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Abstract—Hyperspectral image (HSI) subspace clustering re-
mains a challenging task due to the poor spatial and rich spectral
resolutions of HSIs. Most of the existing HSI subspace clustering
approaches just extract the spatial and spectral features, ignor-
ing the intrinsic distribution information of data and leading to
low accuracy of clustering generally. To solve this problem, this
article presents a diffusion subspace clustering model (DiffSC)
that learns distribution information of HSI data simultaneously
through a diffusion module (DM). Specifically, due to the diffusion
probabilistic model (DPM) learning raw object data distribution
to generate data of the same distribution, which has received wide
attention in generation tasks and outperforms other generative
models significantly, we attempt to apply the DPM in the field
of feature extraction. DiffSC performs distribution information
extraction of HSIs by the DM and fuses them with spatial-spectral
features extracted by deep subspace clustering for training jointly.
Experiment outcomes demonstrate that intermediate activation of
specific timestep in the inverse diffusion process captures latent
distribution information of images effectively and improves the HSI
clustering accuracy significantly. Since the DPM is simplified, it can
be easily trained from scratch. We evaluate the presented DiffSC
on five real HSI datasets, and the experiments indicate that DiffSC
can obtain the most advanced clustering outcomes that notably
outperform most existing HSI subspace clustering approaches.

Index Terms—Diffusion probabilistic model (DPM), feature
extraction, hyperspectral image (HSI), representation learning,
subspace clustering (SC).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) captured by remote
sensing satellites and drones have high resolution, rich

spectral resources, and large spatial scale information, allowing
us to pinpoint areas of interest. HSIs have been used in a variety
of applications in recent years, including aerospace, geologi-
cal surveys, food safety, military, agriculture, and biomedicine
[1], [2].
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HSI classification plays a crucial role in the aforementioned
HSI application domain, aiming to classify each pixel point with
a fixed label, which is the foundation of HSI applications, and
the classification method commonly used today is supervised
classification based on category labels [3], [4]. In recent years,
greater progress has been made in supervised learning-based
HSI classification, with excellent classification accuracy ob-
tained on several publicly available HSI datasets, such as Salinas,
Pavia University, and Indian Pines images [5], [6], [7], par-
ticularly with deep-learning-based models [8], [9], [10], [11],
[12], [13], [14], such as convolutional neural networks [15],
[16]. However, supervised learning methods, especially deep-
learning-based models, usually require large amounts of labeled
training samples, but labeling HSI data cost a lot of money
and time. In addition, supervised learning-based methods have
difficulties in dealing with unknown data as they are modeled
based on preexisting labeled data, thus limiting the application
of supervised learning-based HSI classification in practice.

To avoid being short of manually labeled data in practical ap-
plications, a large number of works have focused on the study of
unsupervised HSI classification, called HSI clustering. Instead
of using category labels, HSI clustering focuses on the intrinsic
connections between individual pixel points and classifies them
automatically in an unsupervised approach [17]. The key to HSI
clustering is determining the degree of similarity between indi-
vidual pixel points [18]. Conventional unsupervised approaches,
such as K-means clustering [19], use pairwise distances nor-
mally, such as Euclidean distance, to measure similarity. Due to
the problem of pixel mixing in HSIs [20], the predictions of these
methods are often unreliable. High dimensionality and band
redundancy of HSIs also pose a great challenge to traditional
HSI clustering methods. For unsupervised classification, there
is less research related to it and the accuracy of the classification
results is not competitive [21], [22].

In recent years, subspace clustering (SC) received more
attention in HSI clustering [23], [24], [25], [26], [27], [28]
because of its ability to process high-dimensional data and
dependable results. SC aims to divide high-dimensional data
located in a nonlinear space union into their respective sub-
spaces, each subspace forms a manifold of lower dimensionality.
SC has achieved greater success in computer vision, such as
face clustering and motion segmentation. SC methods fall into
three broad categories [29], including statistical methods, alge-
braic methods, and spectral-clustering-based methods, where
spectral-clustering-based methods have achieved outstanding
results [30], [31]. Spectral clustering-based methods include

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0003-3813-2068
https://orcid.org/0000-0003-4657-1477
https://orcid.org/0000-0001-5897-5562
mailto:jiaxin.chen1@hotmail.com
mailto:suldier@outlook.com
mailto:fanzhangqaz@sina.com
mailto:wanghuajun@cdut.edu.cn
mailto:wanghuajun@cdut.edu.cn


6518 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

two stages. First, the data points are assumed to be linearly
representable by other points of data in the same subspace, and
the affinity matrix is obtained using the self-expressive (SE)
coefficient matrix. Then, the affinity matrix is passed into the
spectral clustering algorithm to group the data points into various
clusters.

For traditional SC methods, sparse subspace clustering
(SSC) [32] proposes a sparse SE coefficient matrix, and low-rank
representation (LRR) [33] proposes a low-rank SE coefficient
matrix, which is constrained by l1-norm and l∗-norm (nuclear
norm), respectively, to obtain the affinity matrix. Guided by
this idea, a large amount of SC approaches have been used
to obtain more accurate affinity matrices by employing dif-
ferent constraints. Cai et al. [34] presented an efficient graph
convolution-based subspace clustering framework (EGCSC), a
new convolutional self-representation of the graph is generated
by taking the feature matrix and adjacency matrix of the graph
as input, and the Frobenius norm is used to constrain to improve
the performance of SC. Vidal et al. [35] constrained the SE
coefficient matrix jointly by the nuclear norm and Frobenius
norm so that the learned SE coefficient matrix can better increase
the intraclass similarity and interclass differential, thus obtaining
a more robust SE coefficient matrix.

Although traditional SC has made remarkable achievements
in HSI clustering, it is a linear model. Good clustering results
cannot be guaranteed for some complex application scenarios,
such as dealing with nonlinear problems. With the advancement
of deep networks and representation learning, deep-learning-
based SC has gained widespread attention. Such algorithms are
often named deep clustering models [36], [37]. Deep subspace
clustering (DSC) can be used not only for HSI pixel classification
but also has a wide range of applications in other areas, such as
HSI band selection [38]. To learn the SE coefficient matrix from
input data, the deep clustering approaches typically employ an
encoder–decoder architecture, which can better extract the deep
feature of the data. Because of their nonlinear feature represen-
tation capacity, they usually function better than traditional SC
approaches, however, they are not extensively used in the field
of HSI. Ji et al. [39] first proposed DSC, a deep autoencoder
extracting deep features, which improves the SC performance
significantly. Lei et al. [40] presented deep spatial-spectral sub-
space clustering (DS3C) by feature fusion that spatial features
and spectral features are extracted at the same time to learn a
more robust deep SE coefficient matrix. Cai et al. [41] came
up with a graph regularized residual subspace clustering net-
work (GR-RSCNet) by recasting a graph regularized SC model
as a special SE layer that is integrated into a deep residual
convolutional autoencoder, improving the performance of SC.
Wang et al. [42] proposed multiscale DSC with discriminative
learning (MDSCDL), which obtains multiscale SE matrixes by
learning global and local features, then performs discriminative
fusion to obtain the final fusion SE coefficient matrix. In 2022,
Cai et al. [43] presented a hypergraph-structured autoencoder
(HyperAE) that adopts a deep autoencoder regularized by the
hypergraph structure as the backbone network with the capac-
ity of preserving the high-order structured information, which
outperforms many existing methods of DSC. Li et al. [44] pre-
sented a deep mutual information subspace clustering (DMISC)

network that the convolutional autoencoder is used to learn the
self-expression coefficient matrix through mutual information
maximization, residual connection, and graph regularization,
which effectively improves the SC accuracy, but lacks robustness
on some datasets. Although these deep learning methods have
good clustering performance, however, they just extract the
spatial and spectral features and ignore the intrinsic features,
such as the data distribution information.

To extract the data distribution information to further improve
SC accuracy and obtain robust deep affinity matrices, a diffusion
subspace clustering (DiffSC) method is proposed in this arti-
cle. While the diffusion probabilistic model (DPM) [45], [46]
has yielded astounding results on a variety of generative tasks
through learning the raw data distribution [47], [48], [49], [50],
it is unclear whether the DPM can also be a learner of feature
representations. In this article, we make use of a noise prediction
network in the DPM to perform distribution information feature
learning on the raw HSI data, and then, learn the SE coefficient
matrix together with the spatial-spectral features of the encoder
output of DSC jointly. Results show that it is feasible for the
DPM to be used for representation learning in HSI SC.

To sum up, the main contributions of this article are as follows.
1) We investigate the most advanced DPM learning repre-

sentation and the experiment indicates that it captures HSI
data distribution information, which is effective for HSI
SC.

2) We design the DiffSC for the HSI DSC, which is jointly
trained using data distribution and spatial-spectral fea-
tures. As far as we know, this is the first work using DPM
representation learning to HSI SC.

3) We compare the DiffSC with other existing traditional or
DSC methods on five real HSI datasets, and the outcome
of the experiments shows that DiffSC is superior to many
existing HSI SC methods.

II. RELATED WORKS

In this section, we describe existing research directions rele-
vant to our research.

A. Clustering Methods

1) Subspace Clustering (SC): SC supposes that all high-
dimensional space data are sampled from the union of mul-
tiple low-dimensional subspaces, in other words, that is
low-dimensional manifolds embedding in a high-dimensional
space so it can cluster by dividing the subspace. Let X =
[x1,x2, . . . ,xM ]T ∈ R

M×d is the set of M data points, which
{xi ∈ R

d}M
i=1 come from the sum S = {∪Sj}nj=1 of low-

dimensional subspaces, where M,d, and n indicate numbers
of raw data points, original space dimension, and quantity of
subspaces, respectively. Each subspace dimension is {dk}nk=1.
If the set Xt ⊆ X of t points belong to the same subspace
Sk(1 ≤ k ≤ n) of dimension dk, this dk-dimensional manifold
can be considered to be embedded in a d-dimensional Eu-
clidean space (dk < d), and thus, can be clustered. SSC [32]
and LRR [33] are pioneering work in this area, finding sparse
SE coefficient matrices and low-rank SE coefficient matrices by
means of l1-norm and l∗-norm constraints, respectively, which
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Fig. 1. Directed graph structure of the DPM.

