dismiss. Moreover, cede the graphlet analysis situs well hurts the assortment accuracy. These observations demonstrate the necessary of extend graphlets to signalize dissimilar ethereal effigy categories.

Subsequently, to appraise the performance of our deep hashing, three separate setups are designed to experiment the usefulness of the three ascribe. We first abandon the din reduction term in (6) (S21). More specifically, we kill the term  $\mu ||\mathbf{L} - \mathbf{T}||_1$  and restore L by T. Second, we leverage the star structure digest restriction of H while fight the other expression bare-bones (S22). Finally, we degrade the intense feature learning bound  $\frac{\beta}{2} ||\mathbf{H} - f(\mathbf{X})\mathbf{Z}||_F^2$  to a shallow one (S23). Mathematically, we adapt the transformation grid  $\mathbf{Z}_i = \mathbf{Z}$ , which characterizes only one single layer. As unfolded in Table II, the concert reduction and intricate feature engineering attributes are the most serious, forsake each of them acquire an over 3.1% categorization accuracy decrement. In addition, the learned binary codes restraint motive a 4.573% drop in categorization correctness. Simultaneously, the cupellation time diminution is significantly increased by 316%. In hypothesis, we set the keystone advantage of applying our indicate binary comminuted digest to describe each graphlet is the ultrafast speed to think the image-direct resemblance an aerial idol. This is inasmuch as in modern electronic computer systems, procure two codes is much faster than comparing floating-point numbers. Notably, restricting the graphlet representation to two hashish codes is not free. Practically, it will oblate the form descriptiveness. In transform, the categorization accuracy will decrease somewhat.



Fig. 4. Illustration of our adopted eye tracker.

## C. Comparative GSPs Study on Alzheimer's Patients

In this experiment, we evaluate GSPs produced by both normal observers and Alzheimer's patients [18], [56], [57], [58], [59], [60], based on which classification performances are analyzed carefully. In total, we employed 37 normal observers and 33 Alzheimer's patients for this study. The normal observers are all PhD/master's students from our Computer Science Department. There are 25 males and 12 females, which are aged between 22 and 31. They are all experienced in photography and composition. Meanwhile, the 33 Alzheimer's patients are from Hangzhou Seventh People's Hospital. There are 11 patients in the early Alzheimer's diseases stage, 13 in the medium stage, and nine in the late stage. These Alzheimer's patients are aged between 51 and 68, and there are 23 males and ten females. Herein, human gaze allocations are recorded by a head-mounted eye tracker, as shown in Fig. 4.

As shown in Figs. 5 and 6, our calculated GSPs are highly consistent with those recorded by the five normal observers, which clearly demonstrates the effectiveness of the adopted active learning in modeling human visual perception. Noticeably, GSPs produced by Alzheimer's patients are apparently different from those generated by normal observers. This observation indicates the low visual perceptual capacity of Alzheimer's patients, i.e., they are less effective to capture the visually/semantically salient aerial image regions than the normal observers.

To quantitatively compare the GSPs generated by different sources, we propose to calculate the proportion of pairwise GSPs  $L_1$  and  $L_2$  overlapping with each other. Specifically, the similarity between two GSPs is determined by

$$\sin(L_1, L_2) = \frac{nP(L_1 \cap L_2)}{nP(L_1) + nP(L_2)}$$
(11)

where nP counts the pixels inside each aerial image, and  $nP(L_1 \cap L_2)$  measures the shared region between GSPs. On this basis, it is observable that the overlapping percentage between GSPs produced by normal observers and Alzheimer's patients is 63.324% on average. This demonstrates their significantly different visual perceptual capacities.

# V. CONCLUSION

This fabric is motivated by the pervasively interest biologically inhaled design [3], [61], [62], [63], [64], [65], [66], [67].



Fig. 5. Comparison of GSPs recorded by five normal observers (marked by five different colors), one Alzheimer's patient (marked by yellow circles), and that calculated by the active learning [9] (marked by red circles).



Fig. 6. GSPs recorded by an Alzheimer's patient on a set of aerial images.

We converse a recent antenna conception assortment pipeline that can robustly binarize mortal look floating paths (GSPs), unconcerned of the potently corrupt family compartmentalize. By prying the BING [32] motive tract, we arrange graphlets to example the spatial layouts of visually/semantically projection front aim in each ethereal effigy. Based on this, GSPs are fitted by an brisk letters algorithmic rule. Afterward, a report-indulgent MF algorithmic program is designate to renew copy-steady ticket into obscure GSP hashish, wherein price rumor can be intelligently mitigated. Finally, the binarized GSPs are merged into a nucleus shape for group antenna copy. Comprehensive proof on our composed excessive high appearance obstruct have shown the fight of our manner. Furthermore, to confirm the profit of the fitted GSPs, we repeat GSPs from both standard observers and Alzheimer's patients. Comparative meditation has demonstrated that exactly soothsay GSPs is the keynote for accomplished airy conception assortment.

# REFERENCES

- L. Cao et al., "Weakly supervised vehicle detection in satellite images via multi-instance discriminative learning," *Pattern Recognit.*, vol. 64, pp. 417–424, 2017.
- [2] S. Zhou et al., "DeepWind: Weakly supervised localization of wind turbines in satellite imagery," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2009, pp. 1–6.
- [3] C. Deng, Y. Xue, X. Liu, C. Li, and D. Tao, "Active transfer learning network: A unified deep joint spectral-spatial feature learning model for hyperspectral image classification," *IEEE Trans. Geosci. Remote Sens.*, vol. 57, no. 3, pp. 1741–1754, Mar. 2019.
- [4] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao, "Linear cross-modal hashing for efficient multimedia search," in *Proc. 21st ACM Int. Conf. Multimedia*, 2013, pp. 143–152.
- [5] M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, "Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshop*, 2016, pp. 680–688.
- [6] R. Kemker, C. Salvaggio, and C. Kanan, "Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning," *ISPRS J. Photogrammetry Remote Sens.*, vol. 145, pp. 60–77, 2018.
- [7] Z. Zheng, Y. Zhong, J. Wang, and A. Ma, "Foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2020, pp. 4096–4105.
- [8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in *Proc. Int. Conf. Adv. Neural Inf. Process. Syst.*, 2012, pp. 84–90.
- [9] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang, "Active learning based on locally linear reconstruction," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 33, no. 10, pp. 2026–2038, Oct. 2011.
- [10] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," *Mach. Learn.*, vol. 37, no. 2 pp. 183–233, 1999.
- [11] M. F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, and S. Dickinson, "Object recognition as many-to-many feature matching," *Int. J. Comput. Vis.*, vol. 69, no. 2, pp. 203–222, 2006.
- [12] P. F. Felzenszwalb and D. P. Huttenlocher, "Pictorial structures for object recognition," *Int. J. Comput. Vis.*, vol. 61, no. 1, pp. 55–79, 2005.
- [13] Y. J. Lee and K. Grauman, "Object-graphs for context-aware category discovery," in *Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.*, 2010, pp. 1–8.
- [14] O. Duchenne, A. Joulin, and J. Ponce, "A graph-matching kernel for object categorization," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2011, pp. 1792–1799.
- [15] L. Lin, X. Liu, S. Peng, H. Chao, Y. Wang, and B. Jiang, "Object categorization with sketch representation and generalized samples," *Pattern Recognit.*, vol. 45, no. 10, pp. 3648–3660, 2012.
- [16] L. Lin, T. Wu, J. Porway, and Z. Xu, "A stochastic graph grammar for compositional object representation and recognition," *Pattern Recognit.*, vol. 42, no. 7, pp. 1297–1307, 2009.
- [17] S. Zhang, W. Zhao, Z. Guan, X. Peng, and J. Peng, "Keypoint-graphdriven learning framework for object pose estimation," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2021, pp. 1065–1073.
- [18] X. Tang, C. Liu, J. Ma, X. Zhang, F. Liu, and L. Jiao, "Large-scale remote sensing image retrieval based on semi-supervised adversarial hashing," *Remote. Sens.*, vol. 11, no. 17, 2019, Art. no. 2055.
- [19] M. M. Bronstein and A. M. Bronst, "Data fusion through cross-modality metric learning using similarity-sensitive hashing," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2010, pp. 3594–3601.
- [20] S. Kumar and R. Udupa, "Learning hash functions for cross-view similarity search," in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 1360–1365.
- [21] Y. Weiss, A. Torralba, and R. Fergus, "Spectral hashing," in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2008, pp. 1753–1760.

- [22] Z. Yu, F. Wu, Y. Yang, Q. Tian, J. Luo, and Y. Zhuang, "Discriminative coupled dictionary hashing for fast cross-media retrieval," in *Proc. 37th Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval*, 2014, pp. 395–404.
- [23] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, "Inter-media hashing for large-scale retrieval from heterogeneous data sources," in *Proc. ACM SIGMOD Int. Conf. Manage. Data*, 2013, pp. 785–796.
- [24] G. Ding, Y. Guo, and J. Zhou, "Collective matrix factorization hashing for multimodal data," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2014, pp. 2075–2082.
- [25] H. Li, R. Ji, Y. Wu, F. Huang, and B. Zhang, "Cross-modality binary code learning via fusion similarity hashing," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2017, pp. 7380–7388.
- [26] J. Chen, W. K. Cheung, and A. Wang, "Learning deep unsupervised binary codes for image retrieval," in *Proc Int. Joint Conf. Artif. Intell.*, 2018, pp. 613–619.
- [27] J. T. Hoe, K. W. Ng, T. ZhangC. S. Chan, Y.-Z. Song, and T. Xiang, "One loss for all: Deep hashing with a single cosine similarity based learning objective," in *Proc Int. Conf. Adv. Neural Inf. Process. Syst.*, 2021, pp. 24286–24298.
- [28] J. T. Hoe, K. W. Ng, T. Zhang, C. S. Chan, Y.-Z. Song, and T. Xiang, "Greedy hash: Towards fast optimization for accurate hash coding in CNN," in *Proc Int. Conf. Adv. Neural Inf. Process. Syst.*, 2018.
- [29] S. Jin, H. Yao, X. Sun, and S. Zhou, "Unsupervised semantic deep hashing," *Neurocomputing*, vol. 351, pp. 19–25, 2019.
- [30] J. Lin, Z. Li, and J. Tang, "Discriminative deep hashing for scalable face image retrieval," in *Proc Int. Joint Conf. Artif. Intell.*, 2017, pp. 2266–2272.
- [31] F. van Ede, S. R. Chekroud, and A. C. Nobre, "Human gaze tracks the focusing of attention within the internal space of visual working memory," *J. Vis.*, vol. 19, no. 10, 2019, Art. no. 133b.
- [32] M.-M. Cheng, Y. Liu, W.-Y. Lin, Z. Zhang, P. L. Rosin, and P. H. S. Torr, "BING: Binarized normed gradients for objectness estimation at 300fps," *Comput. Vis. Media*, vol. 5, no. 1, pp. 3–20, 2019.
- [33] R. Diestel, Graph Theory. Berlin, Germany: Springer-Velag, 2005.
- [34] L. Zhang et al., "Bioinspired scene classification by deep active learning with remote sensing applications," *IEEE Trans. Cybern.*, vol. 52, no. 7, pp. 5682–5694, Jul. 2022.
- [35] Y. Hua, S. Lobry, L. Mou, D. Tuia, and X. X. Zhu, "Learning multi-label aerial image classification under label noise: A regularization approach using word embeddings," in *Proc. IEEE Int. Geosci. Remote Sens. Symp.*, 2020, pp. 525–528.
- [36] Y. Hua, L. Mou, and X. X. Zhu, "Multi-label aerial image classification using A bidirectional class-wise attention network," in *Proc. Joint Urban Remote Sens. Event*, 2019, pp. 1–4.
- [37] C. Kyrkou and T. Theocharides, "EmergencyNet: Efficient aerial image classification for drone-based emergency monitoring using atrous convolutional feature fusion," *IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.*, vol. 13, pp. 1687–1699, 2020.
- [38] C. Kyrkou and T. Theocharides, "Deep-learning-Based aerial image classification for emergency response applications using unmanned aerial vehicles," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops*, 2019, pp. 517–525.
- [39] M. D. Pritt and G. Chern, "Satellite image classification with deep learning," *Appl. Sci.*, vol. 13, no. 8, 2023, Art. no. 5108.
- [40] H. Sun, Y. Lin, Q. Zou, S. Song, J. Fang, and H. Yu, "Convolutional neural networks based remote sensing scene classification under clear and cloudy environments," in *Proc. IEEE Int. Conf. Comput. Vis.*, 2021, pp. 713–720.
- [41] S. Song, H. Yu, Z. Miao, Q. Zhang, Y. Lin, and S. Wang, "Domain adaptation for convolutional neural networks-based remote sensing scene classification," *IEEE Geosci. Remote Sens. Lett.*, vol. 16, no. 8, pp. 1324–1328, Aug. 2019.
- [42] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 37, no. 9, pp. 1904–1916, Sep. 2015.
- [43] K.-H. Lee, X. He, L. Zhang, and L. Yang, "CleanNet: Transfer learning for scalable image classifier training with label noise," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2018, pp. 5447–5456.
- [44] Y. Wang, V. I. Morariu, and L. S. Davis, "Learning a discriminative filter bank within a CNN for fine-grained recognition," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2018, pp. 4148–4157.
- [45] A. Caglayan and A. Burak Can, "Exploiting multi-layer features using a CNN-RNN approach for RGB-D object recognition," in *Proc. Eur. Conf. Comput. Vis. Workshops*, 2018, pp. 675–688.

