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Abstract—In this study, we proposed a pixel-level projection
method for fine particulate matter (PM2.5) over a long term and
across a large area using a combination of Landsat images, PM2.5

data from monitoring stations, and historical gridded PM2.5 data.
We considered the spatial dependence effects of the particulate
matter using a spatial lag model to quantify the relationship be-
tween PM2.5 concentration and land coverage indices, where the
latter were calculated by the built-up, vegetation, and water indices.
The future land coverage indices for the pixel-level projection of
PM2.5 were derived from the future land-use scenario predicted
by the Futureland model. We applied the method to analyze the
spatial patterns of PM2.5 in the Yangtze River Delta (YRD), China,
from 2000 to 2020, and then projected its pixel-level scenario in
2030. The projected PM2.5 shows high concentrations in the north
and low in the south and temporally decreases compared to 2010.
The projection of the fine-grained PM2.5 scenario can help adjust
YRDs environmental and industrial policies, as well as implement
its management strategies for sustainable urban development. Our
method can be used to predict future patterns not only for long-term
and large-scale pixel-level PM2.5 concentrations but also for other
environmental parameters.

Index Terms—Cellular automata (CA), fine particulate matter
(PM2.5), land-use change, pixel-level projection, spatial lag model
(SLM), Yangtze River Delta (YRD).

I. INTRODUCTION

RAPID economic growth and industrial development have
caused drastic land-use changes and reduced air quality,
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especially in developing countries. Among many air pollutants,
fine particulate matter with a dynamic diameter of smaller than
2.5 μm (PM2.5) has been recognized as one of the main sources
[1]. The large amount of PM2.5 emitted by human economic and
social activities affects the ecological environment and is harm-
ful to human health; for example, severe hazy weather caused by
PM2.5 may lead to frequent traffic accidents [2], and long-term
exposure to high PM2.5 can cause a variety of diseases [3], [4].
Therefore, PM2.5 pattern analysis and scenario projection have
become the major concerns of academics and environmental
managers worldwide [5], [6]. The prediction of PM2.5 is usually
done at the regional level, but it is more important to perform
pixel-level analysis and prediction of future scenarios.

The topics of PM2.5 distribution in large-scale areas mainly
include remote-sensing-based estimation, spatial modeling and
analysis, and future scenario prediction [7], [8]. Large-scale
PM2.5 distribution estimation using remote sensing is usually
performed from MODIS images and their aerosol optical depth
(AOD) products, simultaneously considering the PM2.5 truth
data from ground monitoring stations as benchmarks [9]. The
estimation also needs meteorological monitoring data from
weather stations and remotely sensed images from satellites to
examine the PM2.5 transport [10]. With these data, the PM2.5

estimation has been performed at the hourly, daily, weekly,
monthly, and annual scales [11], [12].

The spatial modeling and analysis of PM2.5 typically include
pixel-level mapping with spatial interpolation and investigation
of spatial patterns [13], [14]. Pixel-level mapping of PM2.5

using ground monitoring station data requires the selection of
a suitable spatial interpolation method, and a case study in
Washington State shows that the geographical long short-term
memory method can accurately interpolate the spatial pattern
[15]. Based on the produced maps, scientists have found spatial
dependence of PM2.5 in most regions, which has been well
confirmed by recent studies in the Yangtze River Delta (YRD)
and Beijing–Tianjin–Hebei urban agglomeration of China [16],
[17], [18].

Future scenario prediction of PM2.5 is usually performed
by quantitative or spatial methods, but both require a deep
understanding of PM2.5 influencing factors and their dynamic
mechanisms. The principal factors influencing the distribution
and diffusion can be categorized into two types: pollution
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sources and meteorological conditions, both are closely related
to land-use status in spatial terms [19]. Specifically, land-use
type, landscape configuration, and urban patterns are typical land
cover factors that influence PM2.5 distribution [20]. Based on the
recognition of the formation and diffusion of PM2.5, some scien-
tists have used numerical simulations or quantitative methods to
implement predictions of future scenarios. For example, several
methods, including random forest, deep learning, and nonlinear
seasonal gray models, have been applied to quantitatively predict
short-term (e.g., half-day, one day, and three days) PM2.5 [21],
[22], [23]. In contrast, pixel-level future scenario predictions
may be more valuable, but existing studies have focused more
on short-time (weekly, monthly, and annual) future predictions.
For example, modelers utilized the random forest and geograph-
ically and temporally weighted regression (GTWR) methods to
derive daily and annual pixel-level predictions of PM2.5 at the
1 km spatial resolution [24], [25].

