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A Deep Neural Network Based on Prior-Driven and
Structural Preserving for SAR Image Despeckling

Cong Lin

Abstract—Remarkable effectiveness has been demonstrated by
deep neural networks in the despeckling task for synthetic aperture
radar (SAR) images. However, blurring and loss of fine details
can result from many despeckling models due to upsampling and
mean-square-error (MSE) loss. Additionally, existing degradation
models and prior information are ignored by existing despeckling
models, which directly learn the mapping from degraded to clear
images. To address these issues, an optimization algorithm for
the SAR despeckling task based on the integral-Newton method
is proposed in this article. Then, a prior-driven despeckling net-
work is proposed, which can automatically capture the implicit
priors in SAR images to replace traditional manually made pri-
ors. Furthermore, to make the network focus more on learning
the structural prior information of images, a structure-preserving
loss function based on the MSE and the Canny edge detection
operator is designed, which improves the detail of the network
retention ability and speeds up convergence. Outstanding results
on both simulated datasets and real SAR images are achieved by
the proposed method, as shown by a large number of experimental
results. Moreover, significant advantages of the proposed method
both visually and quantitatively are revealed by comparison with
classical and state-of-the-art despeckling algorithms.

Index Terms—Deep image prior, speckle filtering, structural
loss, synthetic aperture radar (SAR).

NOMENCLATURE
SAR Synthetic aperture radar.
MSE Mean square error.
MAE Mean absolute error.
VIF Visual information fidelity.
HQS Half quadratic splitting.

FE Feature encoder.

FD Feature Dencoder.

AM Attention module.

DS Down sample.

(0N Up sample.

PSNR Peak-signal-to-noise ratio.
SSIM Structural similarity.
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ENL Equivalent number of looks.

EPD — ROA Edge preservation degree based on the ratio of
average.

MoR Mean of ratios.

UM Image quality ratio.

I. INTRODUCTION

AR plays a crucial role in arange of Earth observation tasks,
S including disaster monitoring, environmental monitoring,
and ocean monitoring. This is due to its numerous advantages,
such as multiband capability, strong penetration ability, and
all-weather usage range [1]. However, SAR imaging inevitably
results in multiplicative speckle noise and artifacts in SAR
images. The occurrence of speckle noise in SAR imaging is
attributed to various factors such as the roughness of the target
surface and the width of the camera beam, resulting in interfer-
ence effects in the received signal. On the other hand, artifacts
are caused by multiple scattering, terrain variations, ionospheric
disturbances, and other factors [2]. The edges of targets in SAR
images are degraded by this speckle noise, which hinders the
reading of image information and the application of SAR images
in subsequent tasks, such as target recognition, image segmen-
tation, and scene classification [3], [4], [S], [6]. Despeckling
SAR images can restore the overall structural information of
the images and facilitate advanced visual processing tasks in
revealing the biological information and intrinsic characteristics
of the target categories in SAR images. Thus, the removal of
speckle noise and preservation of details of images have been an
actively researched topic in fields such as earth science, remote
sensing, and medical ultrasound imaging [7], [8], [9].

In the past decades, many SAR despeckling methods have
been proposed by researchers. Multiview processing techniques
were mainly used in early despeckling methods. However, with
the expansion of SAR image applications and increased spatial
resolution requirements, multiview processