6556

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Decoupled Feature Pyramid Learning for Multi-Scale
Object Detection in Low-Altitude Remote
Sensing Images

Haokai Sun"”, Yaxiong Chen

Abstract—Recently, low-altitude remote sensing platforms are
widely used for various practical applications. Object detection is
a basic and significant technology, serving them. The scale im-
balance problem is predominant in low-altitude remote sensing
images, which brings a great challenge to detect objects from these
imageries. Consequently, in this article, we boost performance
from the perspective of mitigating scale imbalance issues. First,
we choose a one-stage object detector with decoupled heads as the
baseline because of its comparatively high efficiency and accuracy.
Current-decoupled heads ignore the interlayer relationship and
the information contained. On the other hand, all existing feature
pyramid structures generate one feature map for two branches
at every layer. Inspired by them, we propose a novel feature
pyramid network paradigm—decoupled feature pyramid network
with consideration of different preferences for classification and
localization. Meanwhile, the introduction of feature pyramid ar-
chitecture will cause performance deterioration of larger objects
because upper layers receive insufficient supervision in the training
phase. Therefore, we adopt a distinct supervision strategy—level
supervision, which pays more attention to upper layers. We demon-
strate extensive experiments on two popular benchmarks of object
detection in low-altitude remote sensing images to validate the
effectiveness of our proposed method. In addition, we introduce
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a scale imbalance metric to quantify the degree of size change of
objects to better illustrate the ability to relieve the scale imbalance
problem. Finally, our proposed approach achieves state-of-the-art
performance on both datasets.

Index Terms—Feature pyramid, level supervision, low-altitude
remote sensing images, object detection, scale imbalance (SI).

I. INTRODUCTION

OWADAYS, low-altitude remote sensing platforms with
Ncharacteristics of easy operation, low cost, and ability
of real-time image acquisition are increasingly employed for
numerous high-frequency practical applications, such as power
inspection, traffic monitoring, and disaster rescue. Object detec-
tion is one of the significant and fundamental technologies of this
wide range of applications. In object detection tasks, recently,
with the development of deep neural networks, researchers have
achieved satisfactory performance on public benchmarks such
as MS COCO [1] and PASCAL VOC [2]. In consideration
of the great success of object detection in generic scenarios,
increased researchers adopt methods based on deep learning
(convolutional neural networks and transformers) to detect the
object in remote sensing images [3], [4], such as [5], [6], [7],
[8].

However, due to particularities of low-altitude remote sens-
ing platforms [9], the images captured by them differ from
generic scenarios and bring huge challenges. Briefly, there are
the following three primary difficulties of object detection in
low-altitude remote sensing images.

1) Proportion of small objects is high and they distribute
densely.

2) Computing resource is constrained but low latency is
demanded.

3) Scale of objects is imbalanced.

In the past, many works delved into the former two questions
and have attained fruitful results. Exploring the third problem
more specifically, the agile flying altitudes of low-altitude re-
mote sensing platforms cause the distances between the pho-
tography platform and objects to change sharply. Meanwhile,
low-altitude remote sensing platforms have multiple viewpoints
that make images include objects the near in larger and the far in
smaller at the same time [3]. They both lead to the severe scale
imbalance (SI) problem. We select two pictures with different
flying altitudes and camera angles from the VisDrone dataset
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Fig. 1. Visualization of SI problem in low-altitude remote sensing images
from the VisDrone dataset.

to display this issue vividly in Fig. 1. In these pictures, we can
observe that sizes of objects vary dramatically even though they
all belong to the same category—car and small instances are
predominant.

In the field of generic object detection, employing cross-scale
features is an effective way to mitigate this issue. Generating
multiscale features from different stages of the backbone be-
comes the most popular way. FPN [10] builds a feature pyramid
by integrating the features from lower and higher layers via a top-
down pathway. It has achieved great success and has dominated
modern detectors. After that several works [11], [12] follow
FPN and attempt to gain more effective feature representations
by trying various multiscale feature fusion strategies.

In the field of object detection in remote sensing images,
the FPN architecture is also widely adopted to achieve better
multiscale object detection. CAD-Net [13] introduces a spatial-
and-scale-aware attention module to pay more attention to the
regions with rich information and combine the global and focal
information to attain more reliable features for objects in remote
sensing images. FMSSD [14] proposes a spatial feature pyramid
to leverage the information from multiscale and same scale
feature maps. ABNet [15] designs an adaptive balanced net-
work with an attention mechanism to gain more discriminative
features. But their computation costs are too heavy to afford for
low-altitude remote sensing platforms. Meanwhile, all existed
variants of the feature pyramid follow the setting that each
stage outputs one feature to the corresponding detection head,
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and then, the detection head processes the feature to extract
useful information to complete the tasks of bounding box re-
gression and classification. And increased attention mechanisms
are introduced in remote sensing image tasks to promote the
ability to discriminative extract information [16], [17]. Besides,
several works enhance the multiscale feature extraction from
the backbone. FSoD-Net [18] proposes a multiscale enhanced
backbone to acquire more sufficient spatial and scale infor-
mation. Lu et al. [19] united the advantages of convolutions
and transformers to come up with a hybrid network for object
detection in low-altitude remote sensing images.

As mentioned above, object detection in the low-altitude
remote sensing platforms is expected to obtain certain detection
accuracy while guaranteeing the higher detection speed. We con-
sider that the one-stage detector pipeline without region proposal
procedure, which has an instinct for a faster inference speed,
is a more appropriate choice for low-altitude remote sensing
platforms to achieve real-time object detection goals. Hence, our
proposed object detector in this article adopts a one-stage frame-
work. To further explore the composition of the one-stage object
detector, we find that decoupled detection heads become the
standard configuration of one-stage object detectors [20], [21]
because they can partly alleviate the feature mismatch problem
in object detection to gain better performance and speed up the
overall training phase. Many researchers conducted works on it.
But all previous works [22], [23], [24] produce specific features
for two subtasks of object detection from the same feature input,
which is the output from the feature pyramid without pondering
interactions between layers in different scales.

In summary, SIis a prominent problem in low-altitude remote
sensing imageries, which extremely harm the performance of
object detection task. To deal with the SI problem in low-altitude
remote sensing object detection, feature pyramids that utilize
cross-features to create a more powerful feature representation
atevery stage with richer information is a universal and effective
way. As all we know, with the help of decoupled heads in a
one-stage detector, classification and bounding box regression
tasks can obtain more precise corresponding features by a group
of feature alignment operations to make a prediction improve
the final detection accuracy. But they share the same feature
and do not consider the influence of layer interaction. Based
on them, we start to cogitate if we can design a novel feature
pyramid paradigm, which can generate decoupled features for
homologous decoupled heads. Concretely, this new decoupled
feature pyramid network (DFPN) can generate more reliable
feature representations for each decoupled head to better achieve
two subtasks and, thus, improve the performance of the whole
object detection with drastic changes in object sizes. Past works
have already proved that classification and regression tasks have
different preferences. The classification branch prefers the re-
gions with richer semantic information than the regression one to
infer the class of objects [23]. ASSD [25] notices that the feature
misalignment problem also exists in remote sensing images for
object detection and then constructs modules to align features.
Therefore, we take different preferences of subtasks into ac-
count in the process of designing DFPN for remote sensing
scenes.
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On the contrary, the use of the FPN structure reduces the
detection accuracy of some larger objects because of the super-
vision strategy lying in the training phase [23], [26]. The pyramid
structure decides that the number of samples at the lower level
is larger than at the upper level. We often adopt the method
that calculates the training loss of different layers together and
treats them fairly. It induces the shallow layer to receive more
supervision than the deeper in the training phase. Hence, most
of the experimental results exhibit that the utilization of the
feature pyramid makes the detection of smaller objects better
and larger objects worse. It can be regarded as a level imbalance
problem. Although tiny instances account for the vast majority of
low-altitude remote sensing images, there are still a great number
of relatively larger objects. The proper detection of this part of
objects is also something we cannot ignore in order that better
deal with the problem of severe scale variation in low-altitude
remote sensing images. We add level supervision for our object
detector in the training progress to boost the attention on upper
layers, making compensation for larger objects.

On the other hand, the quantitative measurement of the scale
change of one category object is absent; thus, we introduce a
calculation formula as metric to show the SI degree more clearly
and directly. Then, combined with this metric, the effectiveness
of our solution for the SI problem in low-altitude remote sensing
images can be more fully illustrated.

In brief, the major contribution of our work lies in the follow-
ing three aspects.

1) We propose a DFPN specifically designed for a one-stage
object detector with decoupled heads adapted to the low-
altitude remote sensing platform, alleviating the extremely
prominent SI problem that existed in low-altitude remote
sensing images.

2) We introduce level supervision in the training phase to
compensate for objects in deeper stages with larger sizes,
which further improves our model’s ability to detect vari-
ous scale objects in low-altitude remote sensing images.

3) We extensively demonstrate our method on two pop-
ular datasets of low-altitude remote sensing images—
VisDrone [27] and UAVDT [28] to prove our proposed
approach can mitigate the mentioned issue. Meanwhile,
we utilize a metric to describe the degree of scale variation
in one category to better illustrate the effectiveness of our
means.

II. RELATED WORKS
A. General Object Detection

The current object detection methods based on deep learning
can be mainly divided into one-stage or multistage detectors
depending on whether they contain the procedure that generates
a series of region proposals and then feeds them into another part
to refine the prediction results. The multistage detectors contain
Faster-RCNN [29], Mask-RCNN [30], and Cascade RCNN [31].
Faster-RCNN is a typical representative of multistage object
detectors, which generate region proposals via a region proposal
network. Mask R-CNN extends from Faster-RCNN, adding a
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branch to predict segmentation mask in parallel with object
detection to acquire high-quality instance segmentation while
taking object detection effectively. As for one-stage detectors,
which omit the process of conducting region proposals, are rep-
resented by you only look once (YOLO) series [20], [21], [32],
RetinaNet [33], FCOS [34], and GFL [35]. The YOLO family is
famous for their efficiency and more advanced variants emerge
endlessly. RetinaNet proposes a novel focal loss to address the
class imbalance. FCOS is an anchor box-free and proposal-free
detector, which avoids sophisticated computation.

In a word, the multistage object detectors usually hold higher
detection accuracy than one-stage object detectors because of
their refinement process, and meanwhile, their inference speed
is relatively slower than one-stage detectors. Considering the
characteristics of low-altitude remote sensing platforms, the
computing resource is confined and insufficient but high effi-
ciency is required, we incline to apply the one-stage pipeline in
our work. And the decoupled heads are widely used in one-stage
detectors because of their advantages [20], [22], [23]. They can
mitigate the feature mismatch phenomenon in classification and
localization to a certain extent. But they all share the same feature
to generate corresponding task-specific features and neglect
the important interaction between adjacent layers, losing some
significant context information required. Their effectiveness of
them is limited.

B. Object Detection in Remote Sensing Images

The object detection in low-altitude remote sensing images is
different from, in general, pictures in the following three main
aspects.

1) Smaller instances occupy the vast majority with dense

distribution.

2) The higher effectiveness of balance between accuracy and

efficiency is required.

3) The extreme scale variation of objects exists.

Most of the previous research works are based on the former
two problems.

To deal with small object detection, they prefer to utilize a
coarse-to-fine strategy [36], [37], [38], [39]. It designs a coarse
detector that is responsible for locating large-scale targets and
generating subregions that contain densely distributed small
instances and a fine detector is responsible for further extracting
small-size instances from these candidate regions. ClusDet [37]
merges the object cluster and detection in one framework and the
detection results come from fusing local and global predictions
with NMS postprocessing. DMNet [38] proposes anew cropping
strategy in aid of a density map. SB-MSN [36] uses multiscale
feature pyramids and multistage heads to improve the quality of
samples to train a better detector. Pipelines of these methods are
like multistage detectors with more complicated architectures,
there is no doubt that they cost a lot of time in the inference
phase despite their comparatively higher accuracy. HRDNet [40]
designs amultidepth and a multiscale feature pyramid network to
enhance detection accuracy for small objects in high-resolution



SUN et al.: DECOUPLED FEATURE PYRAMID LEARNING FOR MULTI-SCALE OBJECT DETECTION IN LOW-ALTITUDE REMOTE SENSING IMAGES

remote sensing images. Some works implemented multiscale in-
ference or slicing-aided inference [19] to boost the performance
at the expense of the amount of time consumed. Therefore,
they are not appropriate ways for low-altitude remote sensing
platforms to realize real-time object detection and cannot be
employed in an actual production environment.

In view of hardware equipped on low-altitude remote sensing
platforms being resource-constrained, several works have taken
efforts in reaching a tradeoff between accuracy and efficiency.
They leveraged sparse convolutions [41] to reduce computation
costs and adopted a lightweighted structure [42]. QueryDet [43]
uses sparse convolutions in the detection heads and creates new
paradigms special for small objects. Recently, CEASC [44]
proposes a novel plug—play detection head optimization ap-
proach based on context-enhanced sparse convolutions. Besides,
Zhang et al. [45] adopted different strategies from the perspec-
tive of an automatic multiscale inference framework to trade off
the balance between accuracy and efficiency.

C. Feature Pyramids

Feature pyramids have become one of the necessary com-
ponents in nowadays object detectors, and they play an in-
dispensable role in multiscale object detection. FPN [10] is a
classic and landmark work, which utilizes a top-down pathway to
fuse different scale features to obtain pyramidal representations
with richer semantic information. After that, several variants
explore more pathways to merge cross-features. PANet [11]
adds an extra bottom-up pathway to enhance information signal
transportation and a short-cut way to shorten information prop-
agation, making the entire feature hierarchy able to fully use the
lower layer information for accurate localization. M2Det [12]
proposes a multilevel feature pyramid to produce multilevel,
multiscale, and more representative features.

Many researchers in the remote sensing realm carried out
research in view of multiscale object detection by improving
the original FPN structures. Zhang et al. [46] used two feature
pyramid networks, which are, respectively, responsible for re-
gion proposals and object detection to promote performance.
CF2PN [24] adopts a cross-scale feature fusion method to gener-
ate multiscale features to mitigate SI. Sun et al. [47] proposed an
end-to-end gated bidirectional network to eliminate interference
information while fusing multiscale features. In addition, the
FMSSD [14], ABNet [15], CAD-Net [13], and CANet [48] aim
to enhance the ability of multiscale object detection in remote
sensing images to a certain extent.

In general terms, the feature pyramid capably handles the diffi-
culty of size change in object detection to some degree. However,
all current works obey the rule that generates one feature map
for the corresponding stage. The mainstream one-stage object
detectors include decoupled heads as a standard configuration
but decouple heads in every scale use the same original feature
map to extract aligned features for classification and localization
without ponderation of interlayer relationship and the informa-
tion contained. Hence, we propose a decoupled feature pyramid
especially for one-stage object detectors with decoupled heads
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to better deal with the SI problem in low-altitude remote sensing
images in this article.

III. PROPOSED METHOD
A. Overview Framework

Compared with multistage object detectors, one-stage object
detectors have a faster inference speed due to their simpler
constructure without the region proposal procedure, which are
more suitable for low-altitude remote sensing platforms with
constrained computing resources to realize real-time object de-
tection. Therefore, we select a one-stage detector—YOLOX [20]
as our baseline, which owns better efficiency and accuracy. The
entire network architecture of our object detector is shown in
Fig. 2. Pondering the current feature alignment strategies in
decoupled heads only based on the intralayer without interlayer
consideration restrains the effectiveness. We introduce DFPN
to replace the original feature pyramid to extract a more rep-
resentative feature map for each branch and each layer, taking
into the different preferences of classification and localization to
learn more efficient multiscale information for the entire model.
More details of it are discussed in Section III-B. In addition, we
add level supervision on heads in the training phase to enhance
supervision for some larger objects to make sure that different
scale objects can be detected well to gain a higher accuracy
overall. The specific method is displayed in Section III-C.

B. Decoupled Feature Pyramid Network

Multiscale object detection is a challenging task and vital for
low-altitude remote sensing images with severe SI. In general,
the object-detection realm implementation of feature pyramids
has attained great success. The core idea of feature pyramid
structures is fusing features from different stages—the lower
to the upper, to extract the representative feature maps with
effective multiscale information as more as possible. However,
all current vanilla feature pyramid structures generate only one
feature map for decoupled heads of corresponding layers and
directly delegate the progress of aligning features for different
subtasks—classification and localization to the decoupled heads.
Unfortunately, these decoupled heads using one shared feature
map to take alignment operation decide that they only align
features from a spatial dimension without consideration of the
interlayer relationship and joint optimization for two subtasks,
which will compete. Hence, the effectiveness of improvement of
performance is circumscribed. The DFPN, which is especially
designed for one-stage detectors with decoupled heads emerges
as the times require, is desired to adopt a more appropriate
approach to fuse cross-layer features to elaborate respective
features for different subtasks in the neck part. We hope the
idea of decoupling used throughout the whole model design is
to extract better multiscale information for different subtasks and
to better solve the problem of SI in low-altitude remote sensing
images.

The FPN is [10] a classical design in feature pyramids, widely
used in modern object detectors. It uses a top-down pathway to
merge the different stage features from the backbone. Recent
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Fig. 2.
level supervision is introduced in the training phase.

works prefer to add an extra bottom-up way enlightened by
PANet [11], finally integrating them to form a more powerful
feature pyramid. We design our DFPN based on this strategy.
Our baseline adopts three-layer PAFPN, we also follow this
setting. The entire DFPN structure is shown in the middle of
Fig. 2.

PAFPN consists of two pathways top-down and bottom-up
and generates a series of feature maps P = {P;, P», P3} with
different scale S = % X %, 1% X ‘{V—ﬁ, 3% X %},whereHand
W are, respectively, behalf of the height and the width of input
images. In past works, they are fed into heads directly. On the
other hand, the features in the upper layer created by PAFPN
with more channels are not necessary. It contains redundant
information and cost enormous computation. Hence, we first use
a CBS module to reduce the channel size of upper layers and,
meanwhile, align the features from different scales that have the
same channel size.

Past works [22], [25] have found that the classification and
localization tasks have different feature preferences. Therefore,
in the design of how to decouple the features from PAFPN,
we put their preferences in the first place. Compared to the
localization, the classification branch demands more semantic
context information to distinguish the class of objects more
accurately. And the localization task relies on the contour
information to predict. Hence, after abundant experiments,
for the localization branch, we choose the processed features
from the CBS module as inputs P°¢ directly and where [
represents the corresponding layer. Because the results of ex-
periments show that features from PAFPN, which are suffered
after sufficient multiscale information exchange and extraction
are effective enough for localization without the need to utilize
adjacent multilevel features to enhance. On the other hand, in

T 2 X downsampling

@ Feature Map Concatenation Conv3X3-BN-SiLU l 2 X upsampling

Framework of our proposed method. DFPN consists of PAFPN and SCAM, generating feature maps separately for two branches of decoupled heads. The

the process of generating feature maps for the classification task,
we introduce a semantic context augmented module (SCAM)
to expand the semantic context information from multilevel
features. The semantic information is important for classifi-
cation, especially for some small objects, which dominate in
low-altitude remote sensing images.

Semantic Context Augmented Module: For classification
heads, we design SCAM to take full advantage of feature maps
from two adjacent layers to obtain richer semantic information.
Before fusing two-layer features, we implement downsampling
operation to make sure they have the same scale. The above
process of generating features for the classification branch can
be written as follows:

P/ = Downsample (CBS (P**°)) 1)
2

where Downsample(-) is a CBS(-) module that stride is 2 and
cat(-) means concatenate operation in channel dimension.

Besides, there is no output Py from PAFPN. Hence, we extract
the feature map C from Stage, of the backbone and make
it through a CSP2 module like any other layers as P,’. The
CSP2 module is composed of two parallel branches and creates
one output, which is a typical block in the YOLO family. The
concrete design of its architecture is displayed at the bottom of
Fig. 2.

Our DFPN generates task-specific features— P! and PLoc,
corresponding to classification and localization branches. Dif-
ferent subtasks at different scales can obtain more matching
features, which can help to better detect objects at different
scales and achieve better multiscale object detection for these
low-altitude remote sensing images.

PEY = cat(PE, P_y)
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C. Level Supervision

Indeed, the introduction of the feature pyramid network can
realize better multiscale object detection to mitigate the ST issue
in the low-altitude remote sensing images. On the opposite
side, we can observe a phenomenon that the performance of
respectively larger objects declines. Several works carried out
further experiments and analysis to figure out the scheme of
it. For example, the feature pyramid is revisited in view of
optimization in YSLAO [26]. Their experiments show that the
features generated by FPN for higher layers contain ineffective
semantic information for larger objects and they believe that is
why performance of larger objects is suppressed. Hence, they
introduce the auxiliary loss to enhance the supervision of upper
layers. QueryDet [43] has a similar view. In general, the upper
layers, which are responsible for detecting a larger object, lack
supervision.

To further explain it more explicitly, we draw a picture in
Fig. 3. In the top part of the image is an illustration of the tradi-
tional approach. And the bottom part of the image specifically
shows how we introduce level supervision into our detector.
Takes our baseline with decoupled heads as an example, the fea-
ture pyramid network generates a series of different scale feature
maps with scale after downsampling and upsampling operations
in the entire process of fusion cross-layer features. The size of
the feature map in a lower layer is twice as the higher layer. FPN
feeds the processed multiscale features to corresponding heads
and then the decoupled heads create predictions of classification
and localization. In the training phase, then, we first combine all
predictions from different layers and execute a certain strategy
to assign all prediction sample labels, and all samples will be

divided into positive and negative. These two kinds of samples
will be treated differently in the progress of calculation loss.
Finally, we handle the samples from different levels equally to
calculate the loss. In other words, we give the same weight w;
value to all levels, the completed loss L can be formulated as

n

L= w (L + L, ) 3)
l

where w; denotes the weight of layer /. L% and L;%°°, re-
spectively, represent the loss of classification and localization
branches of layer /. n is the number of layers. In our baseline, n
is3and wis w; = wy = w3z = 1.

Obviously, the number of prediction samples in the lower
layer is always greater than the upper. Because the sizes of

feature maps from lower to upper layers are {ZL x W I

8 816
W, & x 1} and one lattice in the feature map corresponds to
one prediction produced, the numbers of samples generated from
bottom to top of pyramid hierarchy are {% X %, 1% X %, 3% X
%}, which express the lower layer holds four times as many
samples as its contiguous higher layer. Hence, the loss L; from
the lower layer can contribute more to the whole L loss than the
upper layer. In the process of backpropagation, the lower layers
will receive more supervision. Based on the assumption that
different layers detect objects from an exact size range from the
former work, the smaller objects predicted by lower layers can
obtain better performance than some larger objects predicted by
upper layers. Furthermore, the overwhelming and unnecessary
supervision of the smaller objects may deprive supervision of the
larger objects, causing insufficient supervision for larger objects.

It indicates that the former strategy that treats all samples fairly
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from different layers without consideration of the instinct of the
feature pyramid is not appropriate.

To compensate for the reduction accuracy of larger objects
due to the introduction of the feature pyramid, we propose
the level supervision to ensure that the upper layer can re-
ceive more supervision and place in the training phase. The
diagrammatic drawing of our pipeline is shown at the bottom
of Fig. 3. Compared to the current method, we introduce a
level weight calculation module after the label assignment to
create different weight w; for different layers. The lowest level,
which is responsible for smaller object detection with the largest
number of candidate predictions, contributes most to the entire
loss and receives the most powerful supervision signal, we give
the weight a normal way and set w; = 1. The highest level
needs more supervision, so we decided set w3 = 2 to ensure that
supervision signals are more likely to propagate to higher levels.
The weight of the medium level dynamically adjusts according
to the number of positive samples of the adjacent two layers
to achieve better optimization results. Finally, considering the
characteristic of distribution of samples in pyramid hierarchy,
wy are set as

1, I=1
_ pP1—Pp —
=2 By @
2, 1=3

where p; is the number of positive samples assigned from layer
l.

The structure of decoupled heads we utilize is exhibited
in Fig. 4. For the localization head, the one in parallel with
the bounding box regression branch is the object branch, re-
sponsible for predicting the probabilities of the foreground or
background of the current position to facilitate more accurate
localization. We follow the setting from our baseline, L;“"* is
computed by Cross Entropy Loss and L;X is calculated via
IOU Loss [49] for all positive samples, and L;°% also adopts
Cross Entropy Loss for all samples. After introducing level
supervision, our whole Loss is

n

L= w (L + LR 4 L,%) 5)
1

where L;%° represents the bounding box regression loss and
L;°® means the loss of the object branch.

Besides, it is important to be emphasized that we utilize level
supervision after certain epochs in the training progress. In a
word, we should adopt a two-phase supervision strategy that
treats samples from all levels equally at first and then introduce
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a level supervision strategy when lower layers responsible for
smaller object detection receive necessary supervision signals.
Otherwise, strengthening the supervision of larger objects too
early will cause the decrement of detection performance of
smaller objects, which dominate in low-altitude remote sensing
images, and the paradoxical result is what we do not expect.
Therefore, utilizing level supervision at the right moment is one
of the key points to help us achieve more effective multiscale
object detection in low-altitude remote sensing images with an
Sl issue.

IV. EXPERIMENTS
A. Datasets and Metrics

We implement extensive experiments on two popular bench-
marks for object detection in low-altitude remote sensing images
to validate the effectiveness of our proposed method. One of
them is the VisDrone dataset and another is the UAVDT dataset.

VisDrone dataset [27] collects 10 209 images with high
resolution captured by low-altitude remote sensing platforms
with different photography angles and various flying altitudes.
It includes 6471 images used for training, 548 for validation,
and 3190 for testing with 10 categories (pedestrian, people, bi-
cycle, car, van, truck, tricycle, awning-tricycle, bus, and motor),
across day and night. These images have a resolution of around
2000 x 1500. The former work adopts the validation dataset
as the test dataset to evaluate the performance of approaches.
Hence, all test results shown in the following contents are based
on the validation dataset, consistent with former works.

UAVDT dataset [28] contains more low-altitude remote sens-
ing images, compared to VisDrone. It is divided into the training
dataset with 23 258 images and the testing dataset with 15 069
images with 3 kinds of common means of transportation (bus,
truck, and car). All images are captured by cameras equipped
on the low-altitude remote sensing platforms at low altitudes of
urban regions. The resolutions of them are 1080 x 540.

Evaluation Metrics: We adopt AP, AP50, and APT75 three
metrics used in MS COCO [1] to evaluate our proposed method
just like previous works. We report them to validate the effec-
tiveness of our object detector for low-altitude remote sensing
images. The A P50 means that the average precision is obtained
with an IOU threshold of 0.5. Likewise, the AP75 denotes that
the set IOU threshold is 0.75 when calculating the precision. As
for AP, it means the mean of a series of average precision with
different IOU thresholds, from 0.5 to 0.95 at 0.05 intervals.

Besides, we introduce an SI metric to quantify the size change
of objects of one category, and then, we can assess the SI degree
more clearly and conveniently. Combined with this metric, the
effectiveness of our DFPN in solving the SI problem, which
is serious for low-altitude remote sensing images, can be more
convincingly demonstrated. The SI metric S are calculated as

1 N
Sl= s >

7 =1 k=1

my a
— (6)

Qi k-1

where NNV is the number of total images utilized and m; represents
the number of objects in ID ¢ image. a; ;, denotes the area of kth
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object in ID 7 image. A; consists of all objects’ areas of one cat-
egory in ascending order, and we take a; 1 value to a; ¢ in order
to calculate conveniently. Hence, A; = {ag, a1,...,am,}-

B. Implementation Details

We conduct our proposed method on PyTorch and MindSpore
framework. We choose YOLOX-M [20] as our baseline and
introduce a novel DFPN and level supervision for it to better
deal with SI problems in low-altitude remote sensing images.
The following shows the details of our implementation in the
training phase and the testing phase.

Training phase: We use one NVIDIA A100 GPU to train our
model on two benchmark datasets. For the VisDrone dataset,
we set the initial learning rate to 0.0001 and adopt the StepLR
learning rate scheduler with a multiplicative factor of learning
rate decay of 0.92. The Adam optimizer is used where the
weight decay is fixed as 0.0005. We train our model for 40
epochs in one period. We repeat it 4 times and the weights from
the previous period will be loaded into the network before the
next period starts. In general, our proposed methods are trained
for 160 epochs. The level supervision is introduced after 160
epochs and we add an extra period to make sure it can improve
the performance rather than counterproductive results. For the
UAVDT dataset, all hyperparameters are fixed as same as for the
VisDrone dataset. The difference is that we train models for two
periods, and we utilize level supervision in the last period. For
the sake of fairness, we decide not to adopt any data-augmented
strategies such as copy-reduce—paste [50], Mosaic [32], and
Mixup [51] on the experiments we conducted. In addition, the
images are transformed to 640 x 640 before being transported
to networks and the batch size is 4.

Testing phase: We evaluate the performance of models, using
an NVIDIA RTX 3090 GPU. We infer one image once at a time.
Similarly, to guarantee the fairness of reported results, we ex-
clude any tricks used in the inference, including multiscales, and
slicing-aided inferences [19]. The size of input images is set to
640 x 640 on both datasets. Past works prefer to use a relatively
larger resolution of input images and regarding high-resolution
images as inputs can boost the accuracy of performance. For
a relatively fair comparison with state-of-the-art methods, we
modify the resolution of images to 768 x 768 in Section IV-D.

C. Ablation Study

To support the effectiveness of our proposed DFPN and level
supervision for object detection in low-altitude remote sensing
images, we demonstrate broad experiments on both VisDrone
and UAVDT datasets.

Decoupled Feature Pyramid Network: Sl is predominant in
low-altitude remote sensing images, which brings great chal-
lenges to object detectors for low-altitude remote sensing im-
ages. Thus, we come up with DFPN to extract more repre-
sentative features with consideration of different preferences of
classification and localization. And to explain more explicitly,
we introduce SI as a metric to display the size change degree in
a quantitative form. The SI is higher means that the size changes
of this category are more dramatic. With the aid of SI, we can
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validate the effectiveness of DFPN more convectively. We test
the AP50 metric of all 10 classes based on the PASCAL VOC [2]
format. The results are shown in Table I and corresponding SIs of
every category are reported in the second row of this table. With
the help of DFPN, almost all of classes obtain improvement,
except motor. Especially for the categories with higher SI,
which means that SI is more severe, their performances increase
more obviously. The AP50 of bus, van, truck, tricycle, and
awning-tricycle with higher SI are promoted by 3.69%, 1.89%,
0.69%, 2.31%, and 1.19%, respectively. And the mean AP50 of
all classes gains an 1.23% increment.

To further validate the generalization performance of our
DFPN. We compare the AP, AP50, and AP75 with base-
line using PAFPN on VisDrone and UAVDT, adopting the MS
COCO protocol. All metrics acquire remarkable enhancement.
As displayed in Tables II and III. For the VisDrone dataset, they
are, respectively, improved by 0.8%, 1.1%, and 0.7%. For the
UAVDT dataset, the values are 1.0%, 1.5%, and 1.3%. They
all show the necessity of our DFPN to mitigate the SI issue in
low-altitude remote sensing images.

