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A Novel SAR Automatic Target Recognition Method
Based on Fully Complex-Valued Networks
Yuejun Zhu , Tao Li , Dongliang Peng , Member, IEEE, Haoran Wang, and Sainan Shi

Abstract—The existing automatic target recognition (ATR)
methods for synthetic aperture radar (SAR) images mainly utilize
the real-valued magnitude information while often ignoring the
phase information. However, the phase information also provides
important details, which can be utilized to improve the ATR perfor-
mance. To address this issue, a fully complex-valued light-weight
network (CVLWNet) is proposed based on complex-valued oper-
ations, such as complex-valued convolution and complex-valued
batch normalization. Besides, to achieve reduced parameters and
enhanced robustness of the designed network, many complex-
valued blocks of operations are built, including the CMish acti-
vation function, the complex-valued residual link block (CVReL-
Block), the lightweight complex-valued cross stage partial block
(LC-CSPBlock). In the designed CVLWNet, the input, output, and
weight parameters are all complex-valued, which makes it possible
to sufficiently exploit the complex-valued characteristics of SAR
data. Comparative experiments are conducted with the moving and
stationary target acquisition and recognition dataset. Compared
with the state-of-the-art real-valued and complex-valued models
under both standard and extended operating conditions, the per-
formance of proposed method is verified.

Index Terms—Complex-valued network, deep learning, radar
target recognition, synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) has unique advantages
in remote sensing with the capability of all-day observation

under severe weather conditions. In recent years, it has played an
increasingly important role in every corner of the military field,
especially in the automatic target recognition (ATR) application.
In the earlier stage, radar ATR methods generally recognize tar-
gets based on the feature handcrafted with domain knowledge by
principles of template matching or machine learning classifiers.
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However, the performance of target recognition suffers severe
degradation with nonrobustness of feature extraction methods
under varying imaging scenarios.

Since single-channel SAR amplitude information can be pre-
sented as grayscale images and multipolarized SAR data as
pseudocolor images, different kinds of convolutional neural net-
works (CNNs) such as AlexNet [1], VGGNet [2], and ResNet [3]
were transferred from networks pretrained on the natural image
dataset to SAR images with fine-tuning. However, due to the
obvious difference between the imaging mechanism of SAR im-
ages and that of optical images, the fine-tuned models pretrained
with optical image datasets cannot achieve good performance for
SAR ATR [4].

To utilize the abundant information embedded in SAR data
and exploit the potential of CNN, many modified CNNs were
proposed in recent researches. In view of the problem that
the traditional CNN cannot effectively use the component in-
formation of the target that is stable to the local change,
Li et al. [5] proposed a multiscale CNN (CA-MCNN), which
comprehensively used the global features and components of the
target features, yielding good performance with the well-learned
target information. Though it is often ignored by the ordinary
CNNs, the shape information is more effective than the texture
information for SAR ATR. Therefore, Huang et al. [6] built a
dataset based on the extracted target and their shadow features,
which enabled the CNN to pay more attention to the shape of
targets. To improve the CNN’s recognition capability in the limit
of small sample sizes, Lang et al. [7] proposed the hinge loss
CNN module to build a lightweight cascaded multidomain at-
tention network, which extracted both the frequency and wavelet
transform domain features of feature maps. Chen et al. [8] used
1 × 1 convolution instead of fully connected layers to build
the new all-convolutional networks (A-ConvNet), achieving a
breakthrough target recognition accuracy on the moving and sta-
tionary target acquisition and recognition (MSTAR) dataset. The
existence of speckle noise, difficulty in feature expression and
lack of sample data pose a severe challenge to the performance of
SAR target recognition. Mohammadimanesh et al. [9] efficiently
solved the above problem using the fully convolutional network
(FCN) with an encoder–decoder paradigm.

The aforementioned methods were based on the real-valued
network architectures and SAR amplitude information. It is
noted that SAR images are one typical kind of naturally
complex-valued data, of which both the magnitude and phase
contain useful information for the ATR task. In particular, the
prior encodes the quantity of energy, while the latter denotes
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the material of the object and forms boundaries [10], [11].
However, in the majority of existing methods for target detection
and recognition in SAR images, the magnitude information
is widely applied while the phase variation is paid with less
attention. To fully utilize the abundant information contained in
complex-valued SAR data, two typical approaches have been
studied in recent literatures. One type of methods was based
on the integration of electromagnetic scattering feature (ESF)
into the real-valued neural network architecture to enhance the
interpretability, while the other one explored the complex-valued
version of neural networks. Following the first pattern, the part
convolution was utilized by Feng et al. [12] to learn the char-
acteristic of parts model obtained from the attributed scattering
centers (ASCs), then the bidirectional convolutional-recurrent
network was modified to realize local feature extraction. Then,
Feng et al. [13] designed an ASC parameter extractor using the
CNN structure, based on which the extracted ESF characteristics
were incorporated into the classification network. Furthermore,
a part attention network based on the modeling of ASC model
was proposed in [14], which facilitated the interpretability of
deep learning network. Similar works have been done by Zhang
et al. in [15], Li et al. in [16], and Liu et al. in [17], and excellent
performance can be obtained.

