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SSS Underwater Target Image Samples
Augmentation Based on the Cross-Domain Mapping
Relationship of Images of the Same Physical Object

Yulin Tang

Abstract—Side-scan sonar (SSS) image sample augmentation
plays an important role in improving the effect of deep-learning-
based underwater target detection. However, the existing sample
augmentation methods for cross-domain conversion always result
in weak representativeness of the augmented samples since the tar-
gets in the nondomain images are similar but not exactly the same
as the actual underwater target to be detected. In this article, an
augmentation method for SSS image samples of underwater targets
based on the cross-domain mapping relationship of images of the
same object is proposed. A physical model of the actual underwater
target was first constructed using three-dimensional printing. A
series of optical images and SSS images of underwater targets
can be obtained by using the actual measurement of underwater
targets under different conditions. To achieve the augmentation of
SSS target samples, a single-cycle-consistency network structure
with a channel and spatial attention and generative adversarial
networks with least squares loss was designed for efficient and
robust conversion of information between optical and SSS acoustic
samples. To verify the effectiveness of the proposed method in
generating high-quality samples, underwater targets were detected
using the detection model trained by the generated samples. The
experimental results revealed that the proposed method achieved
impressive performance with a more than 5.8% improvement in
average precision value for zero-sample underwater mine target
detection and 4.3% for few-sample shipwreck target detection,
compared with using only real SSS data.

Index Terms—Generative adversarial network (GaN), mapping
relationship, physical target model, sample augmentation, side-
scan sonar (SSS), underwater target detection.

Manuscript received 7 May 2023; revised 13 June 2023 and 27 June 2023;
accepted 29 June 2023. Date of publication 5 July 2023; date of current
version 19 July 2023. This work was supported in part by the National Sci-
ence Foundation for Outstanding Youth under Grant 42122025 and in part
by the National Natural Science Foundation of China under Grant 41876103,
Grant 42176186, Grant 41974005, Grant 41971416, and Grant 42074074.
(Corresponding author: Shaofeng Bian.)

Yulin Tang, Liming Wang, Houpu Li, and Bing Ji are with the College of
Electrical Engineering, Naval University of Engineering, Wuhan 430033, China
(e-mail: 21000601 @nue.edu.cn; icesoar@163.com; lihoupul985@126.com;
jibing1978 @126.com).

Shaofeng Bian and Yuting Dong are with the School of Geography and
Information Engineering, China University of Geosciences, Wuhan 430074,
China (e-mail: sfbian@sina.com; dongyt@cug.edu.cn).

Shaohua Jin is with the Department of Oceanography and Hydrography,
Dalian Naval Academy, Dalian 116018, China (e-mail: jsh_1978@163.com).

Digital Object Identifier 10.1109/JSTARS.2023.3292327

, Member, IEEE, Liming Wang, Shaofeng Bian, Shaohua Jin, Member, IEEE,
Yuting Dong, Member, IEEE, Houpu Li

, and Bing Ji

1. INTRODUCTION

NDERWATER target detection plays an essential role in

fields, such as navigation safety, marine investigation,
maritime search and rescue, and military tasks [1]. At present,
most underwater target detection methods are based on acoustic
detection, magnetic detection, optical detection, and electric
detection. Among them, acoustic detection is the most common
underwater target detection method because of the advantages
of sound waves with respect to underwater imaging conditions,
propagation distance, and range [2], [3]. Side-scan sonar (SSS)
is widely used in underwater target detection because it has a
wider sweep amplitude and higher imaging resolution than other
acoustic devices, in addition to the small size and low price of
the SSS equipment [4], [5].

Current underwater target detection based on SSS im-
ages mostly depends on manual visual interpretation, which
has the disadvantages of being inefficient, slow, and highly
subjective [6]. Therefore, it is necessary to study auto-
matic detection methods for underwater targets using SSS
images [7], [8].

Some researchers have performed the automatic detection of
underwater targets using machine learning methods that com-
bine handcrafted features with a classifier and achieved good
detection results under certain conditions [9], [10]. However,
because of the influence of the complex seabed environment
and measurement conditions, SSS images usually have the
features of low resolution, poor characteristics, complex noise,
and severe distortion, which limit the detection accuracy of the
traditional machine learning methods [11], [12], [13]. In recent
years, the performance of target detection methods based on
deep learning has far exceeded that of the traditional machine
learning methods, which has attracted widespread attention in
the field of underwater exploration [14], [15], [16]. However, a
target detection model based on the deep convolutional neural
networks (DCNN5s) requires a large number of training samples,
and highly representative samples are the key to achieving
high-performance detection [17]. Moreover, because of the high
cost and low speed of data collection as well as a lack of targets,
the number of available SSS images is highly insufficient, and
the representation in samples is not sufficient [18]. Hence, it
is important to augment the number of underwater target SSS
images using a small sample.
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Inspired by the sample augmentation techniques for optical
images, most methods for augmenting SSS underwater target
samples have been developed using transfer learning [19], [20],
[21]. For example, Lee et al. [22] carried out style transfer using
StyleBankNet to generate simulation data with an SSS image
style for the detection of drowning people. Li et al. [18] obtained
simulated Sonar images from optical targets without the use
of any target sonar image using a transfer-learning method for
style transfer. Huo et al. [23] increased the size of a sample by
fusing the target samples generated from optical images with
the existing background images. Huang et al. [24] proposed
an SSS image augmentation method for shipwreck targets by
taking into account the complete SSS imaging mechanism and
environmental impacts of target diversity, target texture, imaging
resolution, device environmental noise, and background, realiz-
ing a detection accuracy of 95% for SSS shipwreck targets.

The above methods demonstrate the potential of underwater
target SSS image generation based on style transfer, but the
cross-domain optical-sonar image pairs input into the network
during the training of the migration conversion were not derived
from the same target. In addition to learning the conversion
relationship between optical images and sonar images, a model
should also learn to eliminate the interference of system errors
caused by different targets, which increases the computation
of the network without improving performance, and cannot
fully consider the influence of seven factors, i.e., the acous-
tic transmitting unit, acoustic propagation medium, acoustic
reflection target, acoustic reflection background field, acous-
tic receiving unit, noise, and data postprocessing [25], [26].
Moreover, the generated samples are weak in terms of repre-
sentativeness, leading to limited improvement in the general-
ization ability and accuracy of a DCNN-based target detection
network.

As the most commonly used technique for style trans-
fer of nondomain images, generative adversarial networks
(GANSs) [27], [28], [29], [30] has received extensive atten-
tion. Li et al. [31] transformed underwater, small-target optical
images into synthetic aperture sonar (SAS) images using an
improved CycleGAN (CG) based on cyclic consistency. Chen
and Summers [32] used GAN-based networks in unsupervised
feature learning for SAS image seabed classification to gen-
erate realistic SAS images of different seafloor bottom types.
Karjalainen et al. [33] proposed a GAN-based approach to add
simulated contacts into real SSS images, generating images
that even experts could not distinguish as generated or real.
Reed et al. [34] proposed a method that couples an optical
renderer with GAN to synthesize realistic SAS images of the
subsea targets, achieving high levels of SAS image realism
while retaining control over image geometry and parameters.
Jiang et al. [35] proposed a GAN-based semantic image syn-
thesis model that can generate cost-effective high-quality SSS
images efficiently. In general, the above methods demonstrate
the advantages of style transfer based on GANs in SSS image
sample augmentation, and GAN is the preferred approach for the
method proposed in this article. However, the data used in the
above methods were all cross-domain data, and the targets were
not generated from the same physical object. Therefore, there
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are noises generated by systematic errors, and the generated SSS
images still need improvement in terms of their realism.

In summary, due to the high cost of data acquisition, slow
speed, and lack of targets, SSS underwater target images are
scarce, and there is an urgent need to explore sample augmen-
tation techniques for SSS images. The main limitation of the
traditional SSS underwater target image sample augmentation
methods is that the conversion models are built based on non-
identical entities, which will introduce systematic biases in the
models, resulting in poor sample augmentation performance
and ultimately affecting the performance of the target detection
models.