Our DFPN is built based on PAFPN. We consider that the
classification task is more sensitive to semantic information, so
the SCAM module is added to generate features for classification
especially. The idea of feature decoupling is used throughout the
whole model to better solve the problem of feature mismatch of
different tasks. Hence, the detection heads of each layer can
better detect objects of different sizes. To further verify the
correctness and effectiveness of the SCAM module and our
decoupling feature pyramid idea, we separately conduct exper-
iments on PAFPN and SCAM modules on the VisDrone dataset
to analyze the contribution of each component to the overall
performance. We set up two combinations—baseline+FPN and
baseline+FPN+SCAM to eliminate the influence of the PAFPN
module. The experimental results in Table II prove that adopting
the mind of feature pyramid decoupling and strengthen semantic
information extraction for the classification branch can effec-
tively improve the accuracy of object detection in low-altitude
remote sensing images. The AP, AP50, and AP75 are raised by
1.0%, 1.2%, and 1.1%, respectively. And for the PAFPN module,
compared to the baseline with typical FPN, it can improve these
metrics by 1.2%, 1.5%, and 1.5%.

Level Supervision: Although the introduction of feature pyra-
mids can better realize multiscale objects detection, it also
brings the deterioration of some larger objects because of the
improper supervision strategy. Encouraged by this perspective,
we utilize unfair supervision in the training phase, we call it
level supervision. The main idea of it is that it gives different
values for different layers in the calculation of the entire loss.
On the other hand, we also consider that using level supervision
too early will cause an enormous reduction of accuracy for
smaller objects, which occupy the vast majority of instances
in low-altitude remote sensing images. As a result, the overall
performance will decrease rather than increase. It ought to be
inappropriate. Therefore, we regard it as a fine-tuning strategy,
and we introduce it to our model after several training epochs as
described in Section IV-B. First, we conduct experiments on two
benchmarks to confirm the ability of our level supervision for the
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TABLE I
VALIDATION OF THE EFFECTIVENESS OF DFPN BY COMPARING A P50 OF EACH CATEGORY AND ANALYZING THE CORRESPONDING SI
Metric/Method | All classes  pedestrian ~ people  bicycle car van truck  tricycle  awning-tricycle bus motor
SI / 1.16 1.28 1.48 1.18 1.92 2.41 1.96 2.00 2.54 1.35
baseline 47.99 524 47.15 25.17 84.94 4998  46.55 36.68 18.43 5932 59.32
DFPN(w/o LS) 49.22 53.01 48.77 25.47 85.12 51.87 47.24  38.99 19.62 63.01  59.07

The bold values means that the category has higher SI.

TABLE 1T
ABLATION STUDY OF DFPN AND LS ON VISDRONE DATASET

Method AP  AP50 AP75

baseline + FPN 26.1 45.7 25.8

baseline + FPN + SCAM | 27.1 46.9 26.9

baseline + PAFPN 27.3 47.2 27.3

baseline + DFPN 28.1 48.3 28.0

baseline + DFPN + LS 28.3 48.7 28.3
TABLE III

ABLATION STUDY OF DFPN AND LS ON UAVDT DATASET

Method AP
baseline + PAFPN 15.8
baseline + DFPN 16.8

baseline + DFPN + LS 17.1

AP50
27.7
29.2
29.3

AP75
16.3
17.6
18.1

TABLE IV
VALIDATION OF THE EFFECTIVENESS OF LEVEL SUPERVISION ON VISDRONE
DATASET

Method AP
baseline w/o LS | 27.3
baseline w/ LS 27.8

AP50
472
48.0

AP75
273
27.8

object detector with DFPN. The results are reported in Tables II
and III. We can observe that there are certain improvements in
both VisDrone and UAVDT datasets after the implementation
of level supervision. Indeed, the values of increment induced
by LS are lower than DFPN. However, it does not influence
the effectiveness of achieving more accurate object detection in
low-altitude remote sensing images. And it proves that using LS
can enhance the performance in a certain range, consistent with
its own fine-tuning positioning. To further explore the capability
of our level supervision, we compare the baseline with LS
and without LS on VisDrone to excavate the potential ability,
which is obscured by DFPN. We present the results in Table I'V.
The three metrics—AP, AP50, and AP75 are improved by
0.5%, 0.8%, and 0.5%, respectively. The data further verify
the effectiveness of LS. And they confirm that LS can improve
the performance to a greater extent when the initial accuracy
is relatively low. In a word, it is a beneficial plug-and-play
optimization approach without adding any extra computational
cost in inferences.

Visualized results: We select two typical images from the
validation dataset of VisDrone and visualize their prediction
results from baseline and our proposed method in Fig. 5 to reflect
the advancement of our approach intuitively. There are three
columns, the first displays ground truths, the second exhibits
the results predicted by the baseline, and the last shows the
predictions from ours. We also magnify the regions with signifi-
cant prediction differences and put them into gray squares under
the corresponding images to compare their performance more

distinctly. The above results indicate that our proposed method
has a greater ability to deal with the SI problem. Our method
can detect the small cars at a distance, which are omitted by
the baseline. Additionally, in the second image, it can detect oc-
cluded objects, which are beyond the baseline’s ability. And ours
has higher classification accuracy and can detect tiny instances.
In conclusion, our method obtains competitive performance
in detecting multiscale objects in low-altitude remote sensing
images.

D. Comparison With SOTA

We compare our proposed method with the state-of-the-art
object detectors including one-stage detectors and multistage
detectors. Several previous works prefer to adopt multiscale
or slicing-aided inferences to enhance the performance. For
ensuring fairness, we compare them without any tricks in in-
ferences. On the other hand, the size of the backbone may
influence the performance. Hence, other methods we reported
utilize the backbones, which have a similar or greater magnitude
than Modified CSP v5-M [20] adopted by us. Besides, we
demonstrate experiments on both popular benchmarks to reflect
the advancement of our object detector more fully.

