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Deep Tensor Attention Prior Network for
Hyperspectral Image Denoising

Weilin Shen, Junmin Liu , Member, IEEE, Jinhai Li , and Chao Tian

Abstract—Hyperspectral imaging techniques can generate con-
tinuous narrowband images with a high spectral resolution. How-
ever, owing to environmental disturbances, atmospheric effects,
and hardware limitations of hyperspectral imaging sensors, cap-
tured hyperspectral images (HSIs) often contain complex noises
that significantly degrades their quality and limits their utility. In
this article, we design a deep tensor attention module based on a
canonical-polyadic (CP) decomposition of a feature tensor, referred
to as a deep CP attention module (DCPAM), which can disentangle
spatial and channel information and further enhance the topolog-
ical structure of features. It has been shown that the DCPAM is
effective and relatively simple to integrate into some well-known
network architectures. And taking the network with the DCPAM
as a deep prior, we propose a deep tensor attention prior network
(DTAPNet) for HSI denoising tasks. Extensive experiments on
simulated and real HSIs demonstrate that our proposed DTAPNet
outperforms existing state-of-the-art HSI denoising models.

Index Terms—Attention module, deep prior, hyperspectral
image (HSI) denoising, tensor decomposition.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs), which capture spectral
features and spatial distributions of materials simultane-

ously [1], [2], are composed of hundreds of grayscale images at
different wavelengths [3]. Therefore, HSIs have the potential for
discriminative abilities in measuring, monitoring, and probing
in a wide variety of applications [4], [5], and has been widely
adopted in many remote sensing tasks such as demixing [6]
and object classification [7]. Nonetheless, different types of
noise are generated on the final captured HSI owing to the
complex environments and acquisition errors of the sensors [8].
The coexistence of noise and interference leads to significant
degradation of HSIs [9]. Therefore, before performing high-level
tasks, denoising original hyperspectral images is important.
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To recover clean HSIs from noisy images, extracting the
topological or algebraic structures or some priors under the HSI
to be reconstructed reasonably is crucial. Classical methods such
as Fourier and wavelet transformations simply denoise noisy
hyperspectral images band-by-band [10] without considering
spectral correlations. This strategy often leads to spectral distor-
tion, which cause poor denoising performance. With the rapid
development of sparse and low-rank learning, more sophisti-
cated approaches for HSI denoising with reasonable priors have
been proposed, such as local smoothness constrained by total
variation (TV) [11], [12], sparse representation (SR) [13], [14],
and low-rank structure (LR) [15], [16].

Despite achieving satisfactory restoration performance, most
existing methods [17] require converting the HSI cube into mul-
tiple 2-D matrices for denoising. This behavior tends to damage
or destroy the inherent structure of the data itself [18]. Introduc-
ing tensor theory in HSI restoration tasks is an effective approach
to address this issue. This method [19] can fully utilize the
high contextual relevance of high-dimensional data structures
to achieve hyperspectral denoising. Despite these significant
improvements, notable problems remain in terms of issues like
complex parameter tuning and computational inefficiency.

Recently, fitting the prior information of an HSI through a
computational network model has become an effective method
to achieve HSI denoising. For example, DnCNN [20] learns
the nonlinear structure of data through residual connections.
Sidorov and Hardeberg [21] proposed a new approach that uses
the intrinsic properties of CNNs for HSI reconstruction without
training. Additionally, Zhao et al. [22] and Kan et al. [23]
introduced attention mechanisms to achieve HSI denoising.
Although attention-based deep learning methods are helpful
to learn the significant features, but most ignore the entangled
spatial and spectral or channel information in HSIs or extracted
features. Recently, Zhang et al. [24] found that low-rank priors
in tensor structures can be explicitly characterised using image
features. Based on this approach, we considered that tensor
decomposition methods can be introduced on the feature maps
of networks to disentangle spatial and channel information to
obtain high-dimensional structural information.

In addition, training a deep neural network on an external
dataset of noisy and clean image pairs is a powerful approach for
image denoising. However, large high-quality training datasets
are typically required, which limits the applicability of denoising
methods. Therefore, the development of single-image denoising
methods is of considerable interest, as they have no prerequisites
of large training datasets. That is, denoising algorithms and
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networks learn only from the input image themselves. Currently,
very little research has been conducted on this topic. Ulyanov
et al. [25] proposed a method for recovering an image using a
deep neural network. Based on this, Sidorov and Hardeberg [21]
developed a deep image prior method for HSI data. In this study,
we also focus on a single HSI denoising task.

In contrast to previous works that directly used the entangled
feature tensor as the input of subsequent stages, we propose
a novel scheme to enhance significant features by combining
canonical-polyadic (CP) tensor decomposition with attention
mechanisms on feature tensors. We refer to this scheme as deep
CP attention module (DCPAM). Considering the idea of RPCA,
learning the low-rank information of an image itself has a certain
denoising ability. In this article, for HSI denoising, we design
such a module to learn clean HSIs from noisy images. We use
tensor low-rank decomposition to learn low-rank information of
clear images, and apply attention mechanism to provide more
effective feature information, so as to learn a better prior struc-
ture for clean images. Specifically, DCPAM first disentangles
the feature tensor into three components by CP decomposition
and utilizes these components to generate spatial and channel
attention maps, respectively. Subsequently, it refines the features
by aggregating the two attention maps into a 3-D attention tensor.
It has been shown that DCPAM can be easily integrated into
well-known network architectures. On the one hand, compared
with traditional sparse and low-rank penalties, DCPAM utilizes
the powerful computing power and adaptability of the network
to obtain more accurate prior information. On the other hand,
compared with the prior methods using networks in the past,
DCPAM considers the high-dimensional tensor structure on the
feature domain of hyperspectral data, which is conducive to
more fully extracting the intrinsic correlation structure of the
data to obtain better denoising quality. By taking the networks
with DCPAM as a deep prior to regularize the HSI denoising
problem, a deep tensor attention prior network (DTAPNet) is
proposed. Compared with the method of denoising directly
through the network or a certain set of model calculation, our
method combines the prior penalty term of the data itself and
the loss term related to the denoising problem, which can be
more beneficial from recovering clear images from noisy im-
ages. We experimentally compared our approach with the
state-of-the-art (SOTA) methods to demonstrate that it exhib-
ited superior performance on both simulated and real-world
data.

The key contributions of this study are summarized as follows.
1) We design a deep tensor attention module (DCPAM) based

on a spatial and channel information disentangled by the
CP tensor decomposition of features.

2) We show that the proposed DCPAM can be used as a
play-and-plug block to easily integrate into three popular
network architectures.

3) By taking a network with DCPAM as deep prior,
we construct the DTAPNet for the HSI denoising
task.

4) We present the results of extensive experiments conducted
to verify the effectiveness of DTAPNet on both simulated
and real-world data.

TABLE I
NOTATIONS

The rest of this article is organized as follows. Section II
provides some notation along with relevant preliminaries. Sec-
tion III describes the structure of the deep CP attention module.
Section IV introduces the denoising method and its network
structure. Section V presents experimental results and compar-
isons with several benchmarks. Finally, Section VI concludes
this article.

II. RELATED WORKS

In this section, we introduce some basic concepts and related
work. Here, we first provide some notations in Table I.

A. HSI Denoising Prior

HSI denoising tasks have been extensively studied in recent
years. These methods considered different prior structures of
HSIs.

In addition to classical 2-D image denoising methods such
as BM3D [26] and NLM [27], several extended approaches
have been developed for HSI denoising. They considered small
local patches of HSI, building HSI’s as small 3-D cubes instead
of 2-D patches of traditional images, such as BM4D [28] and
NLM3D [29], which usually consider smoothing the prior struc-
tures of hyperspectral data.

Another widely used method is to reconstruct the desired sig-
nal by solving a prior regularized convex optimization problem.
Constraining the sparse prior structure of the data is a widely
discussed approach. Tan et al. [30] introduced a method using
approximate message passing to maintain the sparse properties
of HSI. Peng et al. [31] combined two properties of MSI:
nonlocal similarity in space and global correlation of spectra,
and proposed a new tensor dictionary learning model (TDL) for
MSI denoising.

However, instead of sparsity, low-dimensional structure sug-
gested by spatial correlations among pixels and spectral corre-
lations among bands is also the ubiquitous prior information in
HSIs. More and more works have emerged that jointly consider
the sparsity and low rank of hyperspectral data. He et al. [32]
proposed local low-rank matrix recovery and global spatial–
spectral total variation (LLRSSTV), which adopts matrix SVD
to obtain low-rank information. In order to fully utilize the prior
spectral information of hyperspectral data, another point is to
regard HSIs as 3-D tensors and to apply tensor factorization
techniques. For example, Renard et al. [33] obtained a low-rank
approximation of input data using their proposed low-rank ten-
sor approximation (LRTA) method. Regarding parallel factor
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analysis, Liu et al. [34] proposed the PARAFAC method to
eliminate the spectral redundancy of HSI. Depending on the
optimal singular value thresholding of low-rank tensor unfold-
ings, Zhuang et al. [35] presented a global and nonlocal low-rank
factorizations (GLF) method, which can represent hyperspectral
images in low-dimensional subspaces. He et al. [36] developed
the nonlocal meets global (NGmeet) algorithm, which is an
efficient rank adaptive alternating minimization method. Wu
et al. [37] considered the spatial and spectral information of in-
dividual regions to constrain the low-rank and sparse properties
of HSIs.

Despite promising results, laborious parameter tuning and
computational constraints prevent most methods from being
used in practice. Recently, deep learning has shown consider-
able potential in denoising tasks [20], [38]. Zhang et al. [20]
proposed a DnCNN to obtain the prior structure by adding batch
normalization [39] and residual connections [40]. Yuan et al. [41]
trained a model with remote sensing images prior to using a deep
residual network, which adopted a sliding window strategy to
deal with HSIs. He et al. [42] decomposed 3-D convolutions into
lightweight 2-D spatial and spectral convolutions to exploit the
spatial spectral information of HSI. Xiong et al. [43] proposed
an end-to-end network SMDS-Net to learn the low rank and
sparsity of HSI. Basing on deep image prior [25], Sidorov and
Hardeberg [21] developed a single-hyperspectral-image recov-
ery method (deep HS prior). Bodrito et al. [44] advocated a deep
prior based method with sparse coding principles. In addition
to CNN-based methods, attention-based methods have recently
been developed. Kan et al. [23] presented an AODN for HSI
denoising that extracted spatial–spectral prior features using an
attention module.