Aiming at these limitations, this article proposes an augmen-
tation method for underwater target SSS image samples based
on the cross-domain mapping relationship of the same object.
A physical model of the underwater target was first created
using three-dimensional (3-D) printing technology [36] and the
target itself. According to the mechanisms of underwater target
imaging, the optical images of the physical model in different
imaging modes were obtained using an optical camera at mul-
tiple viewing angles, heights, and distances, and the mapping
relationship of the object-to-optical images was established. The
SSS images of the underwater physical model were obtained
through sea-based experiments, and the mapping relationship of
the object-to-SSS image was established. Therefore, the map-
ping relationship from optical images to SSS images of the same
object was established using the designed GAN, and the style
conversion model using a cross-domain mapping of the same
object was obtained. Finally, the conversion model was used to
convert other optical images of the target into SSS images to
achieve high-quality sample augmentation and solve the limi-
tation of image generation quality caused by the cross-domain
mapping relationship of different entities. This process provides
a high-quality dataset for improving the performance of target
detection models based on deep learning. The main contributions
of this article are as follows.

1) An augmentation method for underwater targets SSS im-
age samples based on the cross-domain mapping relation-
ship of the same object is proposed. Using 3-D printing
technology, a physical model of underwater targets with a
small-sample size or even no samples was made, and the
real mapping relationship between optical and SSS images
of the target is established, which solves the problem that
the cross-domain mapping relationships of nonidentical
target objects restricts the performance of sample aug-
mentation.

2) The conversion model of GAN based on cyclic consistency
is given. A single-cycle consistent network structure was
designed to ensure the training efficiency of the mode,
and a channel and spatial attention (CSA) module was
integrated into the generator to reduce information dif-
fusion while enhancing cross-dimensional interaction and
improving the quality of generated images. A loss function
based on least squares generative adversarial network
(LSGAN) was designed to improve the training stability
and avoid mode collapse, thus enabling the high-quality-
domain conversion between optical and SSS images and
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Fig. 1.

achieving the augmentation of underwater target SSS im-
ages with a small-sample size.

3) The method is verified by two experiments, and the cross-
domain mapping relationship of the optical and SSS im-
ages of the sample-free underwater targets is established,
and the high-quality conversion of images between two
domains is realized. Compared with the images of the tra-
ditional sample augmentation method, the generated SSS
underwater target images have high definition, complete
details, and strong realism. This improves the detection
performance of underwater target detection models based
on deep learning to demonstrate the effectiveness of the
method and provides a new approach to the highly rep-
resentative augmentation of target samples and the con-
struction of high-performance underwater target detection
model with a small sample or no sample.

II. METHODS

To augment a sample of underwater target images, it is
necessary to consider the unique features of the target and the
characteristics of an SSS image to enhance the authenticity of the
generated samples. To obtain the unique features of the target,
previous methods referred to the optical images of targets with
similar features, including texture, shape, intensity, background,
and noise, and the targets, were of the same category but were
not the same target because it is almost impossible for the
targets in the nondomain dataset to be the same target objects
as the actual target object in the real sonar image. As shown
in the left part of Fig. 1, the ships shown in the optical and
SSS images are not the same ship. They are different in shape,
material, texture, internal structure, and other aspects, and a
forced conversion is bound to produce systematic deviations. In
addition to learning the conversion relationship between optics
and acoustics, the conversion network must also eliminate the
interference of systematic errors caused by different entities,
which results in a low level of authenticity of the generated
image. In this study, an optical image of the target was obtained
according to the imaging methods and mechanisms of an un-
derwater target by creating a single target object, and the actual
mapping relationship between the object and its optical image

Comparison of a mapping relationship based on images of the same object and a mapping relationship based on images of different objects.

conversion
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Target SSS image
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was established. According to the actual measurement mode
of SSS, the target SSS image was obtained through sea trials
to establish the real mapping relationship between the object
and its SSS image. This avoids the systematic error between
different entities to establish the real cross-domain mapping
relationship of optical images to SSS images and obtain the
real correspondence and interaction between target features and
image features involved in the process of converting images of
the target from optical images to SSS images to generate higher
quality images.

A. Sample Augmentation Based on the Cross-Domain
Mapping Relationship of the Same Object

A large number of strongly representative data samples are
needed to establish high-performance deep-learning models.
However, for SSS underwater target data, lack of samples, low
resolution, poor and sparse features, and complex noise are the
key factors restricting the establishment of high-performance
SSS underwater target deep-learning models. Although the
method of transfer learning through multidomain images and
sample augmentation taking into account the SSS imaging
mechanism exists, the target characteristics and marine envi-
ronment can be used to augment the sample of SSS images, the
essence of which is based on semiexperience and semimodeling
simulation. Moreover, there is a strong correlation between the
noise, texture, and resolution of the background and the target,
which is difficult to quantify using mathematical expressions. In
addition, these experiences are not necessarily applicable to SSS
images of underwater targets that have a small-sample size or no
sample. Therefore, an augmentation method for small samples of
underwater target images based on the cross-domain mapping
relationship of the same physical object is proposed, and the
process flow is shown in Fig. 2.

1) A physical model of the underwater target is made using
3-D printing technology, which provides a physical basis
for the subsequent optical and SSS image acquisition of
the same target.

2) A series of optical images of the physical model at
different angles, heights, and positions are obtained us-
ing unmanned aerial vehicles (UAVs) and high-altitude



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Sample model making based on

3D printing technology

optical-SSS
mapping relationship of the same entity
b |-

entity-SSS
mapping relationship of the same entity

Target SSS image acquisition under
different conditions

»

| > Dual domain style image ¢ I

transformation based on GAN

Generate SSS database based on Cross-domain mapping
relationship of the same entity

Generate deep learning-based

6396
entity-optical
mapping relationship of the same entity JPFE%g
h ’ ‘
Target optical image acquisition
under different conditions
-
Fig. 2.

imaging with an optical camera that follows the methods
and mechanisms of underwater target imaging, and the
object-to-optical image mapping relationship is estab-
lished.

3) The SSS images of the physical model are obtained using
SSS according to the actual SSS measurement method,
and the mapping relationship of the object-to-SSS image
is established, which provides a dataset for training the
GAN.

4) The GAN is trained using the optical and SSS images
obtained from the same physical object, and the cross-
domain real mapping relationship is extracted to form
a cross-domain conversion model to complete the dual-
domain conversion of optical-SSS images, thereby real-
izing the sample augmentation of underwater target SSS
images and establishing a high-quality and representative
underwater target SSS image database.

5) A deep-learning-based underwater target detection model
is trained by using the augmented underwater target SSS
image sample as the training set, and the real underwater
target SSS images are used to qualitatively evaluate the
performance of the detection model.

When acquiring underwater target SSS images, theoretically,
the richer the SSS images under different conditions, the better
the performance. In practice, because of the difficulty and cost of
offshore operations, the difficulty and cost of image acquisition
were also high, and only a few real samples were obtained in
this experiment. However, this is in line with the theme of this
article, namely solving the problem of augmenting SSS image
samples that are small or do not exist.

B. Three-Dimensional Printing Technology

The core idea of this study is to establish the cross-domain true
mapping relationship between the optical and acoustic images
of the same underwater target for targets with a small-sample

Underwater-target detection model

Process of sample augmentation technology of SSS underwater targets based on the cross-domain mapping relationship of the same physical object.

size or no samples, and 3-D printing technology is an important
part of this idea. For targets with few or even no underwater
samples, such as mines, 3-D printing was used to physically
manufacture the objects, which enables the conditions needed
to acquire optical and acoustic images of the same target. The
principles, production processes, and precautions of the 3-D
printing used in this article are briefly reviewed in this section.

The 3-D printing is based on light-curing molding technology,
also known as stereolithography (SLA), which is based on the
principle of photopolymerization and uses laser beams to trans-
form liquid photosensitive resin into a solid state. The scanning
and curing are repeated layer-by-layer until the entire part is
manufactured to obtain a 3-D physical model [36]. The specific
process of 3-D printing is shown as follows.

First, the style, material, force, structure, and other elements of
the existing underwater target are analyzed, and the attributes of
the physical model are made to be as consistent as possible with
those of the real target to provide a basis for obtaining the SSS
images of the underwater target with the same characteristics.

Second, the 3-D modeling software (3-Ds MAX) is used
to design a digital model of the target and create engineering
drawings based on the density of printing materials and the
production characteristics of 3-D printing.

Then, 3-D slicing software (SOLIDWORKYS) is used to refine
the model data, which includes mold modification, shelling,
slicing, and support, and generate the STL files.

Finally, the generated file is imported into an industrial-grade
3-D printer for SLA-based 3-D printing using additive manu-
facturing to obtain a physical underwater target model.

Because the 3-D-printed physical model of the underwater
target is subsequently used to acquire the target optical and SSS
images, in addition to the basic elements, such as the shape, size,
and texture of the underwater target itself, it is also necessary
to consider factors in the manufacturing process that increase
the realism of the underwater target during optical imaging and
actual sea deployment. These include the following.
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1) Background: When taking optical images, the underlying
structure of SSS images should be imitated as much as pos-
sible, thatis, overhead images should be taken, and a single
uncluttered area should be selected for the background to
avoid the impact of clutter, such as buildings, trees, or
crowds, on the quality of the subsequent image-domain
conversion.

2) Density: It is best to choose a rigid metal material that
meets the material properties of the actual target and is
not prone to corrosion by seawater. The most important
factor is to ensure that the target is not swept away by the
current under complex sea conditions.

3) Structure: The internal structure needs to be supported
well. Holes are reserved in the structure so that the model
can sink smoothly after it has been fully filled with water
while saving production costs. To ensure that the shape
matches that of the real target, it is necessary to reserve a
ring. One purpose of this ring is to facilitate the attachment
of a float to ensure that it is easy to find and salvage after
the target has sunk to the seabed. The other purpose is
for safety: attaching an anchor chain under the target can
effectively keep it from being caught by nearby fishermen.

C. Proposed GAN Network

The use of GAN to achieve domain conversion of underwater
targets is an important part of the proposed method, and the
use of networks is the key to achieving high-quality sample
augmentation. Because of the large difference in the styles of
optical and SSS images, the traditional GAN outputs poor qual-
ity results so much so that the images from the two domains do
not have any relationship. To create a strong correlation between
the generated and output images, GAN based on single-cycle
consistency is used that focuses on the conversion task from the
optical domain to the acoustic domain while ensuring training
efficiency. In addition, the CSA module is integrated in the gen-
erator, enhancing cross-dimensional interaction, which reduces
information diffusion. Finally, a combined loss function based

Cycle-consitency loss

Generated sss
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on LSGAN was designed to improve the quality of generated
images and the stability of model training. The architecture of
the proposed network is shown in Fig. 3.

1) Network Structure: The main body of the model proposed
in this article consists of two generators (G, and Gy,) and a
discriminator (D). The generator that converts an image from
domain O to an image in domain § is called G, the generator
that converts an image from domain S to domain O is called
G, and the discriminator that discriminates images belonging
to domain S from “fake” images is called D.

After the SSS image (S) has been obtained from the original
input image, optical image (O), by the generator, the generated
image S is used as input to the generator to obtain the image
reconstructed optical image (RO), which should be the same as
image O. Images O and RO will eventually become consistent,
allowing the image to loop through a cycle and back to the
starting point without change.

The generator structure is shown as follows. First, the features
of the input image are extracted using three convolutional layers,
and after each convolutional layer, the instance normalization
(IN) operation is used along with the activation function. Second,
the attention mechanism, the CSA module, is used to conduct
global learning of the image channels and spatial features to
establish the interaction among local detail features and global
features, and realize multiscale feature fusion through skip con-
nections. Six residual networks are then used to retain the input
data features while further extracting image information. Next,
two transpose convolutions are used for sample loading. Finally,
the data pass through a convolutional layer, and the obtained
image matrix is activated by the activation function to obtain the
final output image.

The discriminator uses five convolutional layers to extract
features from the input image, and after each convolutional layer,
the IN operation is also used as the activation function, where
the last convolutional layer directly returns the linear operation
result.

2) CSA Module: The key to generating high-quality images
is to fully learn the target’s detail features and the background
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features of SSS images. To better learn the global information
and local features of the input image as well as enhance the
interaction between channels and space, a CSA module was
designed in this study to improve the network performance by
reducing information diffusion while augmenting global cross-
layer interactions. The CSA module consists of channel attention
and spatial attention, and the architecture is shown in Fig. 4.

In the proposed method, parallel calculation was used for
CSA modules. First, the weight coefficients of the respective
outputs are multiplied elementwise with the initial input feature
map I (H x W x (), and then the result is summed, element-
by-element, to increase the cross-dimensional receptor domain
while improving efficiency. H, W, and C are the length, width,
and channel number of the feature 1

Touput = (Me(I) @ I) + (M (1) @ I). (1

Here, ® represents the elementwise multiplication, and Mc(1)
and Ms(I) are the feature outputs for the channel attention and
spatial attention, respectively. A detailed description of each
module is given in the following sections.

a) Channel attention: Channel attention emphasizes to
which features the model should pay attention. Each of its
channels contains a specific characteristic response. First, the
input feature [ is passed through a global max pooling layer
and global average pooling layer based on the width and height,
respectively, to obtain two 1x 1 x C images. Second, they are fed
into a two-layer multilayer perceptron (MLP), which is a shared
two-layer neural network, where the number of neurons in the
first layer is C/r (here, r is the reduction rate) and the activation
function is ReLU. In addition, the number of neurons in the
second layer is C. Then, the MLPs output features are summed
elementwise and activated by a sigmoid function to generate the
final channel attention feature, i.e., M. Finally, M. and feature /
are multiplied elementwise to obtain the new feature after scaling

M.(I) = o(MLP(AvgPool(I)) + MLP(MaxPool()))
= o(W1(Wo(Ifg)) + W1i(Wo(Iyi))- 2)

Here, o is the sigmoid activation function, and W, & RC/rxC
and W, € RE*C/" are the weights of the MLP shared network.
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b) Spatial attention: Spatial attention emphasizes the fea-
tures the model focuses on based on the location, namely,
enhancing or suppressing features at different spatial locations.

First, the input feature [ is passed through a channel-based
global max pooling layer and global average pooling layer to
obtain two HxWx1 feature maps. Then, the channel-based
concatenation operation is performed. Second, the image is
reduced to one channel by convolution with a 7x7 convolution
kernel. Then, a spatial attention feature, namely Ms, is generated
via the sigmoid activation function. Finally, Ms and feature I are
multiplied elementwise to obtain the final feature

M(I) = o(f™"([AvgPool(I), MaxPool(I)]))
= o (7 (R Liax]))- (3)

Here, o is the sigmoid activation function, and f7*7 represents
the 77 convolution operation of the convolution kernel.

3) Loss Function: The appropriate loss functions play a
crucial role in improving the quality of images generated by
the GAN. The proposed network architecture in Fig. 3 reveals
that the loss function is composed of LSGAN loss, cyclic-
consistency loss, and identity loss. LSGAN loss directs the
generator to generate a more realistic image of the target domain;
cyclic-consistency loss directs the generator to generate images
as similar as possible to the input images; and identity loss limits
the generator so that it ignores the input data.

a) LSGAN loss: The traditional GAN uses cross entropy
as the loss function, which does not optimize the images that are
judged to be real by the discriminator, even if these images are
still far from the decision boundary of the discriminator. This
will result in low-quality images generated by the generator and
unstable model training. To address this, the objective function
in LSGAN is used as the loss function of the model, namely, the
least squares loss is used as the loss function

min Visgan (D) = %Eswm(s) [(D(s) = b)?]
5B o(DEE) -0 @
min Visow(0) = 5 Foop,o[(DGE) — 0 O

In the objective function of discriminator D, the real data
and generated data are assigned labels b and a, where b = 1
indicates the real data, and ¢ = 0 indicates the generated data.
The discriminator is optimized by minimizing the error between
the data generated by the discriminator and 0 as well as the
error between the real data s and 1. In the objective function
of generator Gos, the generated data are assigned label ¢, and
by minimizing the error between the data z generated by the
generator and 1, the generator is trained to successfully trick the
discriminator to obtain a high score for ¢ = 1. Therefore, (4) and
(5) above can be converted into the following two equations:

1

min Visoan(D) = 5 Bepi (o) [(D(s) = 1)°)

+ 3B DGE] ©
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1

EEZNPZ(Z) [(DOS(G<Z)) - 1)2] @)

b) Cyclic-consistency loss: To achieve cyclic consistency,
the following criterion should be met during conversion from
domain O to domain S:

T = Gos(x) = Gso(Gos(x)) =~ . (8)

mén Visgan(Gos) =

The mathematical formula is expressed as follows:
Lcyc(G057 Gso) = E:cNPdm(r) [HGSO<GOS ((L‘)) - QTH 1] . (9)

Here, the one norm is the matrix one norm, which is the value
that is the largest sum of the absolute values of the elements in
the column vectors of all matrices, as follows:

X1 :manZkli’j . (10)

i=1

c) Identity loss: Identity loss is used to limit the situation
where the generator modifies the image pixels independently
regardless of the input data, which means that if a domain S
image is fed into generator G,g, then it should return to its
original form as much as possible. The loss function is expressed
as follows:

LIdenlily(Gos) = ESNPdum(S) [H (Gos (3) - S) H 1]' (1 1)
Therefore, the total loss function of the GAN is as follows:

LOSScyc = mDiIl Wiscan (D) + mGin VLSGAN(Gos)

+ Achyc(Gosa Gso) + A'QLIdentity(Gos)- (12)

Here, X1 and A, are nonnegative hyperparameters to adjust
the influences of the losses on the overall results. We weight
each loss to balance the importance of each component.

III. EXPERIMENTS

To evaluate the feasibility and effectiveness of the proposed
method, the experiments described in this section consisted of
two main parts. The first set of experiments took no-sample
mine targets as the experimental objects to analyze and evaluate
the feasibility of the SSS image sample augmentation method
based on the real mapping relationship proposed in this article.
The second set of experiments were based on the GAN model
proposed in this article to analyze and verify its effectiveness for
the sample augmentation of few-sample SSS images.

A. Experiments on the Sample Augmentation Strategies

To evaluate the effectiveness of underwater target SSS image
augmentation based on the cross-domain mapping relationship
of the same physical object, a mine target with no-sample images
was selected as the research object. After the optical and SSS
images were acquired using the 3-D-printed physical model of
the mine, the quality of the generated images of different small-
sample datasets was qualitatively and quantitatively analyzed
to evaluate the effect of the proposed method on the sample
augmentation strategy for small-sample datasets. The effects of
the augmented SSS image datasets on the detection performance
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Fig. 5.
images.

Example images of several mine targets. (a) Optical images. (b) SSS

of the YOLOVS target detection model were analyzed and
evaluated.

1) Datasets: The experimental dataset consisted of optical
images and SSS images obtained from the physical model of
the mine. The specific preparation process was as follows: a
physical model of the mine target was made using 3-D printing.
Next, optical images of the mine target were obtained by aerial
photography using the DJI Air 2S UAV at different altitudes and
angles. A total of 150 images were taken, and the 100 images
with higher quality were selected. In the waters of Haitang
Bay, Sanya, China, an autonomous underwater vehicle (AUV)
equipped with a Shark-S455D SSS was used to scan the mine
target and obtain a total of 60 SSS images. The 50 images
with the best screening quality were then selected. Examples
of optical and SSS images of some mine targets are shown in
Fig. 5.

2) Evaluation Indicators: According to Xu et al. [37], the
Fréchet inception distance (FID), kernel maximum mean dis-
crepancy (MMD), and the 1-nearest neighbor (1-NN) are better
than other indicators for evaluating the clarity, diversity of
features, and authenticity of the synthetic samples.

The FID is a measure that calculates the distance between the
real image and the feature vector of the generated image and is
used to measure the similarity of two sets of images. The FID is
calculated as follows:

FID = ||t — ptgl* + Tr (Zr+Zg 2\/Zr2g> .
(13)

Here, p,- and p4 are the mean vectors of the two distributions,
respectively, Yr and Yg are their covariance matrices, || denotes
the norm of a vector, and Tr is the trace of a matrix. The lower
the FID values, the better the image augmentation results.

The MMD measures the similarity between two feature distri-
butions based on a statistical test of the maximum mean squared
difference, mapping the real and generated sets to a kernel space
with a fixed kernel function, and then computing the mean
difference between the two distributions. The MMD is calculated
as follows:

MMD?(X,Y) = E[K(X,, X;) - 2K (X,.Y;) + (Y., ;)]
(14)

Here, X represents the set of real images, X; and X; are the
samples drawn from X, Y represents the set of generated images,
and Y; and Y; are the samples drawn from Y. E stands for
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expectation, and K is the Gaussian kernel. Lower MMD values
indicate more effective image augmentation.

The 1-NN uses a binary classifier to calculate the similarity
between two image sets by mixing n real sets (labeled 1) with n
generated sets (labeled 0) and then randomly dividing them into
a training set 7'/ (number is 2n—1) and test set 72 (number is 1),
using 71 to train the classifier and 72 to obtain the accuracy
of classification. The above steps are cycled 2n times, each
time selecting a different 72, and finally calculating the average
classification accuracy. The closer this accuracy is to 0.5, the
better.

Meanwhile, considering that the purpose of this study was to
augment small SSS underwater target image datasets to improve
the performance of deep-learning-based target detection models,
acomparative experiment was carried out using a deep-learning-
based target detection model. At present, many suitable target
detection models exist. The YOLOvVS model, which has the
features of high speed, a lightweight architecture, and easy
deployment, was chosen for the evaluation experiments. The
images generated by our GAN model were used as the training
set and fed to the YOLOVS5 network. Then, the real images were
used as the validation set to evaluate the effectiveness of the
generated images in training the detection network using Pre-
cision (P), Recall (R), and Average Precision (AP). P measures
the proportion of correctly detected objects out of all the objects
predicted by the model; R measures the proportion of correctly
detected objects out of all the actual objects present in the dataset

P = TP/(TP + FP)

R =TP/(TP + EN). (15)

True Positives (TP) represent the number of correctly detected
objects, False Positives (FP) represent the number of objects
incorrectly identified as positives, and False Negatives (FN)
represent the number of objects that was not detected by the
model.

AP evaluates the tradeoff between P and R at different thresh-
olds. It is the area under the precision-recall curve, and it
provides an overall performance measure for the model

1
AP:/ P(R)dR. (16)
0

3) Design of the Experiments: All model training was im-
plemented based on the PyTorch framework, and two NVIDIA
GeForce RTX 3090s with a parallel memory of 48 GB was used.

To verify the performance of the proposed augmentation
method for small-sample datasets, 50 real SSS mine images were
divided into a training set and evaluation set using a ratio of 3:2.
Of these, the 30 images of the training set were divided into three
groups of 10, 20, and 30 images each. The 100 optical images
were divided into a training set and conversion set using a ratio
of 3:2. Of these, the 60 images of the training set were divided
into three groups of 20, 40, and 60 images each. The evaluation
set of SSS images and the conversion set of optical images were
used for a quantitative analysis of the quality of the generated
images.
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To reduce performance fluctuation during training and sta-
bilize the model training, historical data were cached in this
experiment during training. A list was used to store the last ten
images, one of which was randomly chosen by the discriminator
for discrimination in each training iteration, so that the discrim-
inator was able to generate images at any point in time. Table I
lists the parameters of model training. In Table I, 1; and XA, are
the parameters of the loss function (12) and g is the parameter
for Adam optimization.

4) Experiments and Analysis: Although the original mine
SSS images were created from scratch from actual field SSS
images and optical images, the number of images was an order
of magnitude smaller than datasets published on the Internet.
Hence, the conventional augmentation functions, such as rota-
tion, clipping, scaling, left and right shifts, flipping, and noise
addition, were adopted before model training to increase the
dataset size by ten times for each group of training samples.
In the noise addition process, due to the significant influence
of speckle noise on the quality of SSS images, this experiment
incorporated Rayleigh noise and salt-and-pepper noise with zero
mean and standard deviations of 30 and 60, respectively. To
evaluate the augmentation performance of the sample with a
small number of real samples, the real SSS images were divided
into three groups of 10, 20, and 30 images, and the corresponding
real optical images were divided into three groups of 20, 40, and
60 images, as listed in Table II.

a) Quantitative analysis: After expanding the various
numbers of real samples to ten times, they were input to the GAN
for training (see Table II). The 40 images of the mine-optical
image conversion set were input to the trained GAN for SSS
image generation after 10x data augmentation. For each of the
generated 400 SSS images and the 20 real SSS mine images in
the evaluation set, the FID, MMD, and 1-NN values were calcu-
lated. These three indicators were used to assess clarity, variety,
and difference between the generated image and real image.
Smaller values of these indicators indicate better performance,
where 1-NN values closer to 0.5 indicate better performance.
The final quantitative test results are shown in Table III.

As Table Il reveals, even when there were only 10, 20, and 30
real SSS images, the SSS images generated using the proposed
method in this article achieved good results in terms of FID,
MMD, and I-NN values, which indicates that the generated
images have high clarity and realism, and have only a small
difference with respect to the real SSS images, proving the
effectiveness of the proposed method. However, a comparison
of the values reveals that, as the number of real SSS samples
increases, the values of all indicators improve, which also shows
the importance of sample size, and demonstrates that it is nec-
essary to augment the sample.

b) Qualitative analysis: Fig. 6 shows the conversion of
three typical representative mine-optical SSS images of large,
high-quality, and small models after training on the three groups
of real SSS images with different numbers of images.

By comparing the images in Fig. 6(b)—(d), it can be seen that
the model trained on group 1 was able to generate the basic
contours, but the image still needs to be enhanced in terms
of detailed features, such as texture and shadow. The model
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TABLE I
TRAINING PARAMETERS FOR THE MODEL

Ttem batch size crop_size A1/ 22 Lr Lr police Lr decay iters epoch optimizer s
Parameters 16 256 10/0.5 0.0002 Linear 50 1000 Adam 0.5
TABLE II
DISTRIBUTION OF THE MINE TARGET IMAGE SAMPLES IN DIFFERENT GROUPS
SSS After . . . s
Group Real SSS . Real Optical Optical After Augmentation Model-Generated Images ~ Validation Sets
Augmentation
1 10 100 20 200 400 20
2 20 200 40 400 400 20
3 30 300 60 600 400 20
TABLE III TABLE IV

PERFORMANCE OF SSS IMAGES GENERATED BY THE MODEL AFTER TRAINING
WITH DIFFERENT GROUPS OF REAL SAMPLES

COMPOSITION OF TRAINING AND VERIFICATION DATASETS

Group Real/data-enhanced mine image Generated mine image
Group FID| MMD| 1-NN|0.5 A 30/300 -
1 172.12 0311 0.74 B - 300
2 165.33 0.284 0.71 C 30/300 300
3 158.64 0.247 0.70 verify 20 _

(a)

Fig. 6. Results of optical-to-SSS image conversion using three sets of real
samples for models trained on different numbers of real samples. (a) Input optical
images and converted results of the (b) model trained on group 1, (¢) model trained
on group 2, and (d) model trained on group 3.

trained on group 2 obtained better results than that trained on
group 1. Compared with the results of the models trained on
the first two groups, the model trained on group 3 generated
target images that is significantly more realistic and clear in
terms of texture, shadow, and background, indicating that an
increase in the number of real samples does indeed improve the
quality of the generated sample images. In general, the models
trained on real SSS mine images with different small samples
basically realized the cross-domain conversion from optical to
acoustic images of mine targets, which proves that the proposed
method can realize the generation of underwater target samples
for targets with no-sample images.

c) Performance of the target detection model: The pur-
pose of this study was to augment small SSS underwater target
image datasets to improve the performance of deep-learning-
based target detection models. Hence, a deep-learning-based
target detection model was used to carry out the comparative
experiment. At present, there are many target detection models.
Given the purpose of this study mentioned above, the YOLOv5

model, which has the features of high speed, a lightweight
architecture, and easy deployment, was used for the experiment.

Using mine targets as objects, three datasets were designed
to train the YOLOvVS model, as listed in Table IV. To ensure
the model training performance and improve training efficiency,
the ratio of the training set to the test set was set to 4:1, of
which 5% of the training set was used as the verification set, and
fivefold cross validation was used for model training. The initial
learning rate of training was set to 0.0001, and warm-up training
with a step size of 5 was performed before training began, while
the learning rate was adjusted by a 1-D linear interpolation. In
the training process, the cosine annealing algorithm was used
to adjust the learning rate in real time. The number of training
epochs was set to 1200, and the batch size was set to 32 according
to the default values.

Datasets A, B, and C were, respectively, one containing only
real SSS data, one containing only data generated by the method
proposed in this article, and one containing the real data and gen-
erated data, in which the real mine SSS images were augmented
by a factor of 10. The generated mine data were filtered, and a
total of 300 images were eliminated because the augmentation
failed. The performance of the trained model was evaluated by
the 20 real mine SSS images in the evaluation set.

The loss values and AP0.5:0.95 values of the model during
training on the three datasets are shown in Fig. 7.

Fig. 7 shows that the loss value of the models decreased as
the number of training steps increases in the three sets of ex-
periments and finally stabilized, which proves that there was no
overfitting of the models to each dataset. Among them, the loss
and AP values of the models that were trained on groups B and
C, which contained the augmented samples obtained using the
proposed method, were significantly higher than those trained
on group A, which only included the real data, demonstrating the
effectiveness of increasing the data generated by the proposed
method to improve the training performance of the model.
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Loss and AP values during the training process of the three groups of models. (a) Loss value of the training process. (b) AP0.5:0.95 for the training

Fig. 8.
and (d) YOLOv5-C.

TABLE V
DETECTION PERFORMANCE ON REAL SSS IMAGES OF YOLOVS5 MODELS
TRAINED ON DIFFERENT TRAINING SETS

Recall Precision AP0.5 AP0.5: 0.95
YOLOv5-A 80.14 84.02 74.08 47.62
YOLOV5-B 86.51 88.02 78.14 57.44
YOLOVS5-C 87.63 88.21 79.96 58.35

Comparing models trained on groups B and C, it can be found
that the final AP values of the two groups of experiments were
not much different, which proves that training with augmented
samples using the proposed method is the key to improving the
performance of the YOLOVS model. The images produced by
the proposed method are almost completely consistent with the
real images in terms of the authenticity and diversity of features,
which demonstrates the effectiveness of the proposed method.

The trained model was tested using 20 real SSS mine images,
and the recall, precision, and AP, which are widely used metrics
in the field of target detection and evaluation, were used to
evaluate the model.

Table V once again presents that the recall, precision, and
AP values of the model trained using the images generated by
the proposed method were significantly higher than those of the
model trained using only real SSS data. It was proved that the
generated data play a key role in improving the performance
of the model. The difference between the evaluation metrics
of YOLOVS5-C, which was trained using real data and generated

Detection results of the three models on the mine SSS images. (a) Original SSS waterfall image and detection results of (b) YOLOVS5-A, (c) YOLOVS-B,

data, and YOLOVS5-B, which was trained only on generated data,
is not substantial, which proves that the improvement in model
performance is mainly due to the use of the proposed method to
generate data. Alternatively, it proves that the images generated
by the proposed method meet the requirements of realism and
diversity.

The real mine SSS images obtained in the Sanya sea trial
(group 1) and Guangzhou lake test (group 2) were detected by
the three trained models, and some of the results are compared
in Fig. 8.

By comparing the images of Fig. 8(b)—(d) for group 1, it can
be found that the confidence of the YOLOvV5-A model trained to
detect mine targets using only dataset A was only 65%, and
there was no good identification of the shadow of the mine
target in terms of positioning accuracy. The YOLOvS-B and
YOLOVS5-C models trained using the augmented datasets B and
C, respectively, obtained better performance in the shadow iden-
tification of shipwreck targets. Both the positioning accuracy and
confidence were significantly higher than those of the models
trained only using real data, obtaining confidence levels of 83%
and 86%, respectively.

By comparing the images of Fig. 8(b)—(d) for group 2, it can
be found that, because of the large amount of rubble in the scan-
ning area, the YOLOvV5-A model failed to successfully identify
the mine target and misidentified a mine-like reef. Moreover,
there were several missed alarms and false alarms. By contrast,
YOLOVS5-B and YOLOvVS-C successfully identified the mine
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Fig. 9. Examples from the datasets. (a) Example images from the SSS ship-
wreck dataset. (b) Examples from the satellite optical ship image dataset.

targets, achieving a higher positioning accuracy and confidence
scores of 81% and 82%, respectively. Nevertheless, both models
had false alarms: they misidentified the small mine-like reef on
the port side as a mine target. However, in actual operation, a
missed target alarm may lead to more serious consequences than
a false alarm. Moreover, how to reduce the rate of false alarms
in subsequent development is a direction of future research.

In summary, the proposed method first created mine target
images from scratch and established a real mapping relation-
ship, and second, the target detection model trained using the
augmented dataset yielded higher recognition accuracy and
positioning accuracy, which proves that the proposed method
achieves the high-quality sample augmentation of targets with
no-sample images and improves the performance of underwater
target detection models, which basically meets the needs of prac-
tical applications and can be applied to other types of underwater
targets.

B. Experiments on the Proposed GAN

Dual-domain image conversion based on GAN is an important
component of the method proposed in this article; therefore,
this experiment was carried out to evaluate the performance
of the proposed GAN. The proposed model was mainly eval-
uated through the performance of the dual-domain conversion
of nondomain optical ship images and SSS shipwreck images.
This evaluation included a comparison with conventional GANS,
qualitative and quantitative analyses of the quality of the gen-
erated images, the effect of the generated images on the detec-
tion performance of the YOLOVS target detection model, and
qualitative and quantitative analyses of the effectiveness of the
strategies used in the GAN through ablation experiments.

1) Datasets: The datasets consisted mainly of SSS ship-
wreck images and satellite optical ship data. The SSS shipwreck
dataset consists of 600 SSS shipwreck images obtained in the
Yellow Sea, Bohai Sea, East China Sea, and South China Sea
by various hydrographic departments and manufacturers using
the conventional Chinese and foreign-manufactured SSS instru-
ments and equipment, such as the Klein3000, EdgeTech4200,
Yellowfin, and Hydra series. Some of the samples are shown in
Fig. 9(a). The satellite optical ship image dataset was taken from
HRSC2016, which is a high-resolution ship dataset from Google
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TABLE VI
PERFORMANCE OF IMAGES GENERATED USING DIFFERENT CONVENTIONAL
MODELS
Group Model FID| MMD| 1-NN 0.5
1 pix2pix 214.77 0.315 0.97
2 CG-ResNet-06 153.65 0.192 0.82
3 CG-ResNet-09 148.71 0.164 0.83
4 CG-UNet-128 155.12 0.137 0.77
5 CG-UNet-256 133.69 0.151 0.79
6 DualGAN 130.17 0.160 0.74
7 DiscoGAN 129.98 0.149 0.75
8 Our Method 123.12 0.105 0.72

Earth. A total of 5000 representative images were selected for
this experiment, and a part of the samples is shown in Fig. 9(b).

2) Design of the Experiments: The evaluation indicators and
experimental configuration used in this evaluation were con-
sistent with those described in Section III-A2. Because the
resolution of the original images was large and most of the
pixels were background, it was difficult to train the model on the
HRSC2016 data. Hence, all optical image data were uniformly
set to a resolution of 250x250 and included the target. The SSS
shipwreck images were divided into training and evaluation sets
using a ratio of 5:1, and the ship optical images were divided
into training and conversion sets using a ratio of 9:1. When
introducing cached historical data for training, the number of
images stored in the list was adjusted to the previous 100 images
because the data samples were larger than the mine images in
experiment A.

3) Experiments and Analysis:

a) Quantitative analysis: In this section, the training pro-
cess and performance of the model are first analyzed and eval-
uated. The network proposed in this article was inspired by CG
[38]. Hence, the model proposed in this article was compared
with the CG model with different structures (i.e., the genera-
tor adopted ResNet-06, ResNet-09, UNet-128, and UNet-256
backbone networks).

As Fig. 10 shows, the loss values of the five models decreased
as the number of training steps increased and eventually stabi-
lized to reach the fitted state. Among them, the proposed network
had the lowest cyclic-consistency loss, LSGAN loss, and identity
loss, and was the most stable over the whole training process.
There were no other networks that exhibited large amplitude
changes during training.

Because the proposed model belongs to models that transfer
the image style of two domains using unsupervised learning,
the above model was compared in terms of image generation
with the conventional methods pix2pix [39], DualGAN [40],
and DiscoGAN [41], and the comparison target consisted of the
500 SSS shipwreck images generated by optical conversion from
the HRSC2016 conversion set and the 100 images from the real
SSS evaluation set. They were quantitatively analyzed and the
FID, MMD, and 1-NN were calculated, respectively. The final
quantitative test results are presented in Table V1.

By comparing groups 2, 3, 4, and 5, it can be seen that
when the model structure was not complex, more parameters
improved performance. On the contrary, because of the low
resolution, less distinct features, and other characteristics of the
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Fig. 10.
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Loss values of the training process of the five models. (a) Cyclic-consistency loss. (b) Identity loss. (c) LSGAN loss.
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Fig. 11.

I

Results of converting SSS images using five models for optical image conversion. (a) Input optical images and converted results obtained by (b)

CG-ResNet-06, (c) CG-ResNet-09, (d) CG-UNet-128, (e) CG-UNet-256, and (f) proposed method.

SSS images, when a more complex model structure is used
to generate the images, the performance of generation does
not necessarily improve. The results for group 1 demonstrate
that the quality of the images generated by the pix2pix model
was the least satisfactory, possibly because the model needed
paired datasets as input for training. This experiment used
different domain images of the same target, but in addition
to the difference in the background, there were also multiple
differences in the size, orientation, texture, and resolution, and
the pairs cannot be considered to be ideal pairwise images.
For groups 2 to 8, the models could achieve better results
than the model of group 1 because of the use of unsupervised
learning, which does not require paired dual-domain images to
generate high-quality images. As can be seen from the results of
groups 6 and 7 (DualGAN and DiscoGAN, which are related
to CG), the difference in performance between the network
in the optical and SSS dual-domain image conversion tasks of
shipwreck targets was not large and both can perform the task
well.

Compared with the other groups, it can be seen that for group
8, the FID and MMD values obtained using the model proposed
in this article were the lowest, and the 1-NN value was the closest
to 0.5, which proves that the images generated by this model had
a higher fitting degree with the real SSS shipwreck images than

the above models, obtaining better clarity, detail, and realism
while maintaining a lower probability of mode collapse.

b) Qualitative analysis: Fig. 11 shows the conversion of
five models on three typical representative optical images with
large targets, multiple targets, and small targets.

From Fig. 11, it can be seen that the five models have basically
realized the cross-domain conversion from the optical domain
to the acoustic domain and augmented the sample. Among
them, CG-ResNet-06 [see Fig. 11(b)] and CG-ResNet-09 [see
Fig. 11(c)] could not generate the texture characteristics of the
shipwreck well and black holes appeared on the background. In
Fig. 11(d), although the background was better generated, there
are still white bars and boxes in the background. In Fig. 11(e),
in the generation of the texture features of multiple targets and
small targets, CG-UNet-256 achieved a certain improvement
over the previous models, but there are black boxes on the border,
which may be because the shadow features of the shipwreck
target were incorrectly learned as background information. Our
method, when compared with the previous four models, realized
good results both in the generation of texture features and
background features of the image.

c) Performance of the target detection model: For the
shipwreck targets evaluation, the strategy of the experiment was
consistent with that in Section III-A4.c. Three sets of datasets
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(a)

Fig. 12.
YOLOV5-A, (¢) YOLOV5-B, and (d) YOLOV5-C.