Despite the current progress in methods and case studies on
PM2.5 projections, the effects of land use and land coverage
and the spatial dependence of PM2.5 have not been considered
sufficiently, thus posing limitations to our ability in performing
long-term and large-scale future scenario predictions. Therefore,
two essential questions are yet to be addressed: First, how
to establish the relationship between PM2.5 and land cover-
age accurately by considering the spatial dependence effects
of PM2.5?; second, how to project the pixel-level long-term
PM2.5 distribution by predicting future land-use scenarios? The
answers to these questions can fill the gaps in our knowledge
of the long-term changes in PM2.5 at the pixel level, aiming
to provide reliable spatial data for improving air environmental
quality and enhancing regional sustainable development.

The purpose of this study is to develop a new method for
predicting future PM2.5 distributions at the pixel level over the
long term (e.g., ten years) and large scale. We assumed that
since the land-use pattern is proven to be related to PM2.5, we
can establish the relationship between land coverage indices and
the PM2.5 concentrations considering the spatial dependence.
The future indices, such as normalized difference built-up index
(NDBI), normalized difference vegetation index (NDVI), and
normalized difference water index (NDWI), can be calculated
using the land-use patterns. In addition, the prediction of the
land-use scenario by cellular automata (CA) based approach
is practical, thus allowing us to predict future PM2.5 scenarios
based on the future land-use scenario. In this study, we developed
a method for PM2.5 projection based on the above assumptions
and validated the method in the YRD of China by predicting
its PM2.5 scenario in 2030. The proposed method of PM2.5

projection can help authorities to make sound decisions on air
pollution control.

II. METHODOLOGY

A. Study Area

The YRD region (29°20′N-32°34′N, 115°46′E-123°25′E) is
located at the lower reaches of the Yangtze River in eastern China
and is the most economically developed area in the country.
This region consists of Shanghai, Jiangsu, Zhejiang, and Anhui

provinces, covering 26 cities [see Fig. 1(a)] with a total area of
211 700 km2. YRD has a subtropical monsoon climate with hot
rainy summers and cold dry winters, and the elevation is low in
the northeast and high in the southwest. The region has a resident
population of ∼165 million, a gross domestic product (GDP) of
∼20.5 trillion RMB, and an average urbanization rate of ∼75%
in terms of the proportion of urban residents. YRD contributes
∼20% of the country’s GDP with only 2.2% of the land area and
11.7% of the population.

It is noted that rapid urbanization and industrialization may
lead to negative effects on the environment, especially land-use
change and severe air pollution, where PM2.5 is an impor-
tant indicator of air quality. By 2020, there were 165 ground
monitoring stations of PM2.5 in YRD [see Fig. 1(b)]. As an
important intersection between the “Belt and Road” and the
Yangtze River Economic Belt, YRD plays a crucial role in the
sustainable development of the belt and even around the world
[26]. Therefore, it is of great theoretical and practical value
to study the spatial patterns and future scenarios of PM2.5 for
building a sustainable YRD.

B. Raw Datasets

We used Landsat-5 TM and Landsat-8 OLI images (earthex-
plorer.usgs.gov) to produce land-use patterns and land coverage
indices. We also collected ground monitoring station PM2.5

(cnemc.cn) to explore its relationship with the land coverage
indices and applied historical gridded PM2.5 data in 2010
(sites.wustl.edu) to validate the method. To predict land-use
scenarios based on their influencing factors, we collected socioe-
conomic and topographical data, including population density,
GDP, digital elevation model (DEM), points of interest (POIs),
transport, and river networks [27] (see Table I). Among these,
the population density maps were accessed from Worldpop
(hub.worldpop.org), the GDP maps were produced by Kummu
et al. [28], the DEM maps were collected from ASTER GDEM 2
(gscloud.cn), and the POIs were extracted from OpenStreetMap
(openstreetmap.org). All factors were converted to gridded data
with a spatial resolution of 100 m, facilitating the subsequent
modeling and mapping of PM2.5. Among these, we downscaled
the GDP product from 1000 to 100 m, but this did not improve
the quality of this dataset; thus, these downscaled data are
equivalent to the original but allowed for a uniform resolution
in the modeling.

C. Methods

For spatial analysis and future scenario prediction of PM2.5,
we developed a new method that considers the future land-
use change prediction and the spatial dependence effects of
PM2.5 (see Fig. 2). The method includes three parts: land-use
projection, land coverage indices projection, and PM2.5 pro-
jection. First, the land-use projection was performed using the
Futureland model, a state-of-the-art software that is applicable
to multiple land-use change simulations with paralleled compu-
tation [29]. Second, since the land coverage indices are closely
related to the land-use and PM2.5 patterns, the structural–local
variations method (SLVM) was used to predict the land coverage
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Fig. 1. (a) YRD study area with 26 cities. (b) Ground monitoring stations of PM2.5 concentrations.

Fig. 2. Workflow of pixel-level projection of PM2.5 using Futureland and SLM.

indices. Third, considering the future land-use change and the
spatial dependence of PM2.5, we predicted the future PM2.5

pattern based on the spatial lag model (SLM) and conducted the
spatial analysis consequently.

