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Automatic Registration of Point Clouds by
Combining Local Shape Descriptor and

G4PCS Algorithm
Wuyong Tao , Jingbin Liu , Dong Xu , and Yanyang Xiao

Abstract—Registration is usually the first step for the usage
of point cloud data. Registration of point clouds is crucial in
numerous practical applications. In order to quickly and accu-
rately align point clouds, we combine the local shape descriptor
and generalized four-point congruent set (G4PCS) algorithm. A
descriptor with high computation efficiency is chosen to establish
the correspondences. Then, the constraints of the G4PCS algorithm
are applied and three angular constraints are proposed. These
constraints are divided into three groups according to their com-
putation complexity. The three groups of constraints are used to
accelerate the searching process of four correct correspondences.
The experiments are performed to compare our method with
several existing methods. The experimental results show that our
registration method has the best registration precision and com-
putation efficiency. The introduction of the local shape descriptor
can enhance both registration precision and computation efficiency.
The proposed three angular constraints can also further boost the
search process.

Index Terms—Constraints, four-point congruent set (4PCS),
local shape descriptor (LSD), point cloud registration.

I. INTRODUCTION

IN MANY applications, such as scene reconstruction [1], [2],
object recognition [3], [4], and place recognition [5], [6],

point cloud registration plays a central role. In order to obtain
the entire point cloud, the point clouds scanned from different
stations should be transformed into a common coordinate sys-
tem. To do this, an efficient and automatic registration method is
crucial. Point cloud registration contains two steps: coarse and
fine registration. The fine registration is usually performed by
the iterative closest point (ICP) algorithm [7] and its variations,
but these algorithms need a good initial pose to avoid getting
trapped into locally minimum solution. Our work focuses on
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the coarse registration, aiming at providing a good initial pose
to the fine registration.

At present, a large amount of registration methods have been
proposed. These methods can be broadly categorized into three
classes: point-based [8], [9], line/plane-based [10], [11], [12],
and special object-based methods [13], [14]. The line/plane-
based methods extract line or plane features from the point
clouds. Then, these line or plane features are used to estimate
the transformation parameters. Therefore, these methods require
that the scanned scenes have a plenty of line or plane features,
which limit the usage of these methods. The special object-based
methods employ special objects (e.g., octagonal lamp pole)
to perform the alignment of point clouds. Due to the special
objects, this kind of methods is only suitable for the scenes with
the special objects. The point-based methods are universal and
suitable for different scenes. The local shape descriptor (LSD)
based methods [9] and the four-point congruent set (4PCS)
family [15] are the most popular point-based methods. The
former first calculates the LSDs of the keypoints. Then, the
point-to-point correspondences are established by the descriptor
similarity. The latter utilizes the rule of intersection ratios to find
4-point base set. Both of the two kinds of methods have their
own advantages.

The LSD has been widely studied, and a large amount of LSDs
are proposed. A good LSD should have high descriptiveness,
strong robustness, and low computation complexity. According
to whether a local reference frame (LRF) is applied or not,
these descriptors are divided into two categories: LRF-based
and LRF-independent descriptor. The LRF-based descriptor first
constructs an LRF on the local surface around a keypoint. Then,
the geometric and spatial information are encoded with respect
to the LRF. The LRF has at least two merits. The first is to give the
descriptor rotation invariance. The second is to provide a man-
ner to fully encode the spatial information. Examples contain
rotational projection statistics (RoPS) [16], binary shape context
(BSC) [3], triplet local coordinate images [4], rotational contour
signatures (RCS) [17], local voxelized structure (LoVS) [18],
and so forth. The LRF-independent descriptor encodes the local
neighborhood information with respect to the normal vector of
the keypoint. The spatial information is ignored or not fully en-
coded. Therefore, this kind of descriptors generally suffers from
low descriptiveness. The LRF-independent descriptors include
spin images (SI) [19], fast point feature histograms (FPFH) [20],
local feature statistics histograms (LFSH) [21], divisional local
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feature statistics (DLFS) [22], and so on. Both the LRF-based
and LRF-independent descriptors have been successfully used
for point cloud registration. Among these descriptors, the BSC
and LoVS are two binary descriptors, which consume less
memory. Particularly, the LoVS has very good computation
efficiency. Also, its descriptor matching performance is pretty
good [18].

The 4PCS algorithm is first proposed by Aiger et al. [15].
Given four approximately coplanar points, the algorithm uses
the rule of intersection ratios to search all possible 4-point bases.
Due to brute-force search, the algorithm is very time-consuming.
In order to increase the computation efficiency, many im-
provements have been made to the 4PCS algorithm, such as
super 4PCS [23], generalized 4PCS (G4PCS) [24], keypoint-
based 4PCS (K-4PCS) [25], and semantic keypoint-based 4PCS
(SK-4PCS) [26]. These algorithms enhance the precision and
computation efficiency of the 4PCS algorithm from different
aspects. Nevertheless, they are still computationally expensive,
as will be shown in the experiments.

The 4PCS family searches all possible 4-point bases from the
target point cloud for randomly selected four points from the
source point cloud. The number of the possible 4-point bases
from the target point cloud is huge. Such search is eyeless,
and thus leads to much computation time for verifying all
possible 4-point bases. For the reason, the LSD is first intro-
duced to establish point-to-point correspondences. Thus, once
four correspondences are selected, the corresponding 4-point
base from the target point cloud is fixed and its number is
1. We do not need to verify so many 4-point bases. How-
ever, many of the correspondences established by the LSD are
incorrect. The rules of the G4PCS algorithm can help to reject
incorrect correspondences and estimate accurate transformation
under such cases. Hence, the LSD and G4PCS algorithm are
combined in this article. Although the scholars have combined
the 4PCS algorithm with the keypoint detectors (e.g., K-4PCS
and SK-4PCS algorithms), no one explores to take the LSD
and G4PCS algorithm into combination. The existing methods
either only use the LSD or only use the 4PCS rules. Here,
we choose a computationally efficient descriptor to establish
correspondences. Then, some improvements are made to the
G4PCS algorithm. Three groups of constraints are developed
to search correct four-correspondence bases instead of 4-point
bases. As a consequence, a computationally cheap and precise
registration method is proposed in this article. This means that
the registration method aggregates the advantages of both the
LSD and G4PCS algorithm.

II. RELATED WORK

Our work mainly involves the LSD and 4PCS algorithm.
Therefore, the LSD is first reviewed in this section. Then, the
development process of the 4PCS algorithm is presented.

A. Local Shape Descriptor

The LRF-independent descriptors are first reviewed. The SI
[19] is the most frequently mentioned descriptor. It calculates
two parameters for each neighbor. Then, the two parameters

are divided to form 2-D grids. The number of the neighbors
in a grid is employed to compute the grid value. The THRIFT
descriptor [27] computes a weighted histogram by using the
normal deviations of the neighboring points and keypoint. Rusu
et al. [28] used the normal deviations of any two points in the
local surface to encode the geometric information. The point
feature histograms (PFH) is presented, but the descriptor is time-
consuming. In order to improve the computation efficiency, Rusu
et al. [20] proposed the FPFH descriptor by using a simplified
PFH. In [21], the LFSH descriptor is proposed. This descrip-
tor assembles three attributes, i.e., normal deviation, signed
distance, and point density, so as to encode more geometric
information. The DLFS descriptor [22] utilizes a local height
and three angle attributes to generate four histograms, which
are concatenated to form the final histogram. These descriptors
discard spatial information, so they generally suffer from low
descriptiveness.

Regarding the LRF-based descriptor, both the spatial and
geometric information are encoded. Snapshots [29] is an early
proposed descriptor. The descriptor partitions the xy plane of the
LRF into 2-D grids. The feature values of the grids are calculated
according to the projection distances of the neighboring points.
Because the local surface information is only encoded from one
view, much information is lost. Tombari et al. [30] proposed
the signature of histograms of orientations descriptor. An LRF
building method was developed first. The method removed the
sign ambiguity of the three axes. Thus, the calculated LRF is
unique. In addition, the distances between the neighboring points
and the keypoint were applied to calculate the weights of the
neighboring points. This is useful to enhance the robustness of
the LRF to occlusion and clutter. The local neighborhood was
then divided into some subspaces with respect to the LRF. The
normal deviations were applied to calculate a histogram for each
subspace. Finally, all the histograms were integrated to obtain the
feature vector. A drawback of the descriptor is that it is sensitive
to point density variation. The unique shape context (USC) [31]
is an improvement to the 3-D shape context [32] by inserting
an unique LRF. This descriptor has rather high dimensionality,
leading to high computation complexity. The triple SI (TriSI)
[33] applies the multiple-view mechanism so as to encode more
information. It calculates three SIs from three views. The RoPS
[16] also uses the multiple-view mechanism to make it include
more information, but the descriptor achieves multiple views
by rotating the local patch. For each rotated point cloud, three
distribution matrices are generated by projecting it on the three
planes of the LRF. The statistics (four central moments and
a Shannon entropy) of all the distribution matrices form the
feature histogram. The TriSI and RoPS cannot be applied for
raw point cloud data because the LRF building method of the
two descriptors is designed for triangle mesh data. In addition, all
of the USC, TriSI, and RoPS use point distribution information
to calculate the feature vector. Consequently, they are sensitive
to point density variation. Similar to the TriSI descriptor, the
local depth images are calculated from three views in the triple
orthogonal local depth images (TOLDI) descriptor [34]. The
pixel values of the three images constitute the feature vector.
Subsequently, Tao et al. [8] considered that some information
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is still lost in the TOLDI descriptor due to self-occlusion. The
quintuple local coordinate images descriptor was developed. It
calculates five local coordinate images from five views, but its
dimensionality is high. The RCS [17] also rotates the local point
cloud to obtain multiple views. The 2-D contour information is
applied to compute the feature values. However, the descriptor is
susceptible to noise and point density variation. Unlike the other
descriptors, the signature of geometric centroids (SGC) [35] and
LoVS [18] employs a bounding cubical volume instead of a
spherical volume to enclose the local point cloud. The bounding
cubical volume is then voxelized. For the SGC, the centroid
and point number are applied to compute the voxel value. It is
susceptible to occlusion and clutter. For the LoVS, if the grid
is occupied by points, its value is 1 and 0, otherwise. It is a
naturally binary descriptor without binarization. Ghorbani et al.
[36] extended the 2-D DAISY descriptor [37] to tackle 3-D point
cloud data. A 3-D local DAISY-style descriptor was proposed.
A comprehensive evaluation about nine LSDs is presented in
[38].

B. 4PCS Algorithm

The 4PCS algorithm [15] has been developed for a long
time. Many efforts have been made to improve its performance.
The main drawback of the algorithm is its high computa-
tion complexity. Therefore, most of the scholars work hard to
enhance its computation efficiency. Mellado et al. [23] proposed
the super 4PCS algorithm. The algorithm applied an efficient
data structure to find all point pairs, making the algorithm
run in optimal linear time. Mohamad et al. [24] removed the
constraint that the points in a 4-point base should be coplanar.
The G4PCS algorithm was developed. Because the number of
nonplanar bases is significant smaller, the registration efficiency
is improved. Subsequently, Mohamad et al. [39] combined the
super 4PCS and G4PCS algorithms. The super G4PCS algorithm
was proposed. The registration efficiency was further enhanced.
Theiler et al. [25] proposed the K-4PCS algorithm, which first
extracted keypoints from the point clouds by 3-D difference-
of-Gaussian keypoint detector or 3-D Harris keypoint detector.
These extracted keypoints were input into the 4PCS algorithm.
Because the number of the keypoints is significantly less than the
number of the points in a point cloud, the computation efficiency
has a large improvement. Ge [26] also extracted keypoints first.
The difference is that these keypoints are vertexes of lines,
vertexes of arcs, intersection points of two lines, and centers
of circles. Hence, they are called as semantic keypoint, and the
algorithm is termed as SK-4PCS. These semantic keypoints are
the input of the G4PCS algorithm. However, the algorithm is
only suitable for some special scenes due to the usage of the
semantic information. Li et al. [40] extracted the boundary points
as the input of the super 4PCS algorithm. These algorithms still
need to traverse all the keypoint pairs to search for congruent
4-point base set, so they are still pretty time-consuming.

III. POINT CLOUD REGISTRATION BY COMBINING LSD AND

G4PCS ALGORITHM

Our registration method combines the LSD and G4PCS algo-
rithm. First, the LSD is used to establish correspondences. Then,

we make some improvements to the G4PCS algorithm. Three
groups of constraints are developed to reject 4-correspondence
bases that contain false correspondences. The detailed compu-
tation process is shown in Fig. 1.

Our method includes two stages. In the first stage, the key-
points are first extracted from the source and target point clouds.
Here, we choose the 3-D Harris keypoint detector because it is
easy to implement and has high computation efficiency, but the
other detectors can also be applied. An example of the extracted
keypoints is shown in Fig. 2. The corner points are detected as
the keypoints.

Then, for each keypoint, an LSD is calculated. In this article,
the LoVS descriptor is applied. The reasons for choosing the
descriptor are as follows. 1) The descriptor has high computation
efficiency. Thus, the computation burden that is caused by the
calculation of the LSD will not increase so much. 2) The descrip-
tor is highly descriptive and robust to many nuisances (include
noise, point density variation, and partial overlap), as reported
in [38]. Thus, more correct correspondences can be established.
This makes that we have bigger possibility of selecting correct
correspondences in the process of the random selection. 3) The
descriptor is a binary one. This makes the algorithm consumes
less memory. In addition, the descriptor similarity is calculated
using the Hamming distance, decreasing the time for descriptor
matching. Finally, the correspondences are established by the
nearest neighbor similarity rate (NNSR) [16]. In NNSR, for a
descriptor from source keypoint, two closest descriptors from
target keypoints are searched and two Hamming distances are
obtained. If the ratio between the two Hamming distances is
smaller than a threshold, the source keypoint associated with
the descriptor and the target keypoint associated with its clos-
est descriptor are treated as a correspondence. In the second
stage, four correspondences (i.e., a 4-correspondence base) are
randomly selected. Three groups of constraints are applied to
judge whether the four correspondences contain incorrect ones
or not. If the four correspondences satisfy the three groups of
constraints, they are used to estimate the rigid-body transfor-
mation. The details of the LoVS descriptor and three groups
of constraints will be described in Sections III-A and III-B,
respectively.

A. LoVS Descriptor

The LoVS descriptor is different from the other binary ones,
such as BSC and RCS. Most of the binary descriptors are
obtained by binarizing the real-valued descriptors, while the
LoVS is a naturally binary descriptor. The LoVS descriptor first
builds an LRF on the local neighborhood around the keypoint by
the method proposed in [34]. The local neighborhood is cropped
by a sphere with radius r around a keypoint. A local cubic volume
is used to enclose the local neighborhood and is then divided into
uniform subspaces, i.e., voxelization.

As shown in Fig. 3, for each voxel, we need to judge whether it
contains some neighboring points or not. The neighboring points
are the points in the local neighborhood. If the voxel is occupied
by some neighboring points, its value is 1 and 0, otherwise

l(vi) =

{
1, if

∣∣Qvi

∣∣ > 0
0, otherwise

(1)
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Fig. 1. Computation process of the proposed registration method.

Fig. 2. Keypoints extracted by 3-D Harris keypoint detector. The red points
are the keypoints.

where Qvi
is the point set in a voxel vi, and | · | denotes the

cardinality of a point set. All the voxel values are concatenated
to form the final feature vector, i.e., the LoVS descriptor

fLoVS =
{
l(v1) l(v2) · · · l(vNv

)
}

(2)

whereNv = m3 is the number of the voxels, andm is the number
of the voxels along each edge of the local cubic volume.

Two parameters of the descriptor are m and r (r is the local
neighborhood radius). By experiments, r is set as 15pr (pr
denotes the point cloud resolution, i.e., the average value of

Fig. 3. Voxel value calculation. The values of the red voxels are 1 and the
values of the others are 0. (a) Voxelization of local neighborhood. (b) Values of
voxels.

the distances between all points and their nearest neighboring
points) and m is set as 9. Therefore, the number of voxels is
9 × 9 × 9 = 729, which means that the dimensionality of the
descriptor is 729 and its storage is 729 bit. For more details,
readers can refer to [18]. Although the LoVS descriptor has
high descriptiveness, it is impossible to ensure that all the corre-
spondences established by the descriptor are correct. Therefore,
we need to find out the correct correspondences in the second
stage.

B. Correspondence Rejection Based on Three Groups of
Constraints

The 4PCS algorithm is proposed for the registration of par-
tially overlapping point clouds. Its goal is to find corresponding



TAO et al.: AUTOMATIC REGISTRATION OF POINT CLOUDS BY COMBINING LSD AND G4PCS ALGORITHM 6343

Fig. 4. Rule of intersection ratios. The dash line is the connecting line between
two intersection points of two spatial lines.

four points to compute the transformation by the rule of intersec-
tion ratios. Mohamad et al. [24] proposed the G4PCS algorithm,
which is an extension to the 4PCS algorithm. The randomly
selected four points are no longer necessary to be coplanar.

Fig. 4 shows the rule of intersection ratios. (p1,p2,p3,p4)
is a 4-point base from source point cloud and (q1, q2, q3, q4)
is a 4-point base from target point cloud. m1 and n1 are the
intersection points of the lines p1p2 and p3p4 in the 3-D space.
That is the distance between m1 and n1 is equal to the shortest
distance between p1p2 and p3p4. m1n1 is orthogonal to both
p1p2 andp3p4. Similarly,m2 andn2 are the intersection points
of the lines q1q2 and q3q4 in the 3-D space. Then, the four
intersection ratios can be calculated as

λ1 =
||p1 −m1||
||p1 − p2||

, λ2 =
||p3 − n1||
||p3 − p4||

λ3 =
||q1 −m2||
|| q1 − q2||

, λ4 =
||q3 − n2||
||q3 − q4||

(3)

where || · || denotes the Euclidean distance. These intersection
ratios are rotation invariant. Therefore, the following constraints
are generated:

abs(λ1 − λ3) < ε1, abs (λ2 − λ4) < ε1 (4)

where abs(·) denotes the absolute value. Under the case of
rigid transformation, the additional constraints can be added
to boost the searching process. Aiger et al. [15] proposed two
constraints based on the length of the diagonals in a 4-point
base. Subsequently, Theiler et al. [25] developed four constraints
based on the side length of a 4-point base. The six constraints
are as follows:

abs(‖p1 − p2‖ − ‖q1 − q2‖) < ε2

abs(‖p3 − p4‖ − ‖q3 − q4‖) < ε2

abs(‖p1 − p3‖ − ‖q1 − q3‖) < ε3

abs(‖p1 − p4‖ − ‖q1 − q4‖) < ε3

abs(‖p2 − p3‖ − ‖q2 − q3‖) < ε3

abs(‖p2 − p4‖ − ‖q2 − q4‖) < ε3. (5)

In addition, the distance between two lines in a 4-point base
can also be used to formulate a constraint as follows:

abs(‖m1 − n1‖ − ‖m2 − n2‖) < ε3. (6)

In our method, the correspondences [i.e., (pi, qi)] have been
established by the LoVS descriptor, i.e., the corresponding rela-
tionship between the source keypoints and target keypoints has
been established, so (p1,p2,p3,p4) are four source keypoints
and (q1, q2, q3, q4) are their corresponding four target key-
points. Hence, (q1, q2, q3, q4) are not obtained by brute-force
search. When four correspondences are selected, the four source
keypoints and their corresponding four target keypoints are
selected.

In order to further accelerate the searching process, three
angular constraints are developed in this article. We know that
the rotation between a source keypoint and a target keypoint is
equal to that between source and target point clouds. The LRFs
of two keypoints can be used to calculate the rotation between
them. We can compute four angle differences according to the
LRFs of the four correspondences

Δθ1 = a cos

(
trace

(
V p1

V −1
q1

)− 1

2

)
180

π

Δθ2 = a cos

(
trace

(
V p2

V −1
q2

)− 1

2

)
180

π

Δθ3 = a cos

(
trace

(
V p3

V −1
q3

)− 1

2

)
180

π

Δθ4 = a cos

(
trace

(
V p4

V −1
q4

)− 1

2

)
180

π
(7)

where acos(·) is the inverse cosine function, trace(·) is the trace
of a matrix,V p1

,V p2
,V p3

,V p4
are the LRFs ofp1,p2,p3,p4,

andV q1 ,V q2 ,V q3 ,V q4 are the LRFs ofq1, q2, q3, q4. An LRF
is a local coordinate system, which is represented by a 3× 3
orthogonal matrix. The column vectors of the matrix are the
x-axis, y-axis, and z-axis of the coordinate system. Noting that
the LRFs of the keypoints have been calculated when computing
the descriptors. Here, we just need to reuse them. If all of the
four correspondences are correct, the rotations of the four pairs
of keypoints are equal to each other and equal to the rotation
between source and target point clouds. The rotations can be
measured by the angle differences in (7). This means that the
four angle differences are equal to each other. Thus, the three
angular constraints are defined as

abs(Δθ1 −Δθ2) < δ

abs(Δθ2 −Δθ3) < δ

abs(Δθ3 −Δθ4) < δ. (8)

The three angular constraints can help reject more incor-
rect 4-correspondence bases, and thus, the searching process is
accelerated.
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According to the computation complexity of these constraints,
three groups of constraints are developed. The first group of con-
straints is composed of those defined by (5). These constraints
are easiest to calculate. The second group of constraints is com-
posed of those defined by (4) and (6). The angular constraints
constitute the third group of constraints, i.e., the constraints
defined by (8).

The second stage of our registration algorithm is given in
Algorithm 1. The correspondence set C is established by the
LoVS descriptor. At each iteration, four correspondences are
randomly selected. If the three groups of constraints are succes-
sively satisfied, the rigid transformation is calculated. Here, the
singular value decomposition (SVD) [41] is applied to calculate
the rigid transformation. The following matrices are constructed:

A =

⎡
⎢⎢⎣
p1

p2

p3

p4

⎤
⎥⎥⎦ , Y =

⎡
⎢⎢⎣
q1

q2

q3

q4

⎤
⎥⎥⎦ . (9)

Then, the covariance matrix is calculated as

H =
[
A− ones(4, 1)Ā

]T [
Y − ones(4, 1)Ȳ

]
(10)

where Ā is the mean vector ofA, Ȳ is the mean vector ofY , and
ones(4, 1) is a 4× 1 vector whose elements are all 1. Performing
SVD on matrix H

USV T = svd(H). (11)

Thus, the rotation matrix is

R = V DUT (12)

where D = diag(1, 1,det(UV T )), diag(·) denotes a diago-
nal matrix, and det(·) denotes the determinant of a matrix. The
translation vector is

t = Ȳ − ĀRT . (13)

Once one group of constraints is not satisfied, next four
correspondences are randomly selected. In our algorithm, the
parameters ε1, ε2, ε3 are set as 3pr, and the parameter δ is set as
10°. The parameter setting makes our algorithm has both high
registration precision and good computation efficiency. These
parameters are determined by many trials. When computing the
number of the inliers, only the downsampled source point cloud
is applied. We perform uniform sampling on the source point
cloud. The sampling interval is set as 7pr. By this, the number
of the points is largely reduced. The downsampled source point
cloud is transformed according to the calculated transformation.
If the distance between one transformed point and its nearest
point in the target point cloud is smaller than 3pr, the transformed
point is considered as an inlier. The number of the iterations L
should be set as a big value because most of the correspondences
are incorrect. Also, we find that a small value of L will lead to low
registration precision. In spite of this, the computation efficiency
of our algorithm is very high, because the computation is not
performed at most of the iterations due to the three groups of
constraints.

Algorithm 1:
Input: The established correspondence set C =
{c1 c2 · · · cn}

Output: Best transformation
ci = (pi, qi) is one correspondence
L is the number of the iterations
Set the initial number of inliers n0 as zero
For i = 1 to L do

Randomly select four correspondences ca, cb, cc, cd.
If the length of the diagonals and side length fulfill the
first group of constraints.
Compute the intersection points and intersection ratios.
If the intersection points and intersection ratios fulfill
the second group of constraints.
Compute the four angle difference.
If the angle difference fulfill the third group of
constraints.
Compute the rigid transformation using the four
correspondences

Compute the number of the inliers n
If n > n0

The current rigid transformation is the best one
n0 = n

End if
End if

End if
End if

End for

IV. EXPERIMENTS AND ANALYSIS

In this section, the experiments are performed to evaluate our
method. The K-4PCS algorithm, which is better than most of the
other methods of the 4PCS family, is used to compare with our
method. Specially, the K-4PCS algorithm is based on the 3-D
Harris keypoint detector because our registration method also
applies this keypoint detector. In addition, the multithreading
strategy is not applied in the K-4PCS algorithm for a fair compar-
ison. The difference between the two methods is that our method
introduces the LSD and develops the three angular constraints.
In order to illustrate the effect of the three angular constraints, we
remove them from our method, and the method without angular
constraints is denoted as “ours-wa.” Another method used for
comparison is “LoVS+1-point RANSAC.” The method uses
the LoVS descriptor to establish the correspondences. Then, the
1-point random sample consensus (RANSAC) algorithm [42] is
applied to calculate the rigid transformation. We compare the
four methods in terms of registration precision and computation
efficiency. The registration precision is measured by the rotation
error and translation error, which are, respectively, calculated as

errorR = acos

(
trace

(
RtrueR

−1
)

2

)
180

π
(14)

errort = ‖ttrue − t‖ (15)
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TABLE I
INFORMATION OF THE POINT CLOUDS FROM THE FOUR SCENES

where Rtrue is the true rotation, R is the estimated rotation, ttrue

is the true translation, and t is the estimated translation. The
true transformation is obtained by manual coarse registration
and the ICP [7] fine registration. The proposed registration
method randomly selects four correspondences, which leads to
different registration results in different implementation. Due to
the randomness, we run the four methods for 50 times. The mean
values of the rotation errors and translation errors are computed.
As for the computation efficiency, the computation time spent
on the two stages is respectively presented. The two stages of our
method are as shown in Fig. 1. For the K-4PCS algorithm, the
first stage is the process of extracting keypoints, and the second
stage is the process of calculating the transformation. All the
experiments are performed in MATLAB by a laptop with AMD
Ryzen 9 5900HX processor and 32.0 GB RAM.

A. Experimental Data

An indoor dataset [43] and an outdoor dataset [44] are applied
to perform the experiments. The indoor dataset is obtained
by scanning five scenes using a FARO Focus 3D X330 HDR
scanner. For each scene, multiple point clouds are obtained.
We choose three pairs of point clouds from the three scenes
(boardroom, lobby, and apartment). The outdoor dataset is the
point clouds of the city scene, which is obtained by a Leica
C10 laser scanner. A pair of point clouds is chosen from the
scene. Actually, the LSD is more suitable for the registration
of model point clouds because such point clouds have plenty of
geometric information. By contrast, the point clouds of buildings
are generally composed of planes and, therefore, lack geometric
information. Hence, using LSD to align the point clouds of
buildings is more challenging. Considering that the point density
is too high, we perform simplification on the point clouds.
The information of the point cloud data after simplification is
summarized in Table I. The numbers of the keypoints extracted
by 3-D Harris keypoint detector are also listed in Table I. The
two values separated by “versus” represent the numbers of the
source keypoints and target keypoints, respectively.

B. Performance on Indoor Dataset

The iteration number of our method and ours-wa is set as
30 000 for the boardroom and lobby scenes, and 3 000 000 for the
apartment scene. For the apartment scene, the overlapping part
is mainly composed of plane structures. Therefore, only a small
number of keypoints are extracted from the overlapping part.
This also leads to a small number of correct correspondences
being established by the LSD. Hence, the iteration number is
set as such a big value so that the good registration performance
can be achieved. The iteration number of the K-4PCS is set as

300 and that of the LoVS+1-point RANSAC is set as 500 for
all the three scenes. The registered point clouds obtained by all
methods look similar when the registration is successful, so only
the registration results of our method are shown in Fig. 5. In each
graph, the raw point clouds are on the left and the registered
point clouds are on the right. As we can see from Fig. 5, the
two point clouds of each scene are well aligned together. The
registration results are enough to provide good initial poses to
the fine registration.

The rotation errors and translation errors for the 50 coarse
registrations using the four methods are shown in Fig. 6. In
each graph, the rotation errors are on the left and the trans-
lation errors are on the right. It can be seen that the K-4PCS
algorithm has the poorest registration precision. The rotation
errors and translation errors are sometimes extremely large. The
second poorest method is LoVS+1-point RANSAC. The 1-point
RANSAC uses the LRFs of the keypoints to calculate the rotation
matrix, so only one correspondence is enough to calculate the
rigid transformation. Compared to the RANSAC algorithm [45],
the 1-point RANSAC needs much less iterations. However, due
to the errors of the LRFs, the rotation matrix and translation
vector calculated by the 1-point RANSAC also have relative
big error. Our method and the ours-wa have similar registration
precision. Our method uses the LSD to establish point-to-point
correspondences. Once a correct correspondence is selected, the
source keypoint will have an accurate corresponding target key-
point. Therefore, the registration can always get high precision.
By the contrast, the corresponding 4-point base found by the
K-4PCS algorithm in the target point cloud is approximate, so
the registration precision is poorer. Due to the introduction of
the LSD, the registration precision obtains a large improvement.
Specially, on the apartment scene, the registration precision
of the K-4PCS is very poor. This is because the keypoints in
the overlapping part are very few, the K-4PCS algorithm has
difficulty to find corresponding 4-point base from the target point
cloud. Therefore, the method always gets large rotation errors
and translation errors.