TABLE VII
COMPOSITION OF THE TRAINING AND VERIFICATION DATASETS

Group Real shipwreck image Generated shipwreck image
A 500 -
B - 2000
C 500 2000

verify 100 -

TABLE VIII
REAL IMAGE DETECTION PERFORMANCE OF THE YOLOVS5 NETWORK
TRAINED ON DIFFERENT TRAINING SETS

Recall Precision AP0.5 AP0.5: 0.95
YOLOV5-A 79.12 84.14 80.43 46.21
YOLOV5-B 82.47 88.29 83.68 50.66
YOLOVS-C 83.22 88.65 84.71 51.14

were designed to train the YOLOvV5 model, as presented in Ta-
ble VII. One contains only real SSS data, one contains only data
generated by the proposed model, and one contains real data and
generated data. Moreover, 100 real SSS images were selected
to evaluate the performance of the trained model. Among them,
the generated shipwreck data were filtered to exclude images
that failed to be augmented.

The trained model was evaluated using 100 real SSS images,
and the recall, precision, and average accuracy, which are used
in the field of target detection, along with the AP, were used to
evaluate the model. The results are reported in Table VIII.

Comparison of the detection results of the three models on several real SSS targets. (a) Original input SSS images and the detection results of (b)

Table VIII presents that the recall, precision, and AP values
of the model trained using the images generated by the proposed
method were higher than those trained using only real SSS data.
This proves that the generated data played a key role in the
performance improvement of the model, and the conclusion is
consistent with that drawn in Section III-A4.c, demonstrating
the effectiveness of the proposed method.

As can be seen from Fig. 12, the YOLOvVS models trained
with datasets A, B, and C could identify real submarine ship-
wreck targets, but comparing the images in Fig. 12(b)—(d), it
was found that the confidence of the model trained only using
dataset A was on average 65% in shipwreck target recognition.
Moreover, the positioning accuracy needs to be enhanced and the
shadow of the shipwreck was not well identified. In terms of the
identification accuracy, the reef target in the images of group
3 was mistakenly identified as a shipwreck target. The model
trained using the augmented datasets B and C yielded better
results for the shadow identification of the shipwreck targets,
and the positioning accuracy and confidence were substantially
higher than the models trained using only the real dataset. The
average confidence level was 90%.

The above experiments show that the image samples aug-
mented by the proposed method had a realism, detail, and
integrity that are more similar to the real SSS images. Moreover,
the purpose of improving the detection performance of the target
detection model based on deep learning was achieved.

d) Ablation experiment and evaluation: To evaluate the
role of each module in the performance of the proposed model,
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TABLE IX
PERFORMANCE OF THE VARIOUS IMPROVEMENTS OF THE PROPOSED GAN

Group % LSGAN FID| MMD] 1-NNJ0.5
1 - - - 13652 0211 0.91
2 N - - 13295 0.169 0.81
3 - \ - 133.01  0.152 0.80
4 S v - 126.84  0.131 0.77
5 - - v 130.98  0.134 0.78
6 \ \ \ 123.12 0.102 0.72

Fig. 13.  Conversion performance on optical images obtained by six models.
(a) Input optical images and SSS images converted using the model in (b) group
1, (c) group 2, (d) group 3, (e) group 4, (f) group 5, and (g) group 6.

the controlled variable method was used to perform ablation
experiments on the CSA module and LSGAN loss function. Six
groups of control experiments were designed, and the exper-
imental configuration, training dataset, and evaluation dataset
were consistent with those in Section III-B2. The experimental
results are reported in Table IX.

A comparison of groups 1-4 reveals that the quality of the
images generated by the model was higher after the attention
mechanism was incorporated. Group 4, which integrated the
CSA mechanisms, outperformed groups 2 and 3, which only
used a CSA module, respectively, proving the effectiveness of
the CSA module proposed in this article. By comparing group
5 with group 1, the superiority of the proposed LSGAN loss
function can be seen. A comparison of group 6 with groups 4 and
5 reveals that the performance of the model after adding the CSA
module and LSGAN loss function is better than that of a single
strategy, which plays a crucial role in the overall performance
improvement of the model and reflecting the effectiveness of the
method proposed in this article.

The conversion results of six models trained using different
strategies on several optical images are shown in Fig. 13. From
Fig. 13, it can be seen that the data generated by the model
in group 1 have the lowest realism. A comparison of group 2
with group 1 reveals that the model using the channel attention
module can extract more detailed features when generating
targets, but it needs to be strengthened in terms of the generation
of background features. By comparing group 3 with group 1, it
can be seen that the model using the spatial attention module
performs better in generating the background of the image, but
there are still black holes in the background, and the generation
of target detail features is mediocre. A comparison of group
4 with group 1 reveals that the model using the CSA module
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significantly improves its ability to generate target detail features
and background features. By comparing group 5 with group 1,
it can be seen that the model using the LSGAN loss function
generated the target image better, but there are still obvious boxes
at the edge of the background, which is not sufficiently natural.
Comparing group 6 with group 1 reveals that the model that
integrates the CSA module and LSGAN loss function generated
target images with high definition, complete detail features, and
high realism both in terms of detailed features, such as the texture
and edges of the shipwreck targets or the background features,
which proves the effectiveness of the proposed method.

IV. DISCUSSION
A. Advantages of the Method

The proposed method realized the augmentation of samples
with few or even no underwater target sonar images based on
the true cross-domain mapping relationship of the same physical
object, which largely solves the problems in the existing inter-
domain style transfer methods, such as the problem that target
in the nondomain images is not the target to be detected or the
constructed conversion model is not accurate, resulting in weak
representativeness of augmented samples and poor performance
of the target detection model. The proposed method provides
a new approach to the augmentation of strongly representative
target samples and construction of high-performance underwater
target detection models. The following is a further discussion of
the innovations proposed in this article.

1) Sample Augmentation Based on Cross-Domain Mapping
of the Same Physical Model: The essence of a target detection
model training based on deep learning is to imitate the human
optic nerve in order to extract the shallow and deep features of
a target from a large number of data samples. The number and
representative strength of the samples are the key factors that
determine the performance of the model. The cross-domain/style
transfer method was implemented for sample augmentation
based on the nonreal mapping relationships of nonidentical
target entities, which leads to systematic bias, resulting in low
authenticity of the generated images. Moreover, SSS images are
anonlinear mapping of a sound wave emission unit, propagation
medium, target reflection, background reflection, receiving unit,
noise, and data postprocessing unit in image space. It is difficult
to qualitatively simulate all these elements, and hence, sample
augmentation based on the real mapping relationship is partic-
ularly meaningful, especially for underwater targets with few
samples and or no samples and an incomplete understanding of
attributes.

2) Proposed GAN: The sample augmentation model based
on GAN actually finds the intrinsic implicit relationship be-
tween a series of influencing factors, such as SSS image target,
background, texture, noise, echo intensity, and so on, through
the confrontation and game between the generator and the
discriminator so as to extract the target and background features
and generate a new image. To a certain extent, the influence of
feature selection in image enhancement techniques that needs to
rely on artificial experience and imagination is avoided. The key
here is to input optical and SSS images of the same object and
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TABLE X
COMPARISON OF SONAR TARGET DETECTION ACCURACY OBTAINED USING THE PROPOSED METHOD AND EXISTING SAMPLE AUGMENTATION METHODS

Num Method Object Detection-Net Accuracy References
. 89.22% G
Mine
1 Our Method Shipwreck YOLOVS 87.18% G /
Y (AP)
Optical Image . 96.2% G
2 MetaStyle Shipwreck YOLOvVS (MAP) [24]
. Airplane
Optical Image . 751% G
3 Photowct Shipwreck DCNN (MAP) [18]
Others
Airplane 93.83% R
4 Optical Image Shipwreck DCNN 97.76% RG [23]
Others (0A)
Optical Image 94.47%RG 31
3 SM-CycleGAN sphere ResNet-18 (Precision) (31]
3D Modeling . 86.6% G 4
6 GAN Tire YOLO (TP) [42]
CAD Model . - 77% G
7 Stylebanknet Drowning Victim Faster R-CNN (AP) [22]
] 88.51% G
8 SPADE Shipwreck PSPNet (mloU) [35]
Airplane 81.7% R
9 Noise Adversarial Network Shipwreck Faster R-CNN 88.3% RG [43]
Others (MAP)

(G means using only generated data for training, R means using only real sonar data for training, and RG means using superimposed data of both.)

establish a real mapping relationship to facilitate the authenticity
of the image.