1) Futureland-Based Land-Use Projection Model: Land-use
projection models are commonly built considering the relation-
ship between past land-use change and its driving factors, where
the past and present land-use patterns are often produced using
remote-sensing images and classifiers. In this study, we utilized

the random forest classifier to produce the land-use pattern in
2000, 2010, and 2020 using the Landsat images by following
the article presented by Orieschnig et al. [30] since this classifier
has high accuracy and strong ability of multidimensional data
handling. Before the image classification, we defined land-use
categories as four types, including built-up, agricultural, forest,
and water (see Table II), according to the criteria suggested by the
Ministry of Natural Resources of China (globallandcover.com)
and European Space Agency (due.esrin.esa).
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TABLE I
REMOTE-SENSING IMAGES, PRODUCTS, AND VECTOR DATASETS USED IN THIS STUDY

TABLE II
DEFINITION OF LAND-USE CATEGORIES AND THEIR IMAGE FEATURES IN YRD
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In this study, the CA-based Futureland model was applied to
simulate and project the future land-use pattern. CA defines the
state of a land cell at present as a function of the state of the land
cell itself and the effect of its neighboring cells at the previous
time by a set of transition rules [31], [32]. Generalized logistic
regression (GLR) is applied in the Futureland to construct the
relationship between the driving factors and land-use types [33].
The Futureland model has three advantages:

1) applying different driving factors for different land-use
types in a single simulation scenario;

2) projecting land-use demand using the Markov chain and
considering local constraints;

3) using data blocking-based parallel computing to optimize
and accelerate the simulation process.

The Futureland model consists of five core elements, includ-
ing land cell, probability-of-occurrence (POO), neighborhood
effect, conversion cost, and local and global constraints. The
total transition rules of Futureland can be given by [34]

P (St+1
i ) = POOcon × Pn(h,u) × (1− Costc→p)× (1− Res)

(1)
where P (St+1

i ) is the total transition probability for a land cell i
to change its state; POOcon is the POO defined by driving factors;
Pn(h,u) is the neighborhood effect; Costc→p is the conversion
cost; and Res is the constraint.

The POO reflects the possibility of each land-use type convert-
ing its state, and this probability is a crucial part of the transition
rules. In the Futureland model, GLR is utilized to derive the POO
because different land-use types are influenced by the same or
different factors. The GLR-based POO can be given by

POOcon,r =

(
eβ0+

∑n
i=0 λiβiXi

1 + eβ0+
∑n

i=0 λiβiXi

)
r

(2)

where POOcon,r is the POO of land-use type r; n is the total
number of driving factors; Xi is the ith driving factor; β0 is a
constant; βi is the regression coefficient of factor Xi; and λi is
introduced to indicate the presence or absence of a certain factor,
with 1 being present and 0 being excluded.

The neighborhood effect can be defined by the neighborhood
configurations and weights that represent the ability of each
neighbor to influence the central cell. For land-use type u, the
neighborhood effect on the central cell h can be given by [35]

Pn(h, u) =

(∑N×N−1
k=1 con(wk→u)

N×N−1

)
h

(3)

where N ×N is the neighborhood size with a square config-
uration; and con(wk→u) is the effect of the neighbor k on the
central cell h when converting to land-use type u.

The conversion cost is one of the important components
of land-use change and represents the socioeconomic costs of
changing from one land-use type to another. In the Futureland
model, the conversion cost from one land-use type to another can
be defined by the modelers according to the theoretical analysis.
To project the future land demand for each type, we used a
modified Markov chain method to compute the total amount of
land as a global constraint [36]. Markov chain is a stochastic

process in which time and state are discrete, which predicts the
future state of a random variable based on a transition probability
matrix. The future land demand can be given by [37]

Lt+1
DEMAND=Lt

DEMAND×

⎡
⎢⎣

P11 · · · P1m

... Pqr

...
Pm1 · · · Pmm

⎤
⎥⎦×α (4)

where Lt
DEMAND and Lt+1

DEMAND are the land quantities at time t
and time t+1, respectively; m is the total number of land-use
types; Pqr is the land transformation probability from land-use
type q to land-use type r, determined by the percentage of area
converted from q to r (0 ≤ Pqr ≤ 1);

∑m
r = 1 Pqr = 1; and α

is a predefined adjust coefficient of the Markov chain for urban
expansion.

2) SLVM-Based Land Coverage Indices Projection Model:
In this study, we derived three land coverage indices (NDBI,
NDVI, and NDWI) by spectral calculation. Among these, NDBI
indicates the density of built-up [38], NDVI indicates the veg-
etation distribution and density [39], and NDWI indicates the
density of water bodies and water-bearing soil [40]. When using
Landsat TM or OLI images, three indices can be calculated by
[41]⎧⎨
⎩
NDBI =MIR−NIR

MIR+NIR =B5−B4
B5+B4 (TM)=B6−B5

B6+B5 (OLI)
NDVI =NIR−Red

NIR+Red =B4−B3
B4+B3 (TM)=B5−B4

B5+B4 (OLI)
NDWI =GREEN−NIR

GREEN−NIR =B2−B4
B2+B4 (TM)=B3−B5

B3+B5 (OLI)
(5)

where MIR is the shortwave infrared band; NIR is the near-
infrared band; RED is the red band; and GREEN is the green
band.