The computation time spent on the two stages for the four
methods is shown in Fig. 7. We can see that the computation time
of the K-4PCS algorithm is prohibitive. The time spent on the
first stage is about 10 s, which is very small. However, the time
spent on the second stage is sometimes as high as 20 000 s on the
lobby scene. The lobby scene has more complicated structure,
so more keypoints are extracted. Therefore, more 4-point bases
are found. It leads to a large amount of time spent on the second
stage. For our method, the time of the first stage is about 35 s on
the boardroom and apartment scenes, and about 85 s on the lobby
scene. For the lobby scene, more LSDs need to be calculated due
to more keypoints. Therefore, more computation time is spent
on the first stage compared to the boardroom and apartment
scenes, but the increase of time is not huge. This is mainly
because we choose an LSD with low computation complexity.
The computation time of the second stage is smaller than 10 s
on the boardroom and lobby scenes, and 60 s on the apartment
scene. The iteration number of the apartment scene is larger,
so more time is spent on the second stage. However, it is still
affordable.
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Fig. 5. Registration results on the three scenes. In each part, the initial point clouds are on the left and the registered point clouds are on the right. (a) Boardroom.
(b) Apartment. (c) Lobby.

Fig. 6. Registration precision for 50 coarse registrations using the four methods on the three scenes. (a) Boardroom. (b) Apartment. (c) Lobby.

Although our method needs more iteration number, the total
computation time is very small. This is because the computation
of most iterations is not performed due to the three groups of
constraints. However, in the K-4PCS algorithm, much time is
spent on finding the 4PCS at each iteration. Our method costs
more time on the first stage because of the introduction of the
LSD, but the computation burden does not increase very much.

This is because we choose a descriptor (i.e., LoVS), which
is simple to compute, to establish the correspondences. The
descriptor has not only the high computation efficiency but also
the good matching performance. Although the first stage spends
more time, the time spent on the second stage is rather small.

We can also see that the ours-wa obviously costs more time
on the second stage compared to our method. This is because the
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Fig. 7. Computation time for 50 coarse registrations using the four methods on the three scenes. (a) Boardroom. (b) Apartment. (c) Lobby.

ours-wa removes the three angular constraints. As we can see, the
three angular constraints are useful to boost the search process-
ing of the correct correspondences. The three angular constraints
can help reject more incorrect 4-correspondence bases, so our
method has better computation efficiency in comparison with
the ours-wa. Particularly, when the required iteration number is
very big, the effect of the three angular constraints is more obvi-
ous (e.g., the apartment scene). The LoVS+1-point RANSAC

also spends more time on the second stage compared to our
method. Although the method needs less iteration number, all
the iterations are performed. Therefore, the method needs more
time.

According to the calculated rotation errors and translation
errors in Fig. 6, we calculate their mean values. The mean
computation time of the two stages is also computed. All of
them are listed in Table II.



6348 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE II
REGISTRATION RESULTS FOR THE THREE SCENES

From Table II, we can see that the mean values of the rotation
errors and translation errors for our method are smaller than
those of the K-4PCS algorithm by a large margin. The total
mean computation time of our method is also obviously smaller.
Therefore, the improvement of all aspects is significant. We can
conclude that introducing the LSD can enhance both the regis-
tration precision and computation efficiency. By combining the
LSD and G4PCS algorithm, we obtain a point cloud registration
method with good registration precision and high computation
efficiency. Admittedly, the increase of the iteration number
can improve the registration precision for the two methods.
However, the computation time will also increase. Especially
for the K-4PCS algorithm, the increase of the computation time
is very huge. This is the reason why we do not increase the
iteration number of the K-4PCS algorithm on the apartment
scene. In addition, extracting more keypoints can also improve
the registration precision of the K-4PCS algorithm. On the
lobby scene, because of more keypoints, the K-4PCS algorithm
also gets relatively high registration precision. This is because
more keypoints increase the possibility of finding more accurate
4-point base from the target point cloud.

The mean rotation errors and mean translation error of the
ours-wa are bigger than those of our method, so the registration
precision of the ours-wa is poorer. The mean computation time
spent on the first stage is similar to our method, while the
mean computation time spent on the second stage is more.
This indicates that the proposed three angular constraints are
effective. The LoVS+1-point RANSAC also has poorer reg-
istration precision and computation efficiency in comparison
with our method. This method only uses one correspondence to
calculate the rigid transformation, so the constraints, which are
always the relationship between two correspondences, cannot be
inserted into the method for skipping some iterations. Hence, the
LoVS+1-point RANSAC costs much more time on the second
stage.