define the following objective to optimize the problem

min
C

‖C‖1 s.t. CX = X, diag(C) = 0 (1)

min
C

‖C‖∗ s.t. CX = X, diag(C) = 0 (2)

respectively, where the SE coefficient matrixC ∈ R
M×M andci,j

in C denotes the correlation between the ith point xi and the jth
pointxj , which tends to be higher if the two data points belong to
identical subspace, and also set diag(C) = 0 to avoid obtaining
a trivial solution. ‖C‖1 indicates the l1-norm and ‖C‖∗ denotes
nuclear norm. Usually, C is used for the construction of the
affinity matrix byA = |C|+ |CT| and passesA into the spectral
clustering [25] approach to obtain the ultimate clustering results.
Because the method that passes the two constraints of (1) and (2)
is still a shallow SC method, different from DSC, the clustering
performance of the shallow method is usually ordinary.

2) Spectral Clustering: Spectral clustering is an algorithm
that evolved from the graph theory and has been widely used in
clustering. Its main idea is to consider all data as points in space,
and these points can be connected with edges between them.
The edge weight between two points farther away is low, while
closer together is high. The purpose of clustering is achieved by
cutting the graph composed of all data points so that the edge
weight sum between different subgraphs after the cut is as low
as possible, while the edge weight sum within the subgraph is
as high as possible.

In contrast to conventional clustering algorithms, spectral
clustering has the benefit of being able to cluster on a sample
space of any form and converge to a globally optimum solution.

B. Diffusion Probabilistic Model (DPM)

DPMs are a class of hidden variable models for genera-
tive tasks that approximate complex original data distributions
through simple distributions, typically standard Gaussian distri-
butions. The DPM excels at many generative tasks, to generate
samples that are in the same distribution as the original data. It
can be divided into two processes, as shown in Fig. 1, including
diffusion processes and inverse diffusion processes, both of these
processes can be viewed as parametric Markov chains. The
diffusion process involves adding different scale Gaussian noise
gradually to a sample of original datax0 until it becomes random

noise

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (3)

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (4)

where variance schedule β1 < β2 . . . < βt < . . . < βT < 1.
To avoid iteration, the noise sample xt at any moment t

can be computed directly using x0 and βt by means of the
reparameterization trick

q(xt|x0) = N (
xt;

√
ᾱtx0, (1− ᾱt)I

)
(5)

xt =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N (0, I) (6)

where αt := 1− βt, ᾱt :=
∏t

s=1 αs. T is the total number of
iterations. When t −→ T , xt ∼ N (0, I).

While the inverse diffusion process is the recovery from ran-
dom Gaussian noise to the original distribution data gradually,
it can construct a parameterized model pθ by deep neural net-
works to approximate this distribution, where joint distribution
and conditional probability distribution of the inverse diffusion
process are

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt) (7)

pθ(xt−1|xt) := N (xt−1;μθ(xt, t),Σθ(xt, t)) (8)

where Σθ(xt, t) = σ2
t I = βtI .

We model pθ according to the posterior conditional prob-
ability q of the diffusion process. It is possible to obtain the
variational lower bound (VLB) as the minimization optimization
objective by variational inference as follows:

LVLB := Eq(x0:T )

[
log

q(x1:T |x0)

pθ(x0:T )

]
. (9)

During the inverse diffusion process, we need to iterate to obtain
xt−1 from xt, thus the joint probability of the inverse diffusion
process pθ(x0:T ) in (9) is not easy to solve. Considering this
factor, we transform it into the conditional probability, which is
easy to solve as follows

LVLB = Eq

⎡
⎢⎣DKL(q(xt|x0)‖p(xT ))︸ ︷︷ ︸

LT

+
T∑

t=2

DKL(q(xt−1|xt, x0)‖pθ(xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ(x0|x1)︸ ︷︷ ︸
L0

⎤
⎥⎦ . (10)

The optimization function after simplification with a total ofT +
1 terms. LT is a constant that can be omitted, and L0 is solved
by a separate discrete decoder that is not involved in network
training. The remaining T − 1 terms, which is the middle Lt−1

in the aforementioned equation, need to be optimized. Since q
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Fig. 2. Schematic diagram of the structure of our proposed DiffSC, including the Encoder, Decoder, and DM. Specifically, DiffSC includes two stages, the first
stage learning the SE coefficient matrix, and the second stage, using spectral clustering methods to produce clustering results.

and pθ can be viewed as two Gaussian distributions with no
parameters in q and only the mean in pθ contain parameters, the
LT−1 in (10) is transformed by the KL divergence formula for
two univariate Gaussian distributions as

Lt−1 = Eq

[
1

2σ2
t

‖μ̃t(xt, x0)− μθ(xt, t)‖2
]
+ C (11)

where μ̃t is the mean of q, and μθ is the mean of pθ.
Due to modeling the predicted mean μθ directly is not the best

choice, we transfer the parameters in mean to added noise εθ by
reparameterization trick, and then, directly predict the noise by
modelingDθ. Substitute this into (11) and omit the fixed weights
yields the most simplified optimization objective

Lsimple(θ) := Ex0,t,ε

[‖ε− εθ(
√
ᾱtx0 +

√
1− ᾱtε, t)‖2

]
.

(12)
The inverse diffusion process trains the noise prediction network
Dθ by predicting the noise added at each step of the diffusion
process.

Recent work [49] has developed different generative targets
and better model architectures, allowing DPMs to outperform
GANs [51] in quality and diversity of generative tasks. DPMs
have already been widely used in several fields, including speech
synthesis [52], molecular conformation generation [53], and
video generation [54]. In our work, the experiment outcomes
indicate that DPMs can also be used for representation learning.

III. PROPOSED METHOD

In this section, we investigate representation learning by
DPMs, first giving a brief introduction to the DiffSC frame-
work, and then, using it in HSI SC to improve the clustering
performance.

A. Diffusion Subspace Clustering Model (DiffSC)

DPMs excel in generation tasks by learning the distribution
information of the data, so we try to use it for distribution
information extraction. In the generation task, the inverse dif-
fusion process trains the noise prediction network by randomly
selecting time step t and iterates step by step to generate the target
distribution data finally. Since we only use it for extracting data
distribution features and do not need the whole iterative process,
we pick a few fixed-time steps t for training.

To extract the distribution information of the HSI data, we use
a simplified DPM for joint training, which does not use the in-
verse diffusion generation process. The original data distribution
information is obtained by the intermediate output of the noise
prediction network Dθ at a specific time step t. Specifically, the
complete framework of DiffSC is shown in Fig. 2, including a
diffusion module (DM), encoder with three convolutional layers,
and decoder with three deconvolutional layers. We use (12) in
the DPM as the loss function of the noise prediction network Dθ

in DM, as shown in Fig. 3, and train Dθ by minimizing the loss
function. To train DiffSC, we define joint loss function as

L = ‖εt − ε̂‖2F + λ‖Z−CZ‖2F + γ‖C‖22 + ‖X−D(CZ)‖2F
Z = concat(E(X),DM(X)) (13)

where λ and γ are hyperparameters; ‖ · ‖F represents the Frobe-
nius norm; and ‖ · ‖2 represents l2-norm.

E(·), DM(·), and D(·) denote the output of Encoder, DM,
and Decoder, respectively. The joint loss function L consists of
four parts. ‖εt − ε̂‖2F represents the loss of Dθ network that εt
is the Gaussian noise added to data at time step t and ε̂ is noise
predicted by Dθ, allowing the model to learn more efficient
data distribution features. ‖Z−CZ‖2F represents the loss of
the subspace, where Z is a fusion of spatial-spectral features
and distribution information features that can be used together
to learn the SE coefficient matrixC. ‖C‖22 denotes the constraint
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Fig. 3. DM structure. The noise added at timestep t of the diffusion process
is predicted by the timestep t and xt.

to obtain the sparse SE coefficient matrix. ‖X−D(CZ)‖2F
represents the loss of the original data and reconstructed data.

B. DiffSC for HSI Clustering

HSI clustering includes two stages, of which the first stage
learns the SE coefficient matrix, and the second stage uses
spectral clustering methods to obtain clustering results.

First, we process the raw HSI data to match the input re-
quirements of the model. HSI data are a data cube that com-
bines spatial and spectral dimensions, which we denote as
X ∈ R

H×W×B , where H denotes height, W denotes width, and
B denotes spectral channel. Since HSI generally has hundreds of
spectral channels and many redundancies, in order to eliminate
redundancies, PCA is first used to reduce the dimensionality. If
the number of channels is D after the reduction, the data are
represented as X ∈ R

H×W×D. If only a single pixel point is
utilized for training, the training data become X ∈ R

M×1×1×D,
and M denotes the total number of pixel points. Then, when
using the network for training, we can only extract the spectral
feature information and lose the rich spatial feature information
contained in the HSI. If we want to extract both spectral features
and spatial features in training, we can consider each pixel
point as the center and the surrounding S × S neighborhood
as the spatial information of that pixel point together as the
training data, then the training data will be expressed as X ∈
R

M×S×S×D. The label of the center pixel point is used as the
label of each pixel data cube.

For data points at boundary locations in the original HSI,
which cannot take full advantage of the neighborhood informa-
tion, we can make them also acquire sufficient spatial features
by mirror filling. To ensure that each pixel point is the absolute
centroid of the S × S neighborhood, S is usually odd, so the
mirror fill size is (S − 1)/2 around the original data before
dividing the neighborhood patches.