With respect to the modification of networks, the complex-
valued neural networks (CVNNs) are developed to fully inves-
tigate the complex-valued representation of SAR data. Since
the polarimetric SAR (PolSAR) images are generally repre-
sented by the covariance or coherency matrices with naturally
complex-valued property, many complex-valued CNNs were
first explored in the application of PolSAR image classification.
To apply the convolution structure and weight parameters of
the real-valued networks to the complex-valued domain, Zhang
et al. [18] proposed a complex-valued CNN for the terrain
classification task of PolSAR images. A novel FCN architecture
was proposed for the PolSAR data in [19], which consisted of
the complex-valued max-unpooling and complex-valued down-
sampling and used a novel average cross-entropy loss function
to accelerate the learning ability of the network. To take full ad-
vantage of the polarization dispersion contained in the complex-
valued covariance and coherence matrix, Tan et al. [20] proposed
a complex-valued 3-D CNN that can extract both spatial feature
information and polarization scattering information.

To sum up, there are currently two typical forms of CVNNs.
The first solution is to apply real-valued networks to the iso-
morphic two-way representation of complex-valued data, which
were started with split-CVNNs. Specifically, split-CVNNs can
be roughly divided into two classes, both of which have real-
valued activation functions, while the weights can be either real-
or complex-valued. [21]. Based on the multistream structure,
Zeng et al. [22] proposed the MSCVNets by constructing con-
volution modules with different convolution sizes, and fused
the multistream feature maps output by the modules. The ex-
perimental results on the MSTAR dataset show that MSCVNets
achieved excellent recognition results. Since it uses real-valued
backpropagation for gradient updates, it can cause a phase dis-
tortion of complex-valued input data and a significant deviation
of the output values of the network during network training [23].

The second form of CVNNs extends the real-valued network
to the fully complex-valued domain, including the convolution
operation, batch normalization, activation function, and pooling
function, etc. In order to process SAR data with phases, the pure
complex-valued CNNs were presented by [24], where weight
parameters and activation functions were both learned and
calculated in the complex-valued domain. In complex-valued
convolutional neural networks, too many weight parameters can
also cause overfitting problems. To address this issue, Yu et
al. [25] replaced the fully connected and pooling layers with
complex-valued 1 × 1 and 3 × 3 convolutions, respectively.
Therefore, the designed network consisted only of convolution
operations, which achieved improved classification accuracy on
the MSTAR dataset. Wilmanski et al. [26] inputted the complex-
valued data into the first complex-valued convolution layer of
the network while the next convolution module used real-valued
convolution. A performance jump of 87.9% to 99.21% was
achieved on the real collected wide angle SAR data with the
use of complex-valued features. In [27], two major problems
were discovered for the CVNNs, one of which is limited training
data and another is the mismatch between measurement data and
synthetic data. Besides, to realize the convergence analysis for
CVNNs, Zhang et al. [28] obtained the convergence theorem
of the fully complex-valued minibatch gradient algorithm ap-
plicable to any weight initialization method when the training
samples were input into the network in a fixed order.

To thoroughly utilize the abundant information contained in
complex SAR data, a novel complex-valued lightweight network
(CVLWNet), is proposed to enhance the feature extraction abil-
ity of CNNs for the SAR ATR. In addition, the complex-valued
version of MSTAR dataset [21], [27] with a complex-valued
signal similar to the original radar echo is used in the exper-
iment. The key contributions of the proposed method can be
summarized as follows.

1) A new complex-valued activation function CMish is
adopted to perform complex domain derivation in all quad-
rants [29], which inherits excellent performance of Mish
function in the real number domain [30]. By comparison,
the complex-valued version of ReLU activation function,
i.e., CReLU, cannot be derived in the second and fourth
quadrants, resulting in a large amount of information loss.