Based on the calculated historical land coverage indices, we
applied the SLVM to project future indices considering their
structural and local variations that reflect the spatiotemporal
evolution [42]. This method was initially proposed by Feng
et al. [42] in predicting the spatial variation of land surface
temperature and urban heat islands, which was validated in
the Taihu Lake basin of China. The structural variations are
characterized by temporal evolution, which is related to the
change in land coverage indices over time. However, the local
variations are characterized by the spatial evolution associated
with the land-use change and pattern.

3) SLM-Based PM2.5 Projection Model: SLM is a global
spatial regression model that uses spatially weighted neighbors
as spatial lags and uses them as a key independent variable.
The method is a typical spatial autoregressive model that can
be used to handle variables with strong spatial dependence [43].
Considering that the PM2.5 distribution is of spatial dependence,
we adopted SLM to simulate and predict the spatial pattern of
PM2.5. SLM can be given by [44]

Y = ρWY + β1X1 + β2X2 + β3X3 + ε (6)

where Y is an N×1-dimensional vector of the dependent variable
(PM2.5);ρ is the coefficient of the spatial lag, measuring the mag-
nitude of spatial dependence; W is the spatial weight matrix,
defining the distance-influenced neighbor relationships; X1,
X2, and X3 are the N×1-dimensional vector of the explanatory
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Fig. 3. SLM-based modeling and projection of PM2.5 based on spatial dependence, NDBI, NDVI, and NDWI.

variables (NDBI, NDVI, and NDWI, respectively); β1, β2, and
β3 are the coefficients of the explanatory variables, successively;
and ε is the random error.

Fig. 3 shows the PM2.5 modeling at a specific pixel as an
example based on the spatial dependence of PM2.5 and the
influencing factors, such as NDBI, NDVI, and NDWI. When
the PM2.5 of each pixel is linked reliably with the independent
variable, a modeling equation is derived to produce the PM2.5

map. Furthermore, by considering the predicted future land
coverage indices, we predicted the future pixel-level PM2.5 using
(6).

D. Validation Methods

1) Cell-by-Cell Overall Fuzzy Accuracy (OFA): We pro-
posed the OFA to evaluate the PM2.5 modeling results. This
method describes the overall accuracy of comparing the modeled
raster map with the reference raster map, which is similar to
the evaluation of land-use classification [45]. The difference
between OFA and overall accuracy is that pixels in the former
are measured in terms of continuous values rather than types.
Therefore, for modeled or predicted PM2.5 of a specific pixel,
the modeling method is considered accurate if the difference is
within a predefined threshold (δ) compared with the pixel value
in the reference map. The OFA can be given by

⎧⎨
⎩
OFA = T

T+F

T, δ = PM2.5m−PM2.5r

PM2.5r
≤ 10%

F, δ = PM2.5m−PM2.5r

PM2.5r
> 10%

(7)

where T and F are the total numbers of correctly and incorrectly
simulated pixels, respectively; the threshold (δ) is the relative
error; PM2.5m and PM2.5r are the modeled and reference
PM2.5, respectively. In this study, we define the δ as smaller
than 10%, which indicates that the results are considered correct
if the difference between the modeled and reference results is
smaller than such threshold.

2) Random Point-Based Accuracy: Apart from cell-by-cell
OFA evaluation, we also assessed the random points selected
from the modeled PM2.5 map and compared them with the
reference map from the article presented in [46]. This is a
cross validation of the model, which assesses how well the
sample points match between the modeled and reference map.
We applied the correlation coefficient (R2) to indicate the fitting
performance and the root-mean-square error (RMSE) to esti-
mate the residual distribution. The R2 and RMSE can be given
by

⎧⎪⎪⎨
⎪⎪⎩
R2 =

√
∑n

i=1 (PM2.5mi−PM2.5r)
2

n
∑n

i=1 (PM2.5ri−PM2.5r)
2

RMSE =

√∑n
i=1 (PM2.5mi−PM2.5ri)

2

n

(8)

where n is the total number of sample points; i is the ith
sample point; PM2.5mi and PM2.5ri are the modeled and
reference PM2.5 of the ith sample, respectively; and PM2.5r

is the average of the reference PM2.5. A higher R2 indi-
cates a better fitting and a smaller RMSE indicates a higher
accuracy.
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Fig. 4. Observed, simulated, and projected land-use patterns 2000–2030 in YRD. (a) Observed land use 2000. (b) Observed land use 2010. (c) Observed land
use 2020. (d) Simulated land use 2010. (e) Simulated land use 2020. (f) Projected land use 2030.

TABLE III
OBSERVED AND PREDICTED LAND-USE CHANGE 2000–2030 IN YRD

III. RESULTS

A. Projection of Land-Use Pattern

Fig. 4(a)–(c) shows a significant increase in the built-up during
2000–2020, as evidenced by the land-use maps produced from
Landsat images, with overall accuracy above 89% for all years.
The built-up is primarily distributed along the Yangtze River and
the coastal economic zone, the agricultural is largely allocated
in the central and northern areas with flat terrain and fertile
soil, the forest is majorly distributed in Zhejiang Province and
Anhui Province of YRD, and the water is primarily the Yangtze
River, various lakes in the flat areas, and coastal waters. Table III
presents that during the last 20 years from 2000 to 2020, the

built-up of YRD has expanded significantly while the agricul-
tural has decreased significantly, and the areas of forest and
water are relatively stable, indicating the urban encroachment
on prime agricultural land.

Before the pixel-level projection using Futureland, we pre-
dicted the land-use demand in 2030 using the modified Markov
chain, which indicates an increase of built-up by 3.6% and a de-
crease of agricultural by 4% (see Table III). Futureland was cal-
ibrated by simulating the land-use pattern in 2010 and validated
by simulating the land-use pattern in 2020 [see Fig. 4(d) and
(e)], with an overall accuracy of 87.6% and 85.2%, respectively.
This indicates that the constructed Futureland model is effective,
and therefore, we applied it to project YRDs 2030 land-use
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Fig. 5. Land coverage indices 2000–2020 in YRD. (a) NDBI 2000. (b) NDBI 2010. (c) NDBI 2020. (d) NDVI 2000. (e) NDVI 2010. (f) NDVI 2020. (g) NDWI
2000. (h) NDWI 2010. (i) NDWI 2020.

scenario [see Fig. 4(f)]. During 2020–2030, there are significant
land-use changes in quantities and spatial patterns, especially
in built-up and agricultural land. While the cities in YRD are
typically distributed in flat or low-lying areas, 2030 built-up
continues to expand around the existing cities, encroaching
on the surrounding agricultural land to develop more distinc-
tive living, industrial, and economic zones. Consequently, such
an intense land-use change leads to significant environmental
changes in the coming decade, accompanied by intensifying
human activities that drive the spatiotemporal evolution of air
quality.

B. Projection of Land Coverage Indices

The land coverage indices (i.e., NDBI, NDVI, and NDWI)
in 2000, 2010, and 2020 were acquired for projecting those in
2030. Since all three indices have a value range of 0–1, we
adopted the same color to represent the same attribute value
in Fig. 5, where NDVI has the highest average, while NDWI
has the lowest average. Overall, the spatial patterns of the
three land coverage indices are highly similar to the land-use
pattern of the respective years. For example, high NDBI is

primarily found in built-up, while low NDBI is primarily found
in agricultural, forest, and water areas. High NDVI primarily
occurs in the forest of the southern YRD, while low NDVI
mostly occurs in the northern part, and NDVI in the forest
increases, while NDVI in other land-use types decreases dur-
ing 2000–2020. NDWI of water is the highest, followed by
built-up, agricultural, and forest, with an increasing trend during
2000–2020.

We then applied SLVM to project the three land coverage
indices for 2030 (see Fig. 6) based on the 2030 land-use scenario.
In terms of index domain and spatial profile, the predicted three
indices of 2030 have relatively high similarity to the spatial pat-
tern of 2000–2020, indicating the reasonability of our prediction.
Similarly, NDVI shows the highest average and NDWI shows
the lowest average, and their patterns are significantly influenced
by the land-use pattern. There is significant spatiotemporal
heterogeneity in the land coverage indices, with an increase
of NDBI in built-up, an increase of NDVI in all areas except
built-up, and an increase of NDWI in water areas in a few local
regions. These drastic changes in land use and land coverage
indices suggest that the YRDs PM2.5 in 2030 may also change
significantly.
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Fig. 6. Projected land coverage indices of YRD in 2030. (a) NDBI 2030. (b) NDVI 2030. (c) NDWI 2030.

C. Projection of Pixel-Level PM2.5 Scenario to the Year 2030

To project the pixel-level PM2.5 scenario in 2030, we assumed
that PM2.5 is correlated with the three land coverage indices
mentioned above and the relationship varies spatially but not
temporally. The construction of this relationship requires the
fitting of historical PM2.5 and land coverage indices. Through
intensive testing and analysis, we used the SLM method to
construct this relationship, which well explained the influence
of PM2.5’s spatial dependence and the land coverage indices on
the relationship. The SLM with the specified parameters can be
given by

PM2.5 = 0.95×W × PM2.5 + 2.14×X1 − 1.64

×X2 − 0.44×X3 + 2.71 (9)

where W is the spatial weight matrix; X1, X2, and
X3 are the NDBI, NDVI, and NDWI, respectively. The
goodness-of-fit of SLM is 0.87, showing a well-modeling
performance.