The divided HSI patches are used as the input of DiffSC
to extract the spatial-spectral features and distribution infor-
mation features, assuming that the obtained feature map Z ∈
R

M×S×S×T . To get the SE coefficient matrix C ∈ R
M×M , we

reshape the dimension of feature map to Z ∈ R
M×(S×S×T ) so

Algorithm 1: Pseudocode of DiffSC for HSI Clustering.
Input: HSI Xgt; cluster number n; hyperparameters λ, γ
Ouput: clustering results

1: Generate low-dimensional and small-scale HSI data X
2: Initialize Diffusion module (DM), encoder (E),

decoder (D), and SE coefficient matrix C
3: While stopping conditions are not satisfied do
4: Z = concat(E(X),DM(X))
5: Calculate L according to (13)
6: Optimization by gradient descent algorithm
7: endwhile
8: Calculate the deep affinity matrix A = |C|+ |CT|
9: Clustering results obtained with spectral clustering

TABLE I
SUMMARY OF SALINASA, PAVIA UNIVERSITY, INDIAN PINES, HONGHU, AND

LONGKOU DATASETS

that we can learn the SE coefficient matrix C by Z = CZ, then
get the affinity matrix by A = |C|+ |CT|, and finally, get the
clustering results by spectral clustering.

IV. EXPERIMENTS AND RESULTS

In this section, we assess the clustering capabilities of DiffSC
on five commonly used HSI datasets and perform extensive
ablation studies to analyze the proposed DiffSC in many aspects.

A. Configuration

1) Datasets and Preprocessing: We conducted extensive ex-
periments on five commonly used HSI datasets, namely Sali-
nas, Pavia University, and Indian Pines, and two recent Chi-
nese HSI datasets called WHU-Hi-HongHu and WHU-Hi-
LongKou [55]. The WHU-Hi-HongHu dataset was acquired
in HongHu, Hubei province, in 2017, and the WHU-Hi-
LongKou dataset was acquired in LongKou, Hubei province,
in 2018. The Salinas and Indian Pines datasets were acquired
through AVIRIS sensors, the Pavia University dataset was
obtained through ROSIS sensors, and WHU-Hi-HongHu and
WHU-Hi-LongKou were got with Nano-Hyperspec sensors.
To improve clustering performance, we only intercepted some
scenes from these datasets. Specifically, these scenes are lo-
cated at [158:240,591:676], [150:350,100:200], [30:115,24:94],
[800:900,90:170], and [110:220,208:275], respectively, and the
scenes intercepted from Salinas, WHU-Hi-HongHu, and WHU-
Hi-LongKou are also called the SalinasA, HongHu, and
LongKou dataset. Table I summarizes the specific information
of the five datasets.
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TABLE II
CONFIGURATION OF THE DIFFSC FOR THE PAVIA UNIVERSITY DATASET

In the preprocessing stage, we downscale the channels of the
HSI to a suitable size by PCA and select an appropriate neigh-
borhood size to generate training data. We set the neighborhood
size of SalinasA, Pavia University, Indian Pines, HongHu, and
LongKou to 9, 13, 13, 11, and 9, respectively; the channel sizes
were set to 4, 10, 6, 5, and 5, respectively; and the time step t
was set to 5, 9, 9, 7, and 11, respectively. All sample eigenvalues
were normalized to [0,1] before clustering.

2) Evaluation Indices: Three indices [22], [34] are most
common for evaluating clustering capability: overall accuracy
(OA), normalized mutual information (NMI), and kappa co-
efficient (κ). The OA index directly calculates the accuracy
according to the best alignment of the predicted clusters and
ground-truth labels. The three indices take values range [0, 1],
with larger values indicating better clustering.

3) Baselines and Comparative Approaches: We compared
the DiffSC with many existing clustering approaches, including
four traditional clustering approaches and six popular deep
clustering approaches. For the comparison experiments, the tra-
ditional methods include sparse SSC, LRR, low-rank subspace
clustering (LRSC), and EGCSC, and the deep learning methods
include DS3C, GR-RSCNet, MDSCDL, HyperAE, and DMISC
network. Among them, HyperAE is the more effective HSI
clustering method at present. DSC is compared as a baseline.

4) Realization Details: For the aforementioned HSI cluster-
ing approaches, i.e., LRR, SSC, LRSC, EGCSC, DSC, DS3C,
GR-RSCNet, DMISC, and HyperAE, we use the settings in the
corresponding articles. For MDSCDL, we choose one suitable
parameter configuration. We set T in the DM to 1000 and the β
range to [0.0001,0.02]. Taking the Pavia University dataset for
an example, the detailed configuration of DiffSC is shown in
Table II. We adopt Adam optimizer for training DiffSC, setting
the learning rate to 0.0002 and time step t to 9 and passing it into
the network through the T embedding layer. The epochs of Sali-
nasA, Pavia University, Indian Pines, HongHu, and LongKou
were all set to 100. The hyperparameters in joint loss function
L were set λ = 100 and γ = 0.1. All baseline approaches are
implemented on an Intel Xeon Gold 5218 2.30-GHz CPU with
128-GB RAM with Python 3.7. For speeding up DiffSC training,
we run it on an NVIDIA GeForce RTX 2080 Ti GPU with 11 GB
of graphic memory.

B. Results

1) Quantitative Results: Tables III–VII show clustering re-
sults of various approaches on SalinasA, Pavia University, Indian
Pines, HongHu, and LongKou datasets. The results indicate that
DiffSC presented in this article gets the best clustering perfor-
mance and is obviously better than other clustering approaches
in OA, NMI, and κ metrics. From the results, it is evident that
the traditional clustering methods are notably improved when
combined with deep learning. DiffSC significantly outperforms
the SSC and LRR traditional methods, which indicates that
conventional clustering approaches combined with deep repre-
sentation learning have greatly improved clustering capabilities.
From Tables III to VII, it can be seen that few methods are
able to achieve 93% OA on five different datasets at the same
time, while DiffSC obtains an OA above 93% for all of them. In
particular, DiffSC achieves perfect (100% OA) clustering capa-
bilities on the SalinasA and Pavia University datasets. DiffSC
outperforms DSC on all datasets, indicating that the capabilities
of DSC can be notably enhanced by adding diffusion feature
representation, which means that the SE coefficient matrix C
learned by DiffSC is better than that learned by DSC. In the
later ablation experiments, we will further investigate the effec-
tiveness of the diffusion feature representation and demonstrate
that multifeature fusion is the key to HSI clustering. It is seen that
almost all clustering approaches with higher performance try to
fuse multiple features, for example, EGCSC incorporates graph
embedding information during training. Therefore, the methods
after fusion by features usually work better than traditional
methods.

The results of DiffSC are comparable to many supervised
methods, obtaining 100%, 100%, 97.43%, 99.64%, and 93.68%
OA on SalinasA, Pavia University, Indian Pines, HongHu, and
LongKou datasets, respectively. In general, supervised methods
are trained with labeling information, so results are better than
unsupervised approaches. But the approach presented in this
article builds an effective HSI clustering model competition with
the supervised HSI classification approaches.

2) Comparison of Visualization Results of Various Methods:
We visualize clustering results of various approaches as illus-
trated in Figs. 4–8. Usually, the same color represents the same
object category, but some of the predicted category labels may
have slight differences due to the presence of misclassification
cases. As shown in Figs. 4 and 5, the clustering outcomes
acquired through our proposed DiffSC on the SalinasA and
Pavia University datasets are completely consistent with the
ground truth without any clustering errors, while other clustering
models cannot achieve 100% accuracy on both datasets at the
same time. For Indian Pines (see Fig. 6), HongHu (see Fig. 7),
and LongKou (see Fig. 8) datasets, DiffSC obtained the closest
clustering effect to the ground truth compared with other cluster-
ing models, while the results clustered with other methods either
had a higher number of misclassifications or a higher number of
noise points, and the clustering effect was significantly weaker
than DiffSC. The clustering outcomes indicate that our approach
robustness and has high accuracy, moreover, the clustering ef-
fect is significantly better than most of the existing clustering
models.
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TABLE III
CLUSTERING RESULTS OF LRR, SSC, LRSC, EGCSC, DSC, DS3C, GR-RSCNET, MDSCDL, HYPERAE, DMISC, AND DIFFSC ON THE SALINASA DATASET

TABLE IV
CLUSTERING RESULTS OF LRR, SSC, LRSC, EGCSC, DSC, DS3C, GR-RSCNET, MDSCDL, HYPERAE, DMISC, AND DIFFSC ON THE PAVIA UNIVERSITY

DATASET

TABLE V
CLUSTERING RESULTS OF LRR, SSC, LRSC, GCOT, EGCSC, EKGCSC, GR-RSCNET, DSC, AND DIFFSC ON THE INDIAN PINES DATASET

TABLE VI
CLUSTERING RESULTS OF LRR, SSC, LRSC, EGCSC, DSC, DS 3 C, GR-RSCNET, MDSCDL, HYPERAE, DMISC, AND DIFFSC ON THE HONGHU DATASET

3) Time Cost Comparison: Table VIII records the run-
ning times of different methods on different datasets. For
the fairness of the comparison, all methods are performed
on the same GPU. As shown in Table VIII, the runtimes
of the original shallow methods (LRR, SSC, LRSC, and
EGCSC) are shorter compared to the deep clustering models
(DSC, DS3C, GR-RSCNet, MDSCDL, HyperAE, DMISC, and

DiffSC), but are much inferior to the deep models in terms
of clustering performance. Since deep models contain millions
or even tens of millions of training parameters, it is very
time-consuming to train deep models, but these deep models
can extract deeper feature information compared to shallow
models, so the increased time cost yields better clustering
results.
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TABLE VII
CLUSTERING RESULTS OF LRR, SSC, LRSC, EGCSC, DSC, DS 3 C, GR-RSCNET, MDSCDL, HYPERAE, DMISC, AND DIFFSC ON THE LONGKOU DATASET

Fig. 4. Segmentation results obtained by different approaches on the SalinasA dataset. (a) Ground truth. (b) LRR 82.16%. (c) SSC 76.23%. (d) LRSC 86.31%.
(e) EGCSC 100%. (f) DSC 97.64%. (g) DS3C 96.56%. (h) GR-RSCNet 100%. (i) MDSCDL 99.83%. (j) HyperAE 100%. (k) DMISC 100%. (l) DiffSC 100%.