Fig. 8. Registration result of the city scene. (a) Initial point clouds.
(b) Registered point clouds.

C. Performance on Outdoor Dataset

On the outdoor dataset, although more keypoints are
extracted, the proportion of correct correspondences is small
because of the low degree of overlap. Therefore, the iteration
number of our method and ours-wa is set as 6 000 000. The
iteration number of the K-4PCS and LoVS+1-point RANSAC is
still respectively set as 300 and 500. The registered point clouds
obtained by all methods look similar when the registration is
successful, so only the registration result of our method is shown
in Fig. 8. It can be seen from Fig. 8(b) that the two point clouds
have been well registered.

The rotation errors and translation errors of the 50 tests are
shown in Fig. 9. We can see that the K-4PCS algorithm gets big
rotation errors and translation errors. Because the keypoints in
the overlapped area are few due to the low degree of overlap,
the K-4PCS algorithm is difficult to find accurate correspond-
ing 4-point base. The LoVS+1-point RANSAC obtains the
second poorest registration precision. In this pair of point clouds,
the noise is serious so that the calculated LRFs have bigger
errors. Therefore, the LoVS+1-point RANSAC gets relative
big rotation errors and translation errors. Our method and the
ours-wa have the best registration precision. Because the LSD
is introduced to establish the correspondences, our method can
always find accurate corresponding keypoints.

The comparison of the computation time is presented in
Fig. 10. As we can see, the K-4PCS algorithm spends very
few time (about 10 s) on the first stage but much time on
the second stage. Sometimes, the total computation time is as
high as 20 000 s. In comparison with the indoor dataset, our
method spends more time on the first stage. This is because more
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Fig. 9. Registration precision for 50 coarse registrations using the four meth-
ods on the city scene.

Fig. 10. Computation time for 50 coarse registrations using the four methods
on the city scene.

keypoints are extracted from the point clouds. The time spent
on the second stage is still very little. The total computation
is significantly smaller than that of the K-4PCS. Due to the
introduction of the LSD, our method does not need to traverse
all the point pairs to find the corresponding target keypoints. The
ours-wa also spends more time on the second stage compared to
our method, which indicates that the proposed three angular

TABLE III
REGISTRATION RESULTS FOR THE CITY SCENE

constraints can further improve the searching process. More
incorrect 4-correspondence bases are rejected by introducing
the three angular constraints in our method. On the dataset, the
LoVS+1-point RANSAC spends less total time. For any case,
we can set a large value for the iteration number of our method
because the computation time is still small. The iteration number
does not affect the computation time very much in our method.
From this point of view, our method is insensitive to iteration
number. For the K-4PCS and 1-point RANSAC, if the iteration
number increases, the computation time will also significantly
increase.

According to the results in Fig. 9, the mean rotation error and
mean translation error are calculated and listed in Table III, and
the mean computation time of the two stages is also given. The
K-4PCS algorithm has the largest mean rotation error and mean
translation error, followed by the LoVS+1-point RANSAC. Our
method and the ours-wa get similar mean rotation error and mean
translation error. The K-4PCS algorithm spends a little time
on the first stage. Due to the calculation of the LSD, the other
three methods spend more time on the first stage. However, the
computation time of the second stage of the other three methods
is much less than that of the K-4PCS algorithm. Although our
method requires a large amount of iterations, the computation
time is rather few. At the aspects of the registration precision
and computation efficiency, our method is obviously superior
to the K-4PCS algorithm. Therefore, the introduction of the
LSD is useful to improve both of the registration precision and
computation efficiency.

V. CONCLUSION AND OUTLOOK

A registration method, which combined the LSD and G4PCS
algorithm, had been presented in this article. The LoVS descrip-
tor was selected to establish the correspondences. Then, three
angular constraints were proposed. Both the constraints of the
G4PCS algorithm and the three angular constraints were orga-
nized into three groups. Based on the three groups of constraints,
Algorithm 1 was developed.

The experiments had been performed on the two datasets,
including an indoor dataset and an outdoor dataset. The ex-
perimental results indicate that our method is able to get high
registration precision and good computation efficiency. Our
method introduces the LSD to establish the correspondences.
Therefore, in the process of the random sampling, once the
selected correspondences are correct, the good registration pre-
cision can be obtained because the corresponding keypoints are
relatively accurate. However, the K-4PCS algorithm usually find
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approximate 4-point base. In addition, also because of the LSD,
our method does not need to traverse all the keypoint pairs for
finding the 4-point base set. The verification of all the 4-point
bases is very time-consuming. Therefore, the LSD can help to
improve the registration precision and computation efficiency.
Also, our method is not sensitive to the number of keypoints,
thresholds of the constrains, and iteration number.

The drawback of our method is that the iteration number
cannot be determined in advance. The descriptor matching per-
formance depends on the quality of the data, so the proportion
of the correct correspondences is unknown. Hence, it is hard to
determine the iteration number. However, although the iteration
number is set as a big value, the computation time is still
small.
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