The equation we acquired shows that PM2.5 is positively
correlated to its nearby PM2.5 profile and NDBI, while it is
negatively correlated to NDVI and NDWI. Among the three
land coverage indices, NDBI has the strongest effect on PM2.5

because it has the largest coefficient. We calibrated SLM using
the ground monitoring station data for 2020 [see Fig. 7(a)], and
then validated the model using the 2010 gridded product [see
Fig. 7(c)] to yield the PM2.5 maps for 2020 [see Fig. 7(b)]
and 2010 [see Fig. 7(d)]. These maps show that the overall
patterns are generally consistent for the 2020 reference PM2.5

and modeled PM2.5 in the model calibration, and for the 2010
reference PM2.5 and modeled PM2.5 in the model validation.
The cell-by-cell quantitative assessment indicates a high OFA
of 83.1% for calibration and 89.7% for validation. The random
point-based assessment shows a high correlation (R2) of 0.8 and a
relatively low RMSE of 0.3 when validating the PM2.5 mapping
in 2010 [see Fig. 7(e)]. The PM2.5 in YRD shows a spatial pattern
of high in the northwest and low in the southeast in 2010, and
high in the north and low in the south in 2020. From 2010 to

2020, the overall concentration shows a decreasing trend in the
time series.

We projected the pixel-level PM2.5 scenario to the year 2030
using SLM expressed in (9) based on the projected 2030 land
coverage indices [see Fig. 8(a)]. The 2030 PM2.5 scenario in
YRD shows high concentrations in the northeast and low in
the southeast. Among the 26 cities, Shanghai has the highest
average of about 39.1 μg/m3, followed by Nantong, Suzhou,
and Yangzhou in Jiangsu Province, while Tāizhou in Zhejiang
Province has the lowest average of about 26.2 μg/m3 [see
Fig. 8(b)]. Compared with 2010 and 2020, there are similarities
in the overall distribution, with high PM2.5 concentration in
the north and low concentration in the south. Also, the average
PM2.5 have decreased in all subregions from 2010 to 2030, with
the largest decrease of 47.3 μg/m3 and the smallest decrease of
0.4 μg/m3 at the pixel level [see Fig. 8(c)]. The large decreases
are primarily found in the northwest (e.g., Tongling of Anhui
about −38 μg/m3), while the small decreases are mostly found
in the east (e.g., Shanghai about −10.5 μg/m3) and south (e.g.,
Zhoushan of Zhejiang about −11.9 μg/m3). Fig. 8(d) shows that
the largest rates of decline are about 50%–60%, occurring mostly
in the northwest, while the smallest rates of decline are below
10%, occurring primarily in the east. This suggests significant
regional heterogeneity in the rate of decline relative to 2010 as
well.

The quantitative relations between land use and PM2.5 were
analyzed based on the proportion of each land-use type to
the total land in each province and the average and standard
deviation (STD) of PM2.5 concentration in that province (see
Table IV). The low PM2.5 tends to be distributed in areas with
a large proportion of forest, which is probably owing to the
purifying effect of vegetation on PM2.5 and the blocking effect
of mountainous areas on PM2.5 diffusion. While the high PM2.5

tends to be distributed in areas with a high proportion of built-up
and agricultural land, probably because high waste emissions
from built-up lead to PM2.5 emission, the agricultural located in
the plains lead to PM2.5 diffusion. In addition, the STD of PM2.5

decreases in all four provinces during 2010–2030, indicating a
reduction in intraprovince disparities of PM2.5.
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Fig. 7. Comparison of the reference and modeled PM2.5 pattern in calibration and validation. (a) Reference PM2.5 2020 for calibration. (b) Modeled PM2.5

2020 for calibration. (c) Reference PM2.5 2010 for validation. (d) Modeled PM2.5 2010 for validation. (e) Model validation.

IV. DISCUSSION

A. Three Crucial Aspects of the Methods

Based on the fact that PM2.5 concentration is closely related
to land use, and thus to land coverage indices, we projected
the pixel-level PM2.5 scenario by predicting land-use patterns,
with a case study of YRD. Methodologically, the three crucial
aspects of implementing pixel-level PM2.5 scenario projection
include land-use pattern projection, land coverage indices pro-
jection, and pixel-level PM2.5 projection considering spatial
dependence.