TABLE VIII
RUNNING TIME OF DIFFERENT MODELS (SECOND)

C. Ablation Study

1) Impact of DM: To demonstrate the effect of introducing
the DM, we compared the capability of various DSC models.
Since the DM is essentially a prediction of the noise added to
the original data at a specific time step t during the diffusion
process, and therefore, also belongs to the noise feature, we use
the output of each convolutional layer of Dθ as an intermediate
activation to learn deep SE coefficient matrix C together after
connecting with DSC separately, thus proving that the interme-
diate activation feature of our extracted third convolutional layer
is valid. We use random noise added to DSC to prove the noise
feature extracted by the DM is efficient. We refer to the baseline

as DSC and compare the network clustering performance of
adding random noise (DSC + noise), the intermediate activa-
tion of the first layer of Dθ (DSC + Dθ_1), the intermediate
activation of the second layer (DSC + Dθ_2), the intermed-
iate activation of the third layer (DiffSC), and the intermediate
activation of the last layer (DSC + Dθ_last), respectively. For the
fairness of the comparison, the aforementioned methods use an
identical model configuration and random seed to initialize and
train on the same GPU. The outcomes are presented in Table IX.
As we can see from the table that DSC + Dθ_1, DSC + Dθ_2,
DSC + Dθ_last, and DiffSC all have a considerable improvement
in clustering performance compared with DSC.
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Fig. 5. Segmentation results obtained by different approaches on the Pavia University dataset. (a) Ground truth. (b) LRR 66.75%. (c) SSC 64.50%. (d) LRSC
81.35%. (e) EGCSC 84.42%. (f) DSC 93.25%. (g) DS3C 89.71%. (h) GR-RSCNet 96.15%. (i) MDSCDL 99.77%. (j) HyperAE 93.27%. (k) DMISC 95.64%.
(l) DiffSC 100%.

TABLE IX
PERFORMANCE OF DIFFERENT MODELS

Specifically, we first add random Gaussian noise to the DSC,
and the experimental effect proves that the random noise does
not improve the model performance, but after adding different
layers of intermediate activations of the Dθ network, all of them
have significant improvements over the original DSC, which
proves that our proposed diffusion representation learning is
effective, and the best effect is DiffSC, which adds the third
layer of intermediate activations of the Dθ network to the DSC.

2) Robustness Evaluation: Considering that the image data
used for HSI SC are more or less affected by the surrounding
environment in real situations, we evaluate the robustness of

DiffSC by adding random noise to the HSIs to simulate realistic
disturbances. Since the pixel values of the images to be processed
have been normalized to [0, 1], we add Gaussian noise with 0 of
mean and 0.1 of variance to the HSIs to simulate the HSIs subject
to environmental interference in real situations and compare
the SC performance of the HSIs without noise and those with
noise. The results are shown in Table X, where the clustering
accuracies are 100%, 100%, 97.43%, 99.64%, and 93.68% for
the noise-free data and 100%, 99.95%, 96.95%, 99.19%, and
92.96% for the noise-containing data, respectively. It can be
seen that the clustering performance is slightly reduced after
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Fig. 6. Segmentation results obtained by different approaches on the Indian Pines dataset. (a) Ground truth. (b) LRR 67.30%. (c) SSC 69.37%. (d) LRSC 77.47%.
(e) EGCSC 88.27%. (f) DSC 91.23%. (g) DS3C 82.83%. (h) GR-RSCNet 91.82%. (i) MDSCDL 89.36%. (j) HyperAE 94.33%. (k) DMISC 92.17%. (l) DiffSC
97.43%.

Fig. 7. Segmentation results obtained by different approaches on the HongHu dataset. (a) Ground truth. (b) LRR 72.05%. (c) SSC 77.63%. (d) LRSC 82.07%.
(e) EGCSC 83.02%. (f) DSC 84.00%. (g) DS3C 87.45%. (h) GR-RSCNet 97.99%. (i) MDSCDL 93.15%. (j) HyperAE 98.79%. (k) DMISC 99.10%. (l) DiffSC
99.64%.

TABLE X
ROBUSTNESS EVALUATION OF DIFFSC
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Fig. 8. Segmentation results obtained by different approaches on the LongKou dataset. (a) Ground truth. (b) LRR 78.03%. (c) SSC 75.23%. (d) LRSC 81.96%.
(e) EGCSC 82.10%. (f) DSC 83.56%. (g) DS3C 83.98%. (h) GR-RSCNet 91.94%. (i) MDSCDL 92.43%. (j) HyperAE 92.29%. (k) DMISC 91.52%. (l) DiffSC
93.68%.

Fig. 9. Influence of the time step t on (a) SalinasA, (b) Pavia University, (c) Indian Pines, (d) HongHu, and (e) LongKou datasets.

adding noise, but it is also better than most of the compared
methods. The clustering performance fluctuates within 0.72%,
which is sufficient to show the high robustness of the proposed
method.

3) Impact of the Time Step T: The scale of the noise removed
in the inverse diffusion process decreases with the time step t,
moreover, when the smaller t is, the closer it is to the real data
distribution. It is reasonable to believe that the finer the noise
is, the more information the data distribution contains, so the t
values we selected are on the small side.