2) The complex-valued residual link block called complex-
valued residual link block (CVReLBlock) is proposed,
which greatly improves the robustness of the network in
the recognition process. When its convolution kernel is
large enough, it can suppress clutter and improve recog-
nition performance in complex-valued scenes.

3) A fully complex-valued CNN is constructed, where the in-
put, output, and weight parameters are all complex-valued.
Referring to the existing real-number domain lightweight
network structure with excellent performance [31], [32],
[33], [34], [35], the lightweight complex cross stage partial
block, represented by complex-valued cross stage partial
block (LC-CSPBlock), is proposed.

The rest of this article is organized as follows. A brief in-
troduction of related works on the basic complex-valued CNN
blocks is provided in Section II. Section III presents a detailed
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theory for the proposed CVLWNet. The experimental setting
and comparative analysis of results are provided in Section IV.
Finally, Section V concludes the article.

II. RELATED WORKS ON COMPLEX-VALUED OPERATION

BUILDING BLOCKS

Trabelsi et al. [29] proposed a general framework for CNNs
based on complex-valued operations, which consists of the
major modules of the complex-valued CNNs, followed by Zeng
et al. [22] who built a general complex-valued framework for
SAR ATR. In the Cartesian coordinate system, a complex-
valued number can be denoted as z = x+ i · y with i =

√−1,
yielding the magnitude U =

√
x2 + y2 and phase angle θ =

tan−1(y/x).

A. Derivation of Wirtinger Calculus in the Process of
Backpropagation

The Cauchy–Riemann differential equations are two partial
differential equations that provide sufficient and necessary con-
ditions for differentiable functions to be holomorphic functions
in the open set [36]. The conventional complex-valued function
derivative method can be used for holomorphic functions. How-
ever, it is no longer applicable to the nonholomorphic functions.
For instance, the cross-entropy loss function widely used in the
classification process is nonholomorphic, which does not meet
the differential derivative conditions of the Cauchy–Riemann
equation. Therefore, it cannot be derived using the traditional
complex-valued number derivative rule.

To address this issue, the Wirtinger calculus can be utilized.
Consider ϕ(z) : C → C with a format

ϕ(z) = U(x, y) + i · V(x, y) (1)

where z = x+ i · y. Substitute

x =
z + z̄

2
, y =

z − z̄

2i
(2)

into complex-valued (1), then ϕ can be rewritten as a bivariate
function of z and z̄. If the complex-valued function ϕ(z) is a
holonomic function, it can be written as ∂ϕ

∂x and ∂ϕ
∂y under the

traditional complex-valued number derivative rule. However, if
the complex-valued functionϕ(z) is a nonholonomic function, it
does not satisfy the Cauchy–Riemann differential equation and
cannot be differentiated under the traditional complex-valued
number derivative rule. Under the derivation of Wirtinger calcu-
lus, the nonholonomic function ϕ(z) can be differentiated and
therefore, can be written as ∂ϕ

∂z and ∂ϕ
∂z̄ . The derivative chain rule

is shown below as follows:⎧⎪⎪⎨
⎪⎪⎩

∂ϕ

∂z
=

1

2

(
∂ϕ

∂x
− i

∂ϕ

∂y

)
,

∂ϕ

∂z̄
=

1

2

(
∂ϕ

∂x
+ i

∂ϕ

∂y

)
.

(3)

The following property holds:⎧⎪⎨
⎪⎩

∂ϕ

∂z
=

∂ϕ̄

∂z̄
, V(x, y) �= 0,

∂ϕ

∂z
=

∂ϕ

∂z̄
, V(x, y) = 0.

(4)

It can be seen that the Wirtinger calculus provides a convenient
method for computing two partial derivatives of a nonholonomic
function. Therefore, the Wirtinger calculus provides the basis for
designing gradient-based optimization algorithms to minimize
the cost function of the real-valued variables, allowing the
CVNNs to learn the features of the data.

B. Complex-Valued Convolution

To realize convolution operations on the complex-valued
domain, the convolutions of real-valued networks are utilized
to simulate that of complex-valued ones. To be specific, the
complex-valued feature map h = x+ i · y can be multiplied by
the complex-valued filter w = A+ i ·B where A, B, x, and y
are real-valued matrix. Since the convolution operator satisfies
the distributive law of the four arithmetic operations, the result
of feature map h convoluted through the filter w can be denoted
as follows:

w ∗ h = (A ∗ x−B ∗ y) + i · (B ∗ x+A ∗ y) . (5)

The overall calculation process of complex-valued number con-
volution is shown in Fig. 1. The matrix version of the convolution
operation can be given by[� (W ∗ h)

� (W ∗ h)
]
=

[
A −B
B A

]
∗
[
x
y

]
, (6)

where�(·) and�(·) represent the real and imaginary operations,
respectively.

C. Complex-Valued Batch Normalization

Batch normalization (BN) [37] can transform data with dif-
ferent distributions in a neural network into uniform Gaussian
distributed data, which can accelerate the learning process of
networks, achieving the network convergence as soon as pos-
sible. To a certain extent, the BN can prevent the problems
of gradient disappearance and explosion during the training
process. However, the current BN algorithm can only transform
real-valued data into Gaussian distribution. In this section, a
brief introduction to complex-valued BN is provided. For a
complex-valued matrix x, denoted as x = �(x) + i · �(x), its
standard normal complex-valued distribution x̃ can be calculated
by multiplying the data x− E[x] centered at 0 and the matrix
V with reciprocal square roots of dimension 2, denoted as

x̃ = V− 1
2 (x− E [x]) (7)

where

V =

(
Vrr Vri

Vir Vii

)

=

(
Cov (� (x) ,� (x)) Cov (� (x) ,� (x))
Cov (� (x) ,� (x)) Cov (� (x) ,� (x))

)
(8)

and Cov(·) and E(·) represents the covariance calculation and
expectation operation, respectively.

The real-valued BN is extended to the complex-valued do-
main with two parameters, i.e., the shift parameter β and scaling
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Fig. 1. Complex number convolution operation process.

Fig. 2. Architecture of the proposed CVLWNet.

parameter γ. The corresponding complex-valued BN is defined

BN(x̃) = γx̃+ β. (9)

Specifically, β is a complex-valued parameter whose real and
imaginary parts are learnable parameters. Besides, γ is a 2× 2
symmetric matrix which contains three learnable parts, includ-
ing γrr, γii, and γri, which is given by

γ =

(
γrr γri
γri γii

)
. (10)

After the normalization, both real and imaginary variances of x̃
are 1. Therefore, to ensure the variance modulus of x̃ to be 1,
both γrr and γii are initialized to 1/

√
2. Besides, γri, �(β), and

�(β) are set with an initialization value of 0.

III. MODIFIED COMPLEX-VALUED NEURAL NETWORKS

The CVLWNet is systematically formulated in this sec-
tion, whose architecture is shown in Fig. 2. The CVLWNet is

constructed with basic blocks including the CMish activation,
CVReLBlock, and LC-CSPBlock. The detailed construction and
parameter configuration of the proposed network are given in
Table I, where the output size of feature map, the kernel size
and stride of convolution, the number of repeats, and the output
channels are provided for each module. First, two CVReLBlocks
are designed with kernel sizes 7 × 7 and 13 × 13 (denoted as
CVReLBlock 7 × 7 and CVReLBlock 13 × 13), respectively.
Besides, the two basic blocks CVReLBlock and LC-CSPBlock
are further adopted to design the module called LCSPRLB. In
the proposed network, four LCSPRLB modules are designed
with the LC-CSPBlock and CVReLBlock blocks. Specifically,
the first LCSPRLB modules consist of one LC-CSPBlock and
two CVReLBlocks with kernel size 7 × 7 in series. The second
and third LCSPRLB modules consist of one LC-CSPBlock and
two CVReLBlocks with kernel size 5 × 5 in series. The last
LCSPRLB consists of one LC-CSPBlock and one CVReLBlock
with kernel size 5 × 5 in series. Then, the feature map extracted
from the backbone part is sent to the LWDW block to realize
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TABLE I
PARAMETER CONFIGURATION OF THE PROPOSED CVLWNET

downsampling. This LWDW block consists of a lightweight 3
× 3 convolution with a stride size of 2, followed by the CV-
GlobalPool layer to realize the complex-valued global pooling.
Finally, the downsampled feature map is transformed into a
one-dimension vector and input to the complex-valued fully
connected (CVFC) layer to realize the classification of targets.