The land-use pattern projection depends not only on the simu-
lation model but also on the thematic resolution of the land-use
classification. Many models of land-use simulation, including
SLEUTH, CLUE-S, CA-Markov, FLUS, and UrbanCA, have
been well applied in China [34], [47]; however, for the prediction
of land-use and PM2.5 in YRD, we applied a new Futureland
model that can apply different influencing factors to different
land uses [29], thus achieving high-precision land-use simula-
tion. As for land-use classification, we have considered four
categories, including built-up, agricultural, forest, and water,
where the built-up is primarily associated with the production
and formation of PM2.5, the agricultural is mostly related to the

PM2.5 diffusion, and forest and water are primarily correlated
with its purification [48], which integrally contribute to its dis-
tribution. Probably, a finer thematic resolution is more favorable
for PM2.5 prediction, but it may lead to more complex land-use
simulation and higher uncertainty in the future land scenario, and
thus a more implausible PM2.5 scenario. Therefore, our selection
of land-use types and thematic resolution is a compromise of the
simulation complexity and accuracy.

PM2.5 is a continuously distributed entity across space, and
achieving its pixel-level prediction requires identifying closely
related other entities, and these are the land coverage indices.
In this study, we selected indices, including NDBI, NDVI,
and NDWI, according to the land-use pattern. Among these,
NDBI depicts impervious surface coverage that reflects human
activities that may result in the emission of PM2.5 [49], NDVI
depicts vegetation coverage that reflects the greenness, and
NDWI depicts the water coverage and reflects the humidity
associated with the ecosystem that affects the PM2.5 purification
[50]. The pixel-level scenario projection of PM2.5 is attributed
to the accurate prediction of land coverage indices, which can be
retrieved from the future land-use scenario. In addition, SLVM
was used to predict the land coverage indices, taking into account
the structural variation in long time series and local variation in
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Fig. 8. Projected PM2.5 scenario for the year 2030 and its change 2010–2030. (a) Projected 2030 PM2.5 scenario. (b) Average PM2.5 for the 26 cities in 2030.
(c) PM2.5 variation 2010–2030. (d) PM2.5 growth rate 2010–2030.

land-use pattern. This approach has also been applied in earlier
studies on pixel-level prediction of land surface temperatures
[42], and it applies to scenario prediction for most continuously
distributed entities.

PM2.5 has significant spatial dependence effects because air
pollution is prone to spread and migrate across space [51]. In
addition, it has been recognized that the results may be biased if
the spatial effect of PM2.5 is ignored when analyzing its relation-
ship with related variables [52], and this also occurs in the spatial
prediction of PM2.5. SLM is a spatial autoregressive model con-
sidering the spatial dependence effects of PM2.5 by introducing
the spatially weighted neighbors. Therefore, in connecting land

coverage indices and PM2.5, we have taken into account not only
the land-use change but also the spatial dependence effects of
PM2.5, resulting in outcomes more in line with the knowledge
and earlier findings of PM2.5 distribution. We applied PM2.5

data from ground monitoring stations in 2020 to calibrate the
model and applied the historical gridded PM2.5 [46] in 2010
to validate the method and outcomes. We used the 2020 data
for model calibration because these ground monitoring stations
have been releasing observations since 2013 and the earlier
2010 data for model validation because of the availability of
the PM2.5 product from Washington University. The product has
been widely accepted because it is accurate by combining AOD,
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TABLE IV
LAND-USE PROPORTION AND PM2.5 OF THE FOUR PROVINCES 2010–2030

chemical transport modeling, and ground-based measurements
[46]. In addition, when projecting the PM2.5 pattern for 2030,
the model calibrated using PM2.5 in 2020 and validated using
PM2.5 in 2010 is more accurate than the one calibrated using
PM2.5 in 2010 and validated using PM2.5 in 2020.

B. Impacts of PM2.5 Pattern in YRD

The results show significant decreases in past and future
PM2.5 in YRD, suggesting a leading position for the region
in China’s “peak emissions by 2030 and carbon neutrality by
2060” goal. Although the decrease might be influenced by
many factors, the promotion of ecological civilization policies
and the increase of environmental protection awareness should
probably be considered as the dominants [53], [54]. China’s
official environmental protection authority (gov.cn) has reported
a reduction in PM2.5 and an increase in days of good air quality in
YRD from 2020 to 2021. Also, a report of air quality assessment
from Peking University indicates continued significant declines
in PM2.5 (research.pku.edu.cn). These bulletins and reports have

confirmed our results that significant decreases in PM2.5 have
occurred and will also continue to occur in YRD. Despite the
significant urban expansion in YRD over the years, the imple-
mentation of environmental protection policies and the use of
new energy sources have managed to reduce PM2.5, suggesting
the possibility of the harmonious development of urbanization,
industrialization, and the ecological environment.

Concerning the spatial profile, the reduction of PM2.5 varies
among provinces in YRD, leading to a west–east shift in the
gravity center of PM2.5 distribution. Our results show significant
spatial heterogeneity in PM2.5 of YRD, with high in the north and
low in the south, which is primarily due to the agricultural and
built-up in the north and forest in the south. Specifically, in 2030,
PM2.5 in Shanghai and Nantong, situated in the east of YRD,
is about 39.1 μg/m3 and 37.1 μg/m3, ranking first and second,
respectively. This may be largely due to the impact of high-
intensity socioeconomic activities, high population density, and
the impact of large-scale urban development and industrializa-
tion, leading to great pressure on environmental protection. In
addition, given the significant spatial heterogeneity in PM2.5,
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the implementation of the overall optimization of the national
territory (land use) spatial planning should be considered under
the method of “integrated development of YRD.” With the op-
timization of land allocation, it is recommended that measures,
such as energy conservation and emission reduction, should also
be implemented, and cross-regional transfer of PM2.5 pollution
as evidenced by the spatial dependence effects should be avoided
to jointly create a “Green YRD” [55].

C. Comparison With Previous Studies

Concerning the PM2.5 analysis based on remote sensing and
GIS, quite a few publications have performed distribution es-
timation, spatiotemporal evolution analysis, and future predic-
tion. PM2.5 distribution estimation is usually performed using
regression methods, including the land-use regression (LUR)
model and GTWR model [56], [57]. LUR is constructed as a
linear model of the relationship between PM2.5 and different
environmental features (i.e., land use, population density, road
network, and meteorological conditions) [58], [59], whereas
GTWR of PM2.5 modeling is an improved model taking into
account time and space [57]. In fact, the PM2.5 concentration
at one location is also influenced by the concentration in its
surroundings; thus, we employed a spatial autoregressive model
(i.e., SLM) to delineate the spatial dependence effects of PM2.5

to achieve good modeling performance. In many case studies,
the goodness-of-fit (i.e., R2) of the modeling is around 0.69–0.82
[60], [61], [62], while the goodness-of-fit of our modeling is
0.87, confirming the superiority of our results. This suggests
that our approach provides an applausive alternative for the
estimation of the PM2.5 distribution.

The spatiotemporal evolution of PM2.5 was found correlated
to land-use change; specifically in our study, PM2.5 is posi-
tively correlated with built-up and negatively correlated with
forests and water bodies. Underlying the above relationships
as a modeling basis, our results indicate that PM2.5 in YRD
shows high values in the north and low values in the south
and decreases over time, confirming the findings of previous
studies [63]. We, therefore, confirm the following remarks that
implementing energy-saving and emission-reduction policies,
alleviating traffic on urban land, and increasing green space
can help reduce air pollutants [64]. With the analysis of the
spatiotemporal evolution of PM2.5, its prediction allows us to
better formulate the above policies, and the prediction can be
carried out on a variety of scales, such as hourly [65], daily
[66], weekly [24], and monthly [67]. These short-term PM2.5

predictions are also helpful in alerting severe pollution incidents,
which are crucial for human health improvement [68]. In our
study, we predicted the pixel-level PM2.5 scenarios over a long
term (ten years) based on the future land-use scenario projected
by Futureland. The long-term PM2.5 prediction is a valuable
attempt because it is important for the overall optimization of
the national territory spatial planning.

V. CONCLUSION

We proposed a new method to project pixel-level PM2.5

scenario over a long term and large scale by considering the

land-use change and spatial dependence effects. In this method,
we applied SLM to construct a relationship between land cov-
erage indices and PM2.5 concentration, where the impact of
neighboring PM2.5 was considered for the analysis. The future
land-use scenario that was used to derive the future land coverage
indices was performed using the Futureland model. Using this
method, we then projected the spatial pattern of PM2.5 in YRD
in 2030 based on Landsat images, PM2.5 data from ground
monitoring stations, and historical gridded PM2.5. The results
reveal that the spatiotemporal dynamics of PM2.5 are correlated
with land-use changes, and specifically, PM2.5 is positively
correlated with built-up and negatively correlated with forest and
water. This study also indicates that, from 2010 to 2030, PM2.5

in YRD tends to decrease and shows high values in the north and
low in the south. Our projections suggest that the ecological and
economic integration of the region will contribute to sustainable
development.

Pixel-level estimation and prediction of PM2.5 are important
issues in air pollution research and prevention, and our methods
and case study show the efficiency for future projection of
PM2.5. Limitations of our study also exist, for example, we
did not consider meteorological data and only predicted one
scenario. Further work should consider the different projec-
tions of land use and PM2.5 scenarios under different develop-
ment pathways, such as the shared socioeconomic pathways.
The spatial dependence effects of PM2.5 are closely related
to the spatial scale of data; thus, it is necessary to examine
the influence of spatial weight definition and spatial scale on
future scenario prediction in the future. Overall, the present
method can be easily applied to predict pixel-level PM2.5

patterns elsewhere, as well as to project the spatial pattern
of other environmental parameters, such as ozone and sulfur
dioxide.
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