B. Comparison With Existing Methods

The small-sample size of underwater target data is a common
problem in the field of underwater target detection. Most current
research is carried out in the form of transfer learning and data
augmentation. Table X lists the representative work in the field
of augmentation of underwater target sonar image samples in
recent years, which may be mainly classified into four types
from the perspective of implementation: optical image + style
transfer (2, 3, and 4), 3-D modeling + style transfer (6 and 7),
image enhancement (9 and 10), and GAN models (5, 6, and 8).

Among them, optical image + style transfer models (2, 3,
and 4) need to collect a large number of real optical images
and use transfer learning to achieve SSS image conversion. This
method must find other datasets of targets that are similar to
underwater targets, and this is only applicable to a few common
underwater targets, such as ships. In addition, a real mapping
relationship cannot be established for targets that are of the same
type but not exactly the same, which often restricts the quality
of the generated images. By contrast, 3-D modeling + style
transfer models (5 and 6) obtain the shape of the target through
simulation and then obtain texture, noise, and other features
through style transfer. The factors affecting the quality of SSS
images are strongly correlated with each other, and it is difficult
to qualitatively describe the mathematical relationship between
them. Image enhancement (9) enhances sonar image data by
introducing a noise model, but a single dimension often yields a
limited improvement in accuracy. GAN models (5, 6, and 8)
also need to train the network through multidomain images,
and the real mapping relationship of the target multidomain

images cannot be established. In addition, methods 6-8 require
the images to be segmented and labeled.

Because publicly available datasets in the field of SSS im-
age detection are extremely rare, most existing studies use
self-generated data, and the detection performance is related
to the model, the number and representativeness of the training
samples, and the complexity of the target in the test images. In
addition, the evaluation indicators used by different models are
different, and hence, the accuracy in Table X is only of reference
significance.

The proposed method belongs to the style transfer method
based on GAN models in which the GAN is trained by a small
number of real optical and SSS images of the same target
to obtain high-quality SSS images of underwater targets. In
contrast to the above methods, the training data used in this
study have a real mapping relationship between the target in
the images from both domains, which can achieve high-quality
sample augmentation with few or even no samples and provides
high-quality data support for the final high-performance target
detection model based on deep learning.

C. Limitations of the Method

1) High Cost and Complex Process: In practice, the method
proposed in this article has problems with high cost and complex
processes, as it involves the building of the physical model
and real-world sea trials to obtain the SSS images. However,
compared with the traditional sample augmentation, which is
achieved only through optical images, hand-drawn images, and
so on, this method at least has the characteristics of real SSS
images, and the real mapping relationship between the two
domains for the target is established. Although 3-D printing can
create targets with known materials, textures, and structures,
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it cannot produce targets with unknown properties. However,
in general, the method proposed is this article can be used for
the augmentation of deep-learning training data when there are
few or even no samples and obtain high-performance detection
models.

Moreover, although the 3-D printing technology used in this
article was able to build a physical model of the underwater
targets, it is surely not the simplest and most efficient method,
and the process flow could be further optimized to achieve the
aim of reducing costs and increasing efficiency.

2) Optimizing the GAN Model: Although the GAN designed
in this article achieved good performance in the augmentation
of underwater target samples, there is a room for improvement
in the FID, MMD, and 1-NN values of the generated samples.
Moreover, in some cases where the difference between the
images in the two domains was too large, the target feature was
generated in the background or the background was generated
in the target feature, so it will be necessary to further optimize
the GAN model.

3) Obtaining Representative Data: Although the method
proposed in this article achieved good detection accuracy on
the YOLOvVS model, the samples used for generator training
were high-quality data obtained in simple scenes, single scenes,
and a good sea state. In contrast, when the SSS is actually
working at sea under complex sea conditions, the attitude of
the SSS itself will be seriously affected by waves and surges
and the sonar data will be heavily disturbed by noise. Hence,
the quality of the data obtained could be very poor. Therefore,
it will be necessary to further improve the representativeness of
the samples by acquiring a small amount of representative data
for different attribute targets, different marine environments,
multiple backgrounds, multiple angles, and different equipment
situations.

4) Generating a Specified Sample: Although the method
proposed in this article augmented the sample based on the
real mapping relationship, the acquisition of augmented sample
images was random, and it was not possible to obtain targeted
images with a specified background, noise texture, or other
factors, as in [27]. Itis possible that a combination of the method
proposed in this article with the approach in [27] would achieve
good results.

D. Applicability of the Proposed Method

The proposed method demonstrates extensive versatility and
applicability. It goes beyond underwater SSS target sample
augmentation and can be effectively applied to other domains
as well. For instance, in the field of UAV optical imagery and
satellite remote sensing, the method can establish real mapping
relationships and conduct sample augmentation, thereby im-
proving the accuracy of remote sensing data processing and UAV
image analysis. In the medical domain, by establishing cross-
domain mappings between X-ray images and CT scans, the
method can provide comprehensive and accurate information for
medical image analysis and diagnosis. Additionally, in the field
of facial recognition, by mapping and augmenting optical facial
images with infrared facial images, the method enhances the
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robustness and accuracy of facial recognition systems. Hence,
the proposed method holds significant potential across various
domains, providing valuable support for related research and
applications.

V. CONCLUSION

An augmentation method for SSS image samples of the under-
water target based on the cross-domain mapping relationship of
the same object was proposed in this article, aiming to address
the problem in the existing sample augmentation methods for
cross-domain conversion/style transfer, which is that the targets
in the nondomain images are not exactly the same as the actual
underwater target that is to be detected. This work makes the
following three main contributions.

1) An augmentation method for SSS image samples of an
underwater target based on the cross-domain mapping
relationship of the same physical object is proposed. A
physical model of the underwater target was built using
3-D printing technology; the mapping relationship of the
physical model-to-optical image was established using the
same imaging methods and mechanisms use for underwa-
ter target imaging, and the physical model-to-SSS image
was established using the actual measurement mode of
SSS. Finally, the cross-domain mapping relationship of
the optical—SSS images of the target was established,
addressing the restrictions in the sample augmentation per-
formance caused by the fact that the target is an underwater
target but is not exactly the same as the one to be detected
in the nondomain image.

2) GAN based on circular consistency was designed. A
single-cycle consistent network structure was designed to
ensure the training efficiency of the model. The CSA mod-
ule was integrated into the generator to reduce informa-
tion diffusion and enhance cross-dimension interaction,
thereby improving the quality of the generated images.
The loss function, which is based on an LSGAN, was de-
signed to stabilize training and avoid mode collapse. The
cross-domain conversion of target optical images and SSS
images was realized, and the high-quality augmentation of
samples was achieved, which improved the accuracy of the
target detection model based on deep learning.

3) The above method was verified by real sea experiments.
The real cross-domain mapping relationship between opti-
cal and SSS images of underwater targets was established,
and the conversion of dual-domain images was realized.
Compared with the images generated by the traditional
sample augmentation methods, the SSS underwater target
images generated by this method had higher definition,
more complete detail features, and higher realism, which
achieves the purpose of the high-quality augmentation of
samples with few or even no images, proving the effec-
tiveness and necessity of the method. This method could
be adapted for other types of underwater targets because
of its value as a reference.

In summary, the proposed underwater target SSS image sam-

ple augmentation method in this article realized the high-quality
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augmentation of underwater target SSS image samples with
few or even no images. The proposed approach improves the
detection accuracy of the model and provides a new way to
augment underwater target samples with strong representative-
ness as well as construct high-performance underwater target
detection models, which will have practical guiding significance
and value.
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