A. CMish Activation Function

Different activation functions have different application
scopes according to their characteristics. For instance, the sig-
moid and tanh functions are suitable for probability value pro-
cessing since their outputs are limited to (0, 1) and (−1, 1),
respectively. Since ReLU has no maximum limit and may have
a large value, it is suitable for deep network training. In this
case, the sigmoid and tanh functions are less superior due to
the possible gradient disappearance. On the contrast, with a
derivative of constant 1, the gradient of ReLU will remain in the
chain reaction. However, the ReLU function is easy to cause the
death of neurons during training. For z ∈ C, the CReLU [29]
can be obtained by extending real-valued ReLU function to
complex-valued field, as shown in the following formula:

CReLU = ReLU (�(z)) + i · ReLU (�(z)) . (11)

It is noted that the Cauchy–Riemann differential equations do
not hold for the CReLU in the second and fourth quadrants.
For the complex-valued image, when the real part is greater
than 0 and the imaginary part is smaller than 0, the CReLU
is nondifferentiable. In this situation, some weight parameters
cannot be gradient updated in the back-propagation process, re-
sulting in the massive loss of information. To solve this problem,
the CMish activation function is adopted, which is obtained by
extending the Mish activation function from the real number
domain to the complex one. The Mish activation function image
is shown in Fig. 3. Compared with the ReLU function which
is not smooth at point 0, the Mish is smooth everywhere which
facilitates the convergence of network.

For x ∈ R, the Mish function [30] can be denoted as

Mish(x) = x · tanh (ln (1 + ex)) . (12)

Fig. 3. Mish activation function image.

Similar to the CReLU activation function defined in [16], the
proposed CMish actually applies the Mish function to the real
and imaginary parts, respectively. For z = x+ i · y ∈ C, the
CMish function is given by

CMish(z) = Mish (�(z)) + i ·Mish (�(z))
= x tanh (ln (1 + ex)) + i · y tanh (ln (1 + ey)) .

(13)
Satisfying the Cauchy–Riemann equations, the CMish can be

differentiable in all quadrants to improve the expression ability
of networks. Without upper limit, there will be no saturated
area for CMish, avoiding the problem of gradient disappearance
in the training process. Meanwhile, with a lower limit, the
standardization effect of CMish can be guaranteed, which is
a good characteristic for the network. Besides, the CMish is
nonmonotonic. To be specific, the amplitude of CMish can be
enlarged for small input and reduced for large input, which can
accelerate the training speed of the network.

Another complex-valued version of Mish function denoted as
cvMish was provided in [38] as follows:

cvMish(z) = z · tanh (ln (1 + ez))

= x tanh (ln (1 + ex))− y tanh (ln (1 + ey))

+ i · (x tanh (ln (1 + ey))

+y tanh (ln (1 + ex))) .
(14)

However, the above expression was deduced based on the fol-
lowing formula defined in [38].

tanh
(
ln
(
1 + ex+i·y)) = tanh (ln (1 + ex))

+ i · tanh (ln (1 + ey)) (15)

which cannot be derivated with rigid mathematical formulas.

B. CVReLBlock

In the process of object recognition, large convolution kernels
can greatly increase the receptive field of object detection, while
small ones increase the depth to achieve the same goal, yielding
too deep a network to avoid gradient disappearance during the
training process. The aforementioned phenomenon is especially
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Fig. 4. Structure of the CVReLBlock.

Fig. 5. Visualization of 7 × 7 CVReLBlock processing results.

true for the recognition network, whose performance will greatly
degrade due to increased network depth.

With respect to the excellent classification, segmentation, and
detection performance of RepLinkBlock [39] in the real-valued
field, a complex-valued RepLinkBlock (denoted as CVReL-
Block) is constructed, which is composed of three convolution
operations with kernel sizes of 5 × 5, 7 × 7, and 13 × 13,
respectively. Because the traditional large convolution leads to
substantially increased parameters of the convolution, we use
a point convolution plus a depth-separable large convolution
to replace it, which can reduce the parameters in the network.
Shown in Fig. 4, the CVReLBlock module is constructed with
three parts, i.e., the CVCBA, CVDW, and CVCB. The CVCBA
is constructed with a complex-valued BN layer, complex-valued
convolution with kernel size 1× 1, and CMish activation func-
tion. The CVDW stands for grouped large complex-valued
convolution with kernel size k × k, and CVCB consists of the
complex-valued 1× 1 convolution and complex-valued BN.

The results of sensitivity experiments show that the CVL-
WNet performs best when its first layer consists of CVReLBlock
with k = 7. Taking the result of 2S1 as an example, it can be
visually observed in Fig. 5 that the speckle noise and clutter
in the complex-valued images can be filtered out after the
CVReLBlock, making characteristics of the feature map more
obvious. It is helpful for the backbone part to extract effective
features and improve the classification accuracy of downstream
tasks.

C. LC-CSPBlock

The lightweight networks [31], [32], [33], [34], [35], [40] have
achieved excellent performance in the real-valued domain, not
only with fewer weight parameters, but also with high accuracy.
By extending the real-valued lightweight network structure to
the complex-valued domain, the lightweight complex-valued
cross stage partial block (denoted as LC-CSPBlock) is designed,
whose structure is shown in Fig. 6. The Primary Conv rep-
resents 1 × 1 complex-valued convolution, which is mainly

Fig. 6. Structure of the LC-CSPBlock.

TABLE II
MSTAR DATASET INFORMATION

used for information fusion to adjust the number of channels
in the output characteristic graph. The CVDP Conv denotes
the complex-valued separable convolution with downsampling
rate of 2 and the CVSELayer refers to the complex-valued
squeeze-and-excitation channel attention mechanism. Besides,
the output feature map size after Shortcut is the same as that
from the upper branch.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset Description

The MSTAR dataset [8], [41] was collected using a 10 GHz
center frequency X-band SAR sensor, achieving a minimum
resolution of 0.3 m in both range and azimuth direction. This
dataset contains ten different categories of ground targets, con-
sisting of various military vehicles with different attributes,
such as armored personnel carriers, tanks, bazookas, antiaircraft
units, trucks, and bulldozers. The visual comparison between the
optical images and complex-valued SAR images is provided in
Fig. 7. The information of targets in the MSTAR dataset [22],
including the category, quantity, azimuth, and serial number, is
provided in Table II.

According to previous studies on the MSTAR dataset [22],
[46], [47], [48], [49], we divide the dataset into two different
types SOC and EOC, which denote the standard and extended
operating conditions, respectively. To be specific, the SOC
means that the training and testing are conducted with targets
of the same serial number at different angles. On the contrast,
the EOC refers to training and testing with targets of varying
serial numbers or at significantly different angles. In order to
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Fig. 7. Ten classes of military objectives. (Top) Optical image. (Bottom left) Real part. (Bottom right) Imaginary part.

TABLE III
DETAILED CONFIGURATION OF THE ADOPTED DATASET

better test the proposed network, referring to the experimental
setting in [22], we use three complex-valued datasets, namely
SOC-10, SOC-3, and EOC-VV-4, whose detailed configurations
are shown in Table III.

1) SOC-10 test: SOC-10 contains all categories of the MSTAR
dataset, of which each category contains only one series. In
the experiment, training is performed with 2747 samples at
an indentation angle of 17° while testing with 2425 samples
at 15°. The SOC-10 dataset can be tested in a comprehensive
manner comparative model recognition performance across all
categories in the MSTAR dataset.

2) SOC-3 test: Aiming to validate the ability of the designed
CVLWNet model to recognize a specific category, the SOC-3
dataset is consisted of all series of three target types, namely
BMP2, BTR70, and T72. To be specific, shown in Table II, both
T72 and BMP2 are composed of three series. On the contrast, the
BTR70 consists of only one series. In total, training is conducted
with 1622 samples at 17° and testing with 1365 target chips at
15°, respectively.

3) EOC-VV-4 test: Typically, there are more than one series
variation of the same target type, which present slight difference
in terms of the appearance and radar reflection characteristic.
Therefore, it is necessary to demonstrate the performance of
recognition methods under the condition of version variation of
targets. The EOC-VV-4 dataset consists of four categories of
targets in the MSTAR dataset, among which both BMP2 and
T72 have three serial number variants. The proposed CVLWNet
model is trained on the target collections, where BMP2 is with
the serial number of 9563 and T72 with 132, while the testing
process is done with changed series of BMP2 and T72 targets.

B. Training Process

PyTorch version 1.9 is used as the deep learning framework for
our experiments, which are conducted on a Windows 10 personal
computer with an Intel Core i9-10900 K CPU of 3.7 GHz and
an Nvidia GeForce GTX 3090. In the training process, the
cross-entropy loss function and the stochastic gradient descent
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TABLE IV
ABLATION EXPERIMENTAL ANALYSIS OF THE PROPOSED CVLWNET WITH

SOC-10 DATASET

(SGD) [50] are used for the error evaluation of backward propa-
gation and optimization of loss function, respectively. The batch
size is set as 32. The initial learning rate is set to 0.01, and the
Cosine annealing algorithm is adopted to update the learning
rate. The training period is set as 300 epochs, and the network
convergence is determined by the loss function decreasing to a
certain range and tending to be constant.

C. Performance Analysis Metrics

In the experiment, we adopt accuracy, precision, and recall as
evaluation indicators, whose definitions can be written as

Accuracy =
TP + TN

TP + TN + FP + FN
, (16)

Precision =
TP

TP + FP
(17)

and

Recall =
TP

TP + FN
(18)

where TN and TP represent the number of correct negatives
and positives in the testing samples, respectively; FN and FP
denote the number of false negatives and positives in the testing
samples, respectively.

D. Ablation Experiments

In order to investigate the sensitivity of target recognition
capability of the proposed CVLWNet, a series of ablation
experiments are carried out by changing the main mod-
ules of the model, including CMish, CVReLBlock, and LC-
CSPBlock. Specifically, three experiments named noCMish,
noCVReLBlock, and noLC-CSPBlock are conducted, among
which noCMish and noLC-CSPBlock indicate that CVLWNet
is formed with the lack of CMish activation function and LC-
CSPBlock modules, respectively. Besides, noCVReLBlock rep-
resents that CVLWNet is composed of CVReLBlock modules
that lack the first layer of convolution with a kernel size of 7× 7.

Ablation experiments are conducted on both SOC-10 and
EOC-VV-4 datasets and the corresponding results are analyzed
with three metrics, i.e., accuracy, precision, and recall, shown
in Tables IV and V. It can be seen that all three metrics of
the complete CVLWNet are higher than other configurations,
followed by noMish, noCVReLBlock, and noLC-CSPBlock
successively. In detail, for the SOC-10 dataset, the accuracy
rates for the noMish, noCVReLBlock, and noLC-CSPBlock are
97.73%, 97.28%, and 93.86%, respectively. According to the
analysis, it can be seen that the importance of CMish is similar to

TABLE V
ABLATION EXPERIMENTAL ANALYSIS OF THE PROPOSED CVLWNET WITH

EOC-VV-4 DATASET

TABLE VI
NUMBER OF PARAMETERS AND ACCURACY ON THE SOC-10 DATASET

that of CVReLBlock, while the lack of LC-CSPBlock modules
pose more significant effect on the recognition performance than
the other two modules. The same conclusion can be drawn for the
ablation experiment performed with the EOC-VV-4 dataset. In
Table V, the accuracy rates of noCMish and noCVReLBlock
degrade with about 0.49% and 0.72%, while that of noLC-
CSPBlock decreases with an approximate value of 3.26%.

E. Comparative Experiments

In this section, we refer to six high-performing real-valued
CNNs and one high-performing purely complex-valued CNN
as comparison experiments, including RepLKNet-31B [39],
ResNet18 [3], DenseNet121 [51], AlexNet [1], VGGNet [2],
A-ConvNet [8], and CV-CNN [18], for experimental compari-
son with the proposed CVLWNet. Since the RepLinkBlock of
RepLKNet in [39] has been referred in the proposed CVLWNet,
the comparative results of RepLKNet are provided. According
to the experimental results in [39], the RepLKNet-31B with as
large a kernel as 31 × 31 achieves the best performance against
the ImageNet dataset. Therefore, the RepLKNet-31B is applied
for comparison in the following experiments. To be specific, the
comparison experiments are carried out on three datasets that
reflect the model’s ability to all classes, some specific targets,
and version changes.

1) Comparative Experiments on SOC-10 Dataset: To pro-
vide direct visual effect of the precision rate, recall rate, and
accuracy rate for all classes, the confusion matrix is adopted.
Shown in Fig. 8, the detailed confusion matrix obtained by
testing the CVLWNet with the SOC-10 dataset is provided. It is
clear from the confusion matrix that the CVLWNet achieves
100% precision and 100% recall for the BMP2. Besides, it
obtains 100%precision for 2S1, D7, and T72 while a 100% recall
can be achieved for three targets, including BTR60, BTR70, and
ZSU234.
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Fig. 8. SOC-10 classification confusion matrix.

Table VI shows quantitative comparisons of the eight net-
works tested on the SOC-10 dataset, including the weight pa-
rameters #Params, the floating-point operations (FLOPs), and
the Accuracy. With respect to the amount of weight parameters,
the proposed CVLWNet ranks top with only 18.7 MB, followed
by DenseNet121 with 27.1 MB, ResNet18 with 42.7 MB, and
A-ConvNet with 68.1 MB. On the contrast, the VGGNet obtains
the greatest weight parameters with 131.5 MB, followed by
AlexNet with 98.2 MB, and RepLKNet-31B with 78.8 MB.
It is shown that the weight parameters of RepLKNet-31B are
acceptable though a large convolutional kernel size 31 × 31
is adopted. In terms of FLOPs, the ResNet18 achieves the best
performance with 0.40 G, followed by CV-CNN with 0.42 G, and
AlexNet with 0.53 G. The proposed CVLWNet obtains 0.67 G
FLOPs, which ranks medium among all comparative methods.
By contrast, due to the large convolution kernel size, the FLOPs
of the RepLKNet-31B is the greatest among all comparative
methods. Shown in Table VI, the proposed CVLWNet achieves

best performance with a recognition accuracy rate of 98.23%,
marking in bold. Besides, the accuracy rates of other models are
listed, namely CV-CNN-92.70%, AlexNet-93.61%, VGGNet-
95.75%, DenseNet121-96.37%, ResNet18-96.54%, RepLKNet-
31B-96.98%, and A-ConvNet-97.86%, ranking from low to
high. It can be seen that the performance of DenseNet121 and
ResNet18 are similar. However, DenseNet121 requires only half
as many parameters to achieve the same accuracy as ResNet18.
Compared to these proposed comparison models, our proposed
CVLWNet network achieves excellent accuracy results among
the SOC-10 dataset with the fewest weight parameters and the
highest accuracy.

2) Comparative Experiments on SOC-3 Dataset: To validate
the ability of the designed CVLWNet model to recognize some
specific targets, the confusion matrix is adopted. Shown in Fig. 9,
the detailed confusion matrix obtained by testing the CVLWNet
with the SOC-3 dataset is provided. It can be seen that the
CVLWNet obtains the best performance for BTR70 with 100%
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Fig. 9. SOC-3 classification confusion matrix.

TABLE VII
ACCURACY ON THE SOC-3 DATASET

precision and 100% recall. Besides, it achieves 100% precision
for BMP2 and 100% recall for T72, respectively.

Grouped by their model type, Table VII presents the recog-
nition accuracy of eight models testing with the SOC-3 dataset.
It can be seen that the CVLWNet obtains a high recognition
rate of 99.63%, which exceeds the other seven excellent SAR
target recognition models. Besides, the RepLKNet-31B and
A-ConvNet tie for the second place with a 99.56% recognition
accuracy. The recognition accuracies of other five comparative
networks are AlexNet-99.05%, CV-CNN-99.24%, VGGNet-
99.27%, DenseNet121-99.34%, and ResNet18-99.49%, ranking
from low to high. Therefore, compared to other models, excellent
learning ability and representation ability for specific targets of
the proposed CVLWNet model can be verified.

3) Comparative Experiments on EOC-VV-4 Dataset: The
accuracy of each model tested on the EOC-VV-4 dataset
is shown in Table VIII. In detail, the accuracy rates of
seven comparative models are CV-CNN-83.31%, AlexNet-
89.81%, A-ConvNet-89.25%, VGGNet-90.69%, ResNet18-
91.33%, RepLKNet-31B-92.05%, and DenseNet121-92.38%,
ranking from low to high. It can be seen that the CVLWNet ob-
tains a high accuracy of 95.02%, outperforming the other seven
comparative models with excellent recognition capability. By
comparison, the proposed CVLWNet has excellent robustness
until the situation of target version changes.

TABLE VIII
ACCURACY ON THE EOC-VV-4 DATASET

V. CONCLUSION

To sufficiently investigate the abundant information contained
in the complex-valued SAR images, the CVLWNet is proposed
for target recognition based on the fully complex-valued CNN
architecture, where the input, output, and weight parameters are
all complex-valued. Based on the basic complex-valued building
blocks, including the complex-valued convolution, complex-
valued BN, and CMish activation function, two modules, i.e., the
CVReLBlock and LC-CSPBlock, are well designed to enhance
the representation ability of the proposed network. Therefore,
the CVLWNet is constructed with the capability of extracting
distinguishable features for the SAR target recognition task,
which can be demonstrated by the comparative experimental
results.

In the future, the research will be concentrated on the design
of more lightweight and faster-reasoning complex-valued net-
works. In the inference stage, the reasoning speed of a large
and integrated network is much higher than that of a small and
scattered network [40]. Since RepVGG [52] has achieved excel-
lent results in the real-valued domain, a possible solution will
be the complex-valued structural reparameterization, including
the equating of all convolution kernels into 3 × 3 convolution
kernels in the complex-valued domain and the equivalent trans-
formation of multibranch models. On the one hand, the cuda
calculation density of 3 × 3 convolution is the highest, and the
calculation efficiency of the underlying acceleration library for
3 × 3 convolution is much higher than convolution kernels of
other sizes, such as 1 × 1, 5× 5, etc. On the other hand, merging
the parameters of BN into the convolution operation to reduce
the number of layers can reduce the cost of memory access in the
complex-valued domain, thus fastening the calculation speed.
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