However, these deep learning methods are matrix-based and
do not fully consider the high-dimensional correlation structure
of HSIs or consider the high-dimensional structure of hyper-
spectral data one-sidedly, such as taking the spectral low rank of
hyperspectral data into account separately, which limited the
improvement of denoising quality. Since then, in this work,
we represent the tensor low-rank prior of HSI by designing a
tensor-based low-rank attention structure in the feature domain
to better constrain the high-dimensional prior information of the
data and achieve better denoising quality.

B. Attention Mechanisms

Traditional convolutional neural networks can learn the local
features of the data. To learn the global information of the data,
we consider introducing a self-attention mechanism, which is
a global encoding approach that can incorporate long-distance
features to associate the weights and calculate the weighted sum
of inputs [45]. Many computer vision applications are based
on variants of self-attention. For better image classification, Hu
et al. [46] proposed SE-Net to utilize channel information. Woo
et al. [47] presented CBAM by combining channel and spatial
attention to obtain more comprehensive feature information for
better performance. Wang et al. [48] introduced a nonlocal neural
network, which was proposed as plug and play extension to exist-
ing architectures. Attention mechanisms can provide knowledge

Fig. 1. CP decomposition of a 3-D tensor.

for more effective feature information, and have made great
progress in recent years. In our article, we combine the attention
structure with tensor-based low-rank representation for better
prior information.

C. Tensor Low-Rank Representation

Matrix methods tend to ignore the high-dimensional inner
structure of data. A useful approach is to treat the data as multi-
dimensional arrays known as tensors [49]. For example, colour
images are 3-D tensors, and functional magnetic resonance
images are 4-D tensors. For tensors, finding low-rank structures
is an important task and such methods have been extensively de-
veloped in recent years [49], [50]. Tucker decomposition, tensor
singular value decomposition (tSVD) and CP decomposition are
the most widely used decomposition methods. Tucker decompo-
sition [51] represents a tensor as the product of a core tensor and
projection matrices. However, it is hard to adjust and ensure the
ranks in the experiments. TSVD [52] is an elegant and natural
extension of matrix SVD. Nevertheless, components in the form
of high-order tensors are difficult to design related attention
network modules. CP decomposition [53] expresses an arbitrary
tensor as the sum of rank-1 tensors. CP decomposition is widely
used in tasks with high-dimensional data such as convolution
speed-up and model compression [54]. In this study, we applied
CP decomposition to model a tensor low-rank attention module
to fully utilize the high-dimensional prior information of data in
the feature domain.

III. DEEP CP ATTENTION MODULE AND NETWORKS

In this section, based on CP decomposition, we design a deep
CP attention module.

A. DCPAM

The following theorem defines CP decomposition.
Theorem 1: Any tensor X ∈ RI1×I2×···×IN can be decom-

posed into the sum of some rank-1 tensors as follows:

X ≈
[[
A(1),A(2), . . . ,A(N)

]]

≡
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r (1)

where A(n) =
[
a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R

]
∈ RIn×R, n = 1, 2, . . . ,

N, is a column normalization matrix, R represents the CP rank
which is typically predefined in experiments, and ◦ denotes
the Kronecker product. Fig. 1 shows the visual display for 3-D
tensors.
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Fig. 2. Architecture of the spatial attention map based on CP decomposition
(CPSAM).

We applied this theory to extract the principal components
of feature tensors to obtain better descriptive attention weights.
According to the CP decomposition, the matrix A(n) reveals the
low-rank information of nth dimension. Hence, CP decompo-
sition can effectively characterize information under different
dimensions on the feature maps. In our work, we calculate the
components of the CP decomposition by the alternating least
squares method [49] with a given rank R.

Given an intermediate feature tensor F ∈ RC×H×W , con-
sidering CP decomposition, we have that F = A(C) ◦A(H) ◦
A(W ), where A(C) ∈ RC×R, A(H) ∈ RH×R, and A(W ) ∈
RW×R. We utilizeA(H) andA(W ) to obtain the spatial attention
map Ms, and make full use of A(C), A(H), and A(W ) to
generate the channel attention map Mc. We then combine the
two parts as the entire attention tensor M. The details are as
follows.

1) Spatial Attention: Storing the spatial information of fea-
ture maps is of great significance. In our study, the spatial
attention map is generated by the spatial-dependent components
of the feature tensor, as shown in Fig. 2. According to CP
decomposition, A(H) and A(W ) contain low-rank information
on the dimensions of height and weight. The product of A(H)

and A(W ) simply implies low-rank information of the spatial
dimension. We then apply convolutional layers to generate spa-
tial attention maps Ms ∈ R1×H×W . Thus, we can compute the
spatial attention by

Ms

(
A(H),A(W )

)
= σ

(
fconv

(
A(H) ·

(
A(W )

)T
))

(2)

where σ and fconv represent the sigmoid function and the
convolution operation, respectively.

2) Channel Attention: Considering the relationship between
the corresponding channel component A(C) and the corre-
sponding spatial components A(H) and A(W ), we generate the
following channel attention map. The operations are described
in detail below. We consider A(H) and A(W ) as query matri-
ces and consider A(C) as the key matrix. The entire process
involves multihead attention. We obtain the correlation matrix
Cm = A(C) · Concat

(
A(H),A(W )

)T
. The dimension related

to the spatial information in the correlation matrix is squeezed
to efficiently compute channel attention. Here, we gather ag-
gregated spatial information by averaging and maximising the
corresponding row vectors of each channel in the correlation
matrix. To output our channel attention map Mc ∈ RC×1×1, a

Fig. 3. Architecture of the channel attention map based on CP decomposition
(CPCAM), where “C” expresses “Concat.”

Fig. 4. Architecture of the deep CP attention module (DCPAM). The first red
product label denotes Kronecker product and the blue product label denotes
elementwise multiplication.

multilayer perceptron was provided. Fig. 3 shows the architec-
ture in detail. We compute the channel attention by

Mc

(
A(C),A(H),A(W )

)
= Mc(Cm)

= σ(fMLP (avg(Cm)) + fMLP (max(Cm))) (3)

where fMLP denotes a multilayer perceptron with one hidden
layer.

3) Arrangement of Attention Module: For the given feature
map F = A(C) ◦A(H) ◦A(W ), we produce the whole atten-
tion tensor M = Mc ◦Ms ∈ RC×H×W by spatial attention
map Ms and channel attention map Mc. Then the output
feature tensor can be calculated by F ′ = F ⊗M, where ⊗
represents element-wise multiplication. The entire tensor atten-
tion module is shown in Fig. 4.

B. Deep Networks With DCPAM

In this section, we integrate DCPAM into several deep net-
works and construct a deep CP attention module based network
(simply denoted as DCPAMNet) to learn the inner structure of
the feature maps.

We consider three network architectures, as shown in Fig. 5.
The first architecture contained a simple ResNet bottleneck
block and added a deep CP attention module. The second archi-
tecture is a skip-connection-based network with two downsam-
pling and upsampling layers. In fact, we add 1 × 1 convolution
to the skip connection layers. In addition to the convolutional
layers in the skip connection layers and the last 1 × 1 con-
volutional layer for maintaining the dimensions of the output
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Fig. 5. Architecture of the deep network with DCPAM (DCPAMNet) based on ResNet, skip connection, and U-net model.

feature tensors, the values of the output channel in all other
convolutional layers are the same and artificially set. The last
network architecture was built based on U-Net. The convolu-
tional block includes two 3 × 3 convolutional layers, as shown
in the lower right corner. We compared their performances in
ablation experiments.

Of note, the variables usually have different inner structures.
In this section, we show that our proposed DCPAM can easily
be integrated into different popular networks to obtain special
information on variables, which demonstrates that our proposed
module has higher applicability.

IV. HSI DENOISING MODEL AND ALGORITHM

In this section, we apply the well-known alternating direction
method of multipliers (ADMM) algorithm [55] to the traditional
HSI denoising optimization problem with a prior penalty and
unfold our proposed optimization process into a deep network
to solve the hyperspectral image-denoising problem.

A. Model Optimization

Before presenting our final network model, we consider the
general optimization problem of HSI denoising.

Let H ∈ RH×W×S be the observed HSI, where H and W
represents the spatial dimensions, and S is the spectral dimen-
sion. We describe the HSI noise degradation model using the
following formula:

H = X +N (4)

whereX denotes the ideal clean HSI, andN represents the noise
tensor. The HSI denoising task aims to reconstruct X from the
noisy observation H.

A classical approach is to apply penalized least-squares op-
timization to the initial model (4), which leads to the following
problem:

min
X

1

2
‖ H−X ‖2F +λφ(X ) (5)

where λ implies a tradeoff between fidelity term 1
2 ‖ H−X ‖2F

and penalty term φ(X ).
To optimize the reconstruction problem (5), we introduce a

well-known ADMM algorithm. By adding auxiliary variable
S = X , (5) is rewritten as the constrained optimization problem

min
X

1

2
‖ H−X ‖2F +λφ(S), s.t. S = X . (6)
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Algorithm 1: Iterative Optimization Algorithm.
for t = 1 : K do

X t+1 = 1
µ+1 (H+ μSt +Yt)

St+1 = proxλ,µ

(
X t+1 − Yt

µ

)

Yt+1 = Yt + μ(St+1 −X t+1)
end for

The augmented Lagrange function for such optimization prob-
lem (6) is given as

Lµ(X ,S,Y) =
1

2
‖ H−X ‖2F +λφ(S) + 〈Y ,S −X 〉

+
μ

2
‖ S −X ‖2F (7)

where μ is a penalty factor and Y is the Lagrange multiplier.
Next, we can obtain S, X , and Y by following:

St+1 = argmin
S

λφ(S) +
μ

2
‖ S −X t +

Yt

μ
‖2F (8)

X t+1 = argmin
X

1

2
‖ H−X ‖2F +

μ

2
‖ St+1 −X +

Yt

μ
‖2F
(9)

Yt+1 = Yt + μ
(St+1 −X t+1

)
. (10)

To address the optimization subquestion (8), we calculate the
following:

St+1 = proxλ,µ

(
X t − Yt

μ

)
(11)

where proxλ,µ(·) is a proximal operator with parameters λ and
μ.

Obviously, (9) of updating variable X t+1 represents a
quadratic optimization problem with an explicit solution, that
is

X t+1 =
1

μ+ 1

(H+ μSt+1 +Yt
)
. (12)

The optimization algorithm guides us to update these three
steps alternately, i.e., (10)–(12), until a convergence condition
is reached, as briefly shown in Algorithm 1.

B. DTAPNet for HSI Denoising

In this section, we propose our deep tensor attention prior
network (DTAPNet) by unfolding the optimization algorithm
given before and give out some learning strategies in this section.

1) Algorithm Unfolding: We consider the algorithm un-
rolling method [56] and integrate our proposed three updating
steps, i.e., (10)–(12), into an end-to-end network. The implicit
proximal operator (11) can be easily expressed as a convolutional
network module and automatically trained in an end-to-end
manner, rather than derived from manually prespecified regular-
ization terms. Here, we adopted our proposed deep CP attention
module-based network (DCPAMNet) to formulate this operator.
We note that the parameter λ is implied in the network to briefly

Algorithm 2: Network Design.
for stage t = 1 : K of the network do

X t+1 = 1
µ+1 (H+ μSt +Yt)

St+1 = DCPAMNetµ

(
X t+1 − Yt

µ

)

Yt+1 = Yt + μ
(St+1 −X t+1

)
end for

write the proximal operator as

St+1 = DCPAMNetµ

(
X t − Yt

μ

)
. (13)

Since then, the unrolled network is to integrate (10), (12), and
(13), as summarized below in Algorithm 2.

Compared to Algorithm 1, the marked red part exhibits the
most important changes. Specifically, we initialized X 0 = H
andY0 = 0. Then, we alternately updated the above three equa-
tions K times. Finally, our proposed network outputs denoised
HSI XK . Fig. 6 shows the whole deep tensor attention prior
network (DTAPNet) structure based on ADMM. The dotted box
represents the update process of the tth stage corresponding to
the unfolding algorithm.

2) Learning Strategy: In the optimization algorithm, the hy-
perparameter μ has a significant impact on accuracy. Neverthe-
less, in our actual operations, it is of great challenge and difficulty
to tune hyperparameters for different conditions. Here, we set
the hyper-parameter μ as a learnable variable to obtain adaptive
parameters along the end-to-end network.

In our work, the MSE loss is introduced as the evaluation
criterion, which leads to the following expression of the loss
function:

L(μ,Θnet) = E ‖ F (H, μ,Θnet)−H ‖2F (14)

whereμ is a hyperparameter which can be learned automatically
in the net, F (·) denotes the whole network and Θnet denotes
the set of all network parameters. We minimize the loss function
with Adam and set the learning rate initially as 0.01. In the
following experiments of our work, we set K = 10.

V. EXPERIMENTS

In this part, we describe the results of some simulation exper-
iments performed with two datasets including OHS-3D HSI and
Pavia University, and two real data experiments on the OHS-3D
HSI and Indian Pines dataset to demonstrate the performance
of our proposed DTAPNet model and compare it with several
state-of-the-art (SOTA) methods.

A. Datasets

Training dataset: In order to train our model, we selected
hyperspectral remote sensing images taken by the “Zhuhai-
1” OHS-3D hyperspectral satellite in 2020, which centered
at 45.9312◦N , 84.537874◦E (in Xinjiang Uygur Autonomous
Region, China). The sensor records 32 spectral bands in
the wavelength range from 439 to 944 nm. The size of
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Fig. 6. Architecture of the deep tensor attention prior network (DTAPNet).

the entire hyperspectral image is 5057 × 5056 × 32. In this
article, the dataset is simply denoted as OHS-3D dataset. We
splited the images into two parts: one for training the proposed
network and the other for testing. For the testing part, we crop
a region of size 500 × 500 × 32 from the full HSI, and the rest
are used for training.

Testing dataset: In this work, we conducted simulation exper-
iments on the following three datasets to evaluate the effective-
ness of the proposed method in real scenarios.

1) OHS-3D HSI Dataset: For experiments, a patch of 500 ×
500 pixels was cropped from the images.

2) Pavia University Dataset: The scene was captured by the
reflective optical spectroscopic imaging system (ROSIS).
Here, we employed a cropped part of 300 × 300 pixels
size with 103 channels for experiments.

3) OHS-3 C HSI Dataset: This dataset (simply denoted as
OHS-3 C HSI dataset), which was originally acquired by
the “Zhuhai-1” OHS-3 C hyperspectral satellite in 2020
and centered at 43.939689◦N , 87.56131◦E (in Xinjiang
Uygur Autonomous Region, China), reserved 32 bands
for analysis. A cropped part of 500 × 500 pixels size was
employed for experiments in this work.

B. Experimental Setup

In this work, our proposed DTAPNet is compared with several
SOTA HSI denoising method, including three sparse methods:
BM3D [26], BM4D [28], TDL [31]; three low-rank methods:
LRTA [33], GLF [35], NGmeet [36]; and five deep learning-
based methods HSID-CNN [41], deep HS prior [21], SMDS-
Net [43], FastHyMix [57], T3SC [44]. The gray values of each
HSI band are normalized before denoising.

To evaluate the effectiveness of our proposed method and
obtain quantitative comparisons with these current mainstream
methods, we adopted four commonly employed metrics, in-
cluding peak signal-to-noise-ratio (PSNR), structural similarity
index measure (SSIM) [58], spectral angle mapper (SAM) [59]
and erreur relative globale adimensionnelle de synthèse (ER-
GAS) [60]. PSNR is usually used to evaluate the visual quality
and SSIM evaluates structural similarity based on the highly
structured features of images. SAM describes the spectral fi-
delity and ERGAS computes a weighted sum of MSE in each
band to obtain the fidelity of restored images. Generally speak-
ing, higher PSNR and SSIM, and lower SAM, and ERGAS
represent better performance.

Next, we generated several different types of noises to simu-
late real-world noise of HSIs. Specifically, the additional noise
was generated in the three cases as follows.

1) Each band was added by i.i.d Gaussian noise with same
noise level σ = 25, 50, 75, or 100.

2) Each band was added by a random probability distribu-
tion noise. For example, we select σ = rand(25) and
σ = rand(50).

3) Add salt and pepper noise with a noise density of 0.1.

C. Denoising Performance

We provide the denoising results of our experiments in this
section. Details are shown in Tables II–IV. For a detailed com-
parison, we chose several cases from each dataset to show the
visual performance, i.e. Figs. 7, 9, and 11. Although HSIs usually
have large number of bands, only three bands were selected in
each case to illustrate visual performance with pseudocolour.
For presentation, we choose bands 26, 16 and 6 for OHS-3D
HSI dataset, bands 57, 27, and 17 for Pavia University dataset,
and bands 16, 10, and 3 for OHS-3 C HSI dataset. Fig. 7
reveals the denoising results on OHS-3D HSI dataset with noise
level of σ = 100. Fig. 9 shows the denoising performance of
different methods on Pavia University dataset with random noise
of σ = rand(25). Fig. 11 exhibits the corresponding denoising
effect with salt and pepper noise on OHS-3 C HSI dataset. Fig. 8
illustrates the spectral signature of pixel (75,475) on OHS-3D
HSI denoising task mentioned before. The spectral signature
of pixel (175,145) on Pavia University dataset with random
noise of σ = rand(25) is revealed in Fig. 10. Similarly, Fig. 12
shows the spectral signature of pixel (285,235) on OHS-3 C
HSI dataset with salt and pepper noise. The per-band denoising
results, which are shown in Figs. 13 and 14, describe the values
of PSNR and SSIM of recovered HSI at different bands.

To observe the performance more clearly, the top two results
for each quality metric are marked red and blue in Tables II–IV.
Clearly, our proposed DTAPNet achieved the highest SSIM and
the lowest ERGAS among all noise levels, and performed better
on PSNR and SAM in most cases among all comparing methods.
For example, our method achieved a PSNR value of 30.58, an
SSIM value of 0.9615, an SAM value of 0.0530 and an ERGAS
value of 1.1077 on the OHS-3D HSI denoising task with noise
level of σ = 100, which represented the best on all metrics.

Figs. 7, 9, and 11 show the full images and the local mag-
nification maps of our proposed model and the comparison
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TABLE II
QUANTITATIVE EVALUATION OF DENOISING RESULTS OF OHS-3D HSI DATASET

TABLE III
QUANTITATIVE EVALUATION OF DENOISING RESULTS OF PAVIA UNIVERSITY DATASET
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Fig. 7. Visual results for the OHS-3-D HSI with noise level σ = 100. (a) GT. (b) Noisy. (c) BM3D. (d) BM4D. (e) TDL. (f) LRTA. (g) GLF. (h) NGmeet.
(i) HSID-CNN. (j) deepHSprior. (k) SMDS-Net. (l) FastHyMix. (m) T3SC. (n) Proposed.

Fig. 8. Denoising results of pixel (75, 475) in the OHS-3D HSI with noise level σ = 100. (a) GT. (b) Noisy. (c) BM3D. (d) BM4D. (e) TDL. (f) LRTA. (g) GLF.
(h) NGmeet. (i) HSID-CNN. (j) deepHSprior. (k) SMDS-Net. (l) FastHyMix. (m) T3SC. (n) Proposed.

Fig. 9. Visual results for the Pavia University dataset. (a) GT. (b) Noisy. (c) BM3D. (d) BM4D. (e) TDL. (f) LRTA. (g) GLF. (h) NGmeet. (i) HSID-CNN.
(j) deepHSprior. (k) SMDS-Net. (l) FastHyMix. (m) T3SC. (n) Proposed.
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TABLE IV
QUANTITATIVE EVALUATION OF DENOISING RESULTS OF OHS-3 C HSI DATASET

Fig. 10. Denoising results of pixel (175, 145) in the Pavia University dataset. (a) GT. (b) Noisy. (c) BM3D. (d) BM4D. (e) TDL. (f) LRTA. (g) GLF. (h) NGmeet.
(i) HSID-CNN. (j) deepHSprior. (k) SMDS-Net. (l) FastHyMix. (m) T3SC. (n) Proposed.

methods. It also shows that our proposed DTAPNet exhibited
the best visual performance with sharpest textures and the
most spatial details under different noises. The overall recovery
performance of LRTA algorithm was not sufficient for this
task. Some obvious noise artifacts are shown in Fig. 7. The
sparse methods BM3D, BM4D, and TDL algorithms provide
reasonable performance under weak noise levels. However, their
performance deteriorated significantly under strong noise levels.
Due to the lack of consideration of the low-rank structure of the
spectrum, their performance is generally worse than low-rank
methods, which is exhibited in Tables II–IV. GLF exhibited
respectable noise reduction abilities under different noise levels
and even obtained the best PSNR and SAM values in some
cases. However, compared with our proposed method, they

performed significantly worse in terms of SSIM and ERGAS,
which shows that our proposed method was able to recover
better structures from hyperspectral images. NGmeet makes
full use of the nonlocal low-rank prior information of the data
through the adaptive rank and obtains better results, especially
at some week noise levels. But our method takes advantage of
the strong strength of the network, considering their low-rank
information for the feature layers, and can show better results
in most cases and a wider range of noise. For deep learning
methods, HSID-CNN did not achieve good results, since it did
not combine spectral spatial structure correlation and global
spectral correlation well compared to other deep learning mod-
els. The rest four deep learning methods performed well under
most cases. However, our proposed method performed better.
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Fig. 11. Visual results for the OHS-3 C HSI with salt & pepper noise. (a) GT. (b) Noisy. (c) BM3D. (d) BM4D. (e) TDL. (f) LRTA. (g) GLF. (h) NGmeet.
(i) HSID-CNN. (j) deepHSprior. (k) SMDS-Net. (l) FastHyMix. (m) T3SC. (n) Proposed.

Fig. 12. Denoising results of pixel (285, 235) in the OHS-3 C HSI with salt & pepper noise. (a) GT. (b) Noisy. (c) BM3D. (d) BM4D. (e) TDL. (f) LRTA.
(g) GLF. (h) NGmeet. (i) HSID-CNN. (j) deepHSprior. (k) SMDS-Net. (l) FastHyMix. (m) T3SC. (n) Proposed.

Fig. 13. PSNR values in each band with σ = 100.

One possible reason is that SMDS-Net and FastHyMix models
relatively simply consider the low rank of the spectrum and
the sparsity of the space, while ignoring the overall low rank
structure of the data. For deepHSprior and T3SC models, this
may be attributed to the fact that our method makes a better use of

Fig. 14. SSIM values in each band with σ = 100.

the multidimensional structure of feature maps by CP decompo-
sition. Hence, our method performed better than other competing
methods in terms of spatial and spectral accuracy and visual
effect.
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Fig. 15. Heatmaps of three different datasets. (a) OHS-3D HSI. (b) Pavia
University. (c) OHS-3C HSI.

Fig. 16. 4 index under different CP ranks. (a) PSNR. (b) SSIM. (c) SAM. (d)
ERGAS.

Fig. 17. Visual exhibitation for the OHS-2D HSI at band 2, 7, 14, 32. (a) Band
2. (b) Band 7. (c) Band 14. (d) Band 32.

In Figs. 8, 10, and 12 under different noises with weak or
strong noise level or sparse added noise, our proposed method
can obtain curves of the spectral signature closer to the ground
truth among all compared methods. This reveals that our model
can better recover the spectrum.

Meanwhile, the specific numerical results shown in Tables II–
IV and the visual display effect exhibited in Figs. 7, 9, and 11
jointly illustrate that our proposed method has the best denoising
results with different kinds of noise, including Gaussian noise
with a large range, random probability distribution noise and
salt & pepper noise. This reveals that our method is able to
reach good denoising results under many different noises, and
has wide applicability to different kinds of noise.

Moreover, in Figs. 13 and 14, the blue curves of our pro-
posed model exhibited the highest throughout almost all bands,

Fig. 18. Visual results for denoising the OHS-2D HSI. (a) GT. (b) BM4D.
(c) TDL. (d) LRTA. (e) GLF. (f) NGmeet. (g) HSID-CNN. (h) deepHSprior.
(i) SMDS-Net. (j) FastHyMix. (k) T3SC. (l) Proposed.

TABLE V
DENOISING PERFORMANCE OF DIFFERENT PRIOR NETWORK

TABLE VI
QUANTITATIVE EVALUATION OF DENOISING RESULTS OF INDIAN PINES

DATASET

which also illustrates the superior performance of our proposed
model. We further visualize the learned heatmaps of images to
examine the partial features they activate, as shown in Fig. 15.
Here, we consider the denoising experimental performance with
noise level of σ = 50. For example, the first heatmap activates
the various mountains and rivers in Xinjiang Uygur Autonomous
Region. The heatmap on Pavia University dataset identifies the
various housing areas of the land. The last heatmap identifies the
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Fig. 19. Visual results for the Indian Pines dataset with band 2. (a) Noisy. (b) NLM3D. (c) BM4D. (d) LRTA. (e) GLF. (f) deepHSprior. (g) Proposed.

Fig. 20. Visual display of obtained classification maps. (a) GT. (b) Original. (c) NLM3D. (d) BM4D. (e) LRTA. (f) GLF. (g) deepHSprior. (h) Proposed.

highways and buildings on the land. The three hearmaps all dis-
tinguish different buildings or various terrains from each other.
Therefore, we believe that our method can obtain reasonable
denoising results.

D. Ablation Study

We perform a few extended experiments to investigate the
effect of some parameters.

1) CP Rank: In fact, CP rank plays a significant role in
supporting the denoising quality of our model. To study the
influence of low CP rank on feature maps more clearly, we
conducted experiments on OHS-3D HSI dataset with σ = 50
and add DCPAM separately at the second layer of a U-net based
network, and calculated PSNR, SSIM, SAM and ERGAS values
with different CP ranks. Fig. 16 shows the results of four metrics
while tuning CP rank. The best results are obtained when rank
= 3. This verifies that aggregating contextual information using
low-rank constraints was effective.

2) Prior Network: The choice of the structure of prior net-
work plays a important role in our model. Studies were con-
ducted on OHS-3D HSI dataset with σ = 50, 100. Results of
three mentioned prior network are presented in Table V, which
shows clearly that U-net-based network performed best. More-
over, under U-net-based structure, we conducted ablation ex-
periments where DCPAMs were removed to study the effect
of DCPAMs on the denoising problem. The results are also
shown in Table V. Obviously, our proposed DCPAM captures
the high-dimensional intrinsic information of the feature tensors,
and has a significant improvement in the denoising performance.

E. Real Data Experiments

Further, we compare our proposed model with several com-
peting methods on two real data, including OHS-2D HSI and
Indian Pines dataset.

1) OHS-2D HSI Dataset: This remote sensing HSI is taken
by the “Zhuhai-1” OHS-2D hyperspectral satellite, which cen-
tered at 18.858084◦N , 109.517711◦E (in Hainan Province,
China). We simply denote the dataset as OHS-2D dataset in
this article. We conduct our experiments on a cropped region of
size 500 × 500 × 32. It contains complex noises, for example,
as shown in Fig. 17, the noise in bands 2, 32 is obviously stronger
than that in bands 7, 14. We tune our model and apply it on the
remote sensing HSI. We compare our proposed method with
several sparse methods, low-rank methods and deep learning
methods mentioned before. Fig. 18 presents the denoising pseu-
docolor images synthesized by bands 14, 7, 2. It can be seen that
other methods either discard some detailed textures too much,
e.g., BM4D, NGmeet, deep HS prior, or cannot remove the noise
cleanly, e.g., TDL, LRTA, PARAFAC, HSID-CNN, FastHyMix.
On the contrary, our proposed method removes most of the
noises while preserving important structures, and performs the
best. Experiments further verify that the proposed DTAPNet has
strong denoising ability.

2) Indian Pines Dataset: Considering that the Indian Pines
dataset contained real noise in several bands, we performed a real
data experiment on Indian Pines to illustrate the flexibility of our
method. Fig. 19 shows the obtained grayscale images with band
2 by different methods for visual assessment. It may be observed
that the output of the LRTA method still contained some amount
of residual noise and PARAFAC leaf stripes. The BM4D and
NLM3D methods introduced significant blurring. The GLF and
deep HS priors showed much better performance. However, as
may be observed in the magnified regions shown in Fig. 19, our
proposed method performed the best, with clearest outlines and
details, which confirms its superior denoising performance.

For quantitative analysis, classification experiments were
conducted with 16 ground-truth classes. Here, we used linear
discriminant analysis (LDA) [61] as a classifier to conduct
classification experiments. Table VI lists the results. The OA and
kappa scores were additionally computed from the original noisy
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image and HSIs denoised using different methods, including our
proposed model. Specifically, the OA obtained by our proposed
method was 99.13%, whereas that of the original image was
only 82.43%. Furthermore, compared with other methods, our
proposed method has the best performance in terms of OA and
kappa accuracy. As shown in Fig. 20, our model generated a
map with fewer fragments.

VI. CONCLUSION

In this study, we have proposed a deep tensor attention prior
network by introducing CP decomposition in the feature domain
for the HSI denoising task. We use the traditional CP decompo-
sition optimization algorithm to obtain more accurate low-rank
decomposition components in the feature domain. By processing
the components containing information of each dimension, the
attention maps corresponding to the feature maps are calculated.
Specifically, we built a tensor attention module based on the
CP decomposition called DCPAM and added such a module
to several networks. Subsequently, the entire tensor-attention-
based network is integrated into an ADMM algorithm as a
step of iteration. Finally, we unrolled the algorithm to obtain
a prior network for the HSI denoising task. Compared with
SOTA methods, several experiments on both simulated and real
data demonstrated the superior performance and validity of our
model.

Despite the progress made in this article on HSI denoising,
several important challenges remain to be addressed. Future
challenges include: exploring the effect and impact of denois-
ing under richer noise models. Research the combination and
application of tensor decomposition methods in the field of
hyperspectral denoising, such as the determination of rank, the
differences and actual effects of different tensor decomposi-
tion methods, the combination of tensor modules, and more
cutting-edge networks, etc. Further studying the contribution
of HSI denoising methods as a preprocessing step for the next
step of HSI analysis, such as target detection, super-resolution,
segmentation, etc., is also an interesting topic.
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