7411

- [46] Z.-M. Chen, X.-S. Wei, P. Wang, and Y. Guo, "Multi-label image recognition with graph convolutional networks," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2019, pp. 5177–5186.
- [47] T. Chen, M. Xu, X. Hui, H. Wu, and L. Lin, "Learning semantic-specific graph representation for multi-label image recognition," in *Proc. IEEE Int. Conf. Comput. Vis.*, 2019, pp. 522–531.
- [48] J. Lanchantin, T. Wang, V. Ordonez, and Y. Qi, "General multi-label image classification with transformers," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2021, pp. 16478–16488.
- [49] G. Mesnil, S. Rifai, A. Bordes, X. Glorot, Y. Bengio, and P. Vincent, "Unsupervised learning of semantics of object detections for scene categorizations," in *Proc. Conf. Pattern Recognit. Appl. Methods*, 2015, pp. 209–224.
- [50] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2016, pp. 770–778.
- [51] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "ImageNet: A. large-scale hierarchical image database," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2009, pp. 248–255.
- [52] L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei, "Object bank: A high-level image representation for scene classification and semantic feature sparsification," in *Proc. Int. Conf. Adv. Neural Inf. Process. Syst.*, 2010, pp. 1378–1386.
- [53] B. Alexe, T. Deselaers, and V. Ferrari, "Measuring the objectness of image windows," *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 34, no. 11, pp. 2189–2202, Nov. 2012.
- [54] C. J. C. Burges et al., "Learning to rank using gradient descent," in Proc. 22nd Int. Conf. Mach. Learn., 2005, pp. 89–96.
- [55] B. Xu, J. Bu, C. Chen, C. Wang, D. Cai, and X. He, "EMR: A scalable graph-based ranking model for content-based image retrieval," *IEEE Trans. Knowl. Data Eng.*, vol. 27, no. 1, pp. 102–114, Jan. 2015.
- [56] W. Song, Z. Gao, R. Dian, P. Ghamisi, Y. Zhang, and J. A. Benediktsson, "Asymmetric hash code learning for remote sensing image retrieval," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, 2022, Art. no. 5617514.
- [57] X. Shan, P. Liu, G. Gou, Q. Zhou, and Z. Wang, "Deep hash remote sensing image retrieval with hard probability sampling," *Remote. Sens.*, vol. 12, no. 17, 2020, Art. no. 2789.
- [58] S. Wang, H. Zhao, Y. Wang, J. Huang, and K. Li, "Cross-modal imagetext search via efficient discrete class alignment hashing," *Inf. Process. Manage.*, vol. 59, no. 3, 2022, Art. no. 103886.

- [59] X. Wu, J. Mao, H. Xie, and G. Li, "Identifying humanitarian information for emergency response by modeling the correlation and independence between text and images," *Inf. Process. Manage.*, vol. 59, no. 4, 2022, Art. no. 102977.
- [60] W. Xie, X. Fan, X. Zhang, Y. Li, M. Sheng, and L. Fang, "Co-compression via superior gene for remote sensing scene classification," *IEEE Trans. Geosci. Remote Sens.*, vol. 61, 2023, Art. no. 5604112.
- [61] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, "Triplet-based deep hashing network for cross-modal retrieval," *IEEE Trans. Image Process.*, vol. 27, no. 8, pp. 3893–3903, Aug. 2018.
- [62] C. Deng, E. Yang, T. Liu, J. Li, W. Liu, and D. Tao, "Unsupervised semantic-preserving adversarial hashing for image search," *IEEE Trans. Image Process.*, vol. 28, no. 8, pp. 4032–4044, Aug. 2019.
- [63] C. Liu, J. Ma, X. Tang, F. Liu, X. Zhang, and L. Jiao, "Deep hash learning for remote sensing image retrieval," *IEEE Trans. Geosci. Remote. Sens.*, vol. 59, no. 4, pp. 3420–3443, Apr. 2021.
- [64] P. Lv, W. Wu, Y. Zhong, F. Du, and L. Zhang, "SCViT: A spatialchannel feature preserving vision transformer for remote sensing image scene classification," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, 2022, Art. no. 4409512.
- [65] W. Miao, J. Geng, and W. Jiang, "Multigranularity decoupling network with pseudolabel selection for remote sensing image scene classification," *IEEE Trans. Geosci. Remote Sens.*, vol. 61, 2023, Art. no. 5603813.
- [66] Z. Qin, Q. Chen, Y. Ding, T. Zhuang, Z. Qin, and K.-K. R. Choo, "Segmentation mask and feature similarity loss guided GAN for object-oriented image-to-image translation," *Inf. Process. Manage.*, vol. 59, no. 3, 2022, Art. no. 102926.
- [67] J. Shen, B. Cao, C. Zhang, R. Wang, and Q. Wang, "Remote sensing scene classification based on attention-enabled progressively searching," *IEEE Trans. Geosci. Remote Sens.*, vol. 60, 2022, Art. no. 4707513.
- [68] L. Herranz, S. Jiang, and X. Li, "Scene recognition with CNNs: Objects, scales, and dataset bias," in *Proc. IEEE Conf. Comput. Vis. Pattern Recognit.*, 2016, pp. 571–579.
- [69] Y. Li, M. Dixit, and N. Vasconcelos, "Deep scene image classification with the MFAFVNet," in *Proc. IEEE Int. Conf. Comput. Vis.*, 2017, pp. 5746–5754.