For the VisDrone dataset, we select eight methods, contain-
ing RetinaNet [33] with ResNet50 [53], QueryDet [43] with
ResNet-50, CEASC [44] based on GFL V1 [35] with ResNet-18,
and some famous object detectors designed especially for low-
altitude remote sensing images, including ClusDet [37], DM-
Net [38], and GLSAN [52] with ResNet-50, and HRDNet [40]
with two backbones—ResNet-18 and ResNet-101. The results
are shown in Table V. It is worth noting that our proposed method
obtains the highest values across all three evaluation metrics,
reaching the new state-of-the-art under comparable settings. For
the UAVDT dataset, we also compare with ClusDet, DMNet,
and GLSAN. In comparison with them, our DFPN with LS can
boost the performance in AP and A P50 illustrated in Table VI.
Particularly, the A P50 isincreased by 1.5%. Those experimental
results reveal that our model has attained state-of-the-art perfor-
mance. More importantly, our object detector has tremendous
potential for efficiency. The introduction of DFPN demands only
slight extra cost time. And the usage of level supervision, which
is only used in the training phase, will not cause any increment
in inference times.

V. DISCUSSION AND CONCLUSION

There are three major challenges for object detection in low-
altitude remote sensing images. We boost the performance from
the perspective of multiscale object detection for low-altitude
remote sensing platforms and consider the efficiency in this
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Ground Truth Baseline

D Pedestrian I:l People Bicycle I:] Car D Van D Truck D Tricycle D Awning-tricycle D Bus D Motor

Fig.5. Comparison between baseline and our proposed method by visualizing prediction results in two images from validation dataset of VisDrone. The contents
in gray squares are magnified regions from corresponding images, which contain significant differences.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON VISDRONE DATASET
Method Backbone Resolution AP AP50 AP75
RetinaNet [33] ResNet-50 2400 26.2 44.9 27.1
ClusDet [37] ResNet-50 1000 x 600 26.7 50.6 24.4
DMNet [38] ResNet-50 1000 x 600 28.2 47.6 28.9
GLSAN [52] ResNet-50 1000 x 600 25.8 51.5 22.9
HRDNet [40] ResNet-18+ResNet-101 2666 x 1600 28.3 49.3 28.2
QueryDet [43] ResNet-50 2400 28.3 48.1 28.8
GFL V1 (CEASC) [44] ResNet-18 1333 x 800 28.7 50.7 28.4
DFPN(w/ LS) Modified CSP v5-M 768 x 768 30.3 51.9 30.5
The bold values show the highest value in the corresponding column.
TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON UAVDT DATASET
Method Backbone Resolution AP AP50 AP75
ClusDet [37] ResNet-50 1000 x 600 13.7 26.5 12.5
DMNet [38] ResNet-50 1000 x 600 14.7 24.6 16.3
GLSAN [52] ResNet-50 1000 x 600 17.0 28.1 18.8
DFPN(w/ LS) Modified CSP v5-M 640 x 640 17.1 29.3 18.1

The bold values show the highest value in the corresponding column.
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article. At first, we choose a one-stage detector with decoupled
heads as our baseline, with the consideration of its advanced
accuracy and efficiency. We observe that the original decoupled
heads neglect the effectiveness of the interlayer relationship
and omit the information contained. The effectiveness of them
is limited. Therefore, we design a novel feature pyramid net-
work paradigm—DFPN to generate feature maps separately for
classification branches and localization branches at every layer
taking into account for different preferences of two subtasks.
The introduction of the feature pyramid structure can mitigate
the SI problem and bring the deterioration of the performance
of larger objects at the same time. Second, although the ratio of
smaller objects is so high, it should not be ignored to achieve
better multiscale object detection. We utilize level supervision
as a fine-tuning strategy to further enhance the accuracy of our
model without any extra cost time in inferences. The core idea
of our method is that boost the supervision for upper layers,
which receive insufficient supervision in traditional ways to
compensate for larger objects.

We conduct extensive experiments on two popular bench-
marks for object detection in low-altitude remote sensing
images— VisDrone and UAVDT to validate the effectiveness and
advancement of our proposed method. The metric of quantifying
the degree of the size change is absent; thus, we adopt an SI met-
ric to describe the issue more clearly and more intuitively. With
the aid of it, our proposed method can be better illustrated that
have the ability to alleviate the SI in low-altitude remote sensing
images and obtain greater accuracy. We also compare several
SOTA methods with ours on both datasets, which indicates that
our approach has reached advanced performance.

However, our proposed method still has some drawbacks and
there are existing spaces for improvement. Although compared
with other feature pyramid structures used to realize multiscale
object detection in remote sensing images, the DFPN designed
by us has a simpler structure and lower computational complex-
ity; the overall design of ordinary convolution is still adopted,
which limits the entire inference speed. And there is still a
certain distance to meet the goal of real-time object detection on
low-altitude remote sensing platforms. Therefore, in the future,
we plan to make a lightweight design of the feature pyramid
structure and consider adopting an architecture design based
on sparse convolution, which is operated only over sparsely
sampled regions or channels via learnable masks, thus limiting
the amount of computation, to reduce the inference time to better
trade off the balance between efficiency and accuracy.
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