We conducted experiments to research the time step t effect
on the clustering capability, where we spaced the time steps from
5 to 13 with an interval of 1. As shown in Fig. 9, the optimal time
steps t for the SalinasA, Pavia University, Indian Pines, HongHu,
and LongKou datasets are 5, 9, 9, 7, and 11, respectively. Since
the closer the inverse diffusion process is to the original data,

the more data information contained in the features extracted by
the Dθ network, the greater the boost to the clustering results,
therefore, the selected time step t is usually on the small side.

4) Influence of Neighborhood Size: We investigate the im-
pact of HSI neighborhood size on clustering performance by
varying the neighborhood size from 3 × 3 to 17 × 17 with
an interval of 2 × 2. It is shown in Fig. 10 that the optimal
neighborhood sizes of SalinasA, Pavia University, Indian Pines,
HongHu, and LongKou datasets are 9, 13, 13, 11, and 9, respec-
tively. Since identical objects usually present as a homogeneous
region in HSI, appropriately increasing the neighborhood size
enhances the clustering performance of DiffSC. However, it is
not the case that the larger the neighborhood size, the more
powerful the clustering ability. When it is larger than 13, the
clustering performance of DiffSC on the five datasets gradually
decreases, which is due to the fact that the larger neighborhood
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Fig. 10. Influence of neighborhood size on (a) SalinasA, (b) Pavia University, (c) Indian Pines, (d) HongHu, and (e) LongKou datasets.

Fig. 11. Influence of number of channels on (a) SalinasA, (b) Pavia University, (c) Indian Pines, (d) HongHu, and (e) LongKou datasets.

Fig. 12. Influence of the loss function parameters on (a) SalinasA, (b) Pavia University, (c) Indian Pines, (d) HongHu, and (e) LongKou datasets.

contains more noise points and more interference, which has
a greater influence on the clustering outcomes, especially the
boundaries of different classes of objects.

5) Influence of Numbers of Channels: Due to the number
of channels of HSI data being large, usually hundreds, and the
disadvantage of information redundancy, it is usually needed
to perform channel dimensionality reduction using PCA before
clustering. In order to ensure that HSI data retain the most
information of original data in low-dimensional space, we re-
search the impact of the number of channels for clustering
results after dimensionality reduction using PCA. We set the
number of channels from 4 to 13 with an interval of 1, and the
outcomes are illustrated in Fig. 11. We know from the figure
that the optimal channel sizes for SalinasA, Pavia University,

Indian Pines, HongHu, and LongKou datasets are 4, 10, 6, 5,
and 5, respectively, instead of our belief that the higher the
number of channels after dimensionality reduction, the more
information is retained and the better the clustering performance,
which requires dimensionality reduction to different dimensions
depending on the data. And the channel size should not be too
small. If the number of channels is too small, it is not enough to
represent the information of the original data and the clustering
performance will be degraded in some cases.

6) Influence of λ and γ: In this subsection, we research the
effect of two significant regularization coefficients in joint loss
function L on the clustering performance, namely λ and γ.
We vary these two hyperparameters from 0.0001 to 10000, com-
puting one while fixing the other. As shown in Fig. 12, we use
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the logarithm of the parameters as the horizontal coordinate for
clear representation. From the figure, it can be seen that the two
parameters have different effects on the clustering performance.
It also shows a trend that in order to get better clustering results,
λ needs to set a larger value, γ need to set a lesser value, i.e.,
λ > 10 and γ < 1. It can be seen from the joint loss that a larger
λ makes the network more focused on the loss ofZ andCZ in the
subspace, which is important to get a better deep SE coefficient
matrix C, which results in a robust deep affinity matrix A and
more accurate clustering results.

V. DISCUSSION

The success of the DiffSC illustrates that considering the
intrinsic distribution features of the data is effective for HSI SC.
This provides a direction for generative models like the DPM to
be used for extracting data distribution features. Since the DiffSC
model belongs to feature fusion by nature, all the improvement
strategies to the traditional DSC model are applicable to DiffSC.

However, it can be seen from the experiment results that the
difference in OA on different datasets is also very obvious, for
example, the OA on the LongKou dataset is only 93.68%. This
indicates that although DiffSC obtains better clustering results
than the existing DSC methods, however, it does not achieve
high OA for all datasets.

Furthermore, it should be noted thatDθ in our proposed model
is simplified, only using the intermediate activation of one of the
layers, which has a low feature dimension and the extracted
features may not be comprehensive. We will investigate the
solution to this problem in future research to make the extracted
features more effective.

VI. CONCLUSION

We present a new HSI SC framework on the basis of DSC,
namely DiffSC. The key to this framework is the use of a
diffusion model trained jointly with DSC methods for extracting
the deep affinity matrix. To obtain robust deep affinity matrices,
a distribution feature constraint is added in the joint loss function
to learn information about the distribution of raw data, moreover,
we simplify the noise prediction network of the DPM, making
it easy to train the model from scratch. Outcomes of the ex-
periment on five HSI datasets indicate that DiffSC obtain the
most advanced clustering results, where DiffSC achieves 100%,
100%, 97.43%, 99.64%, and 93.68% clustering OA on SalinasA,
Pavia University, Indian Pines, HongHu, and LongKou datasets,
respectively. This result is already comparable to the supervised
HSI classification accuracy, which also implies that traditional
clustering models and deep learning models combined have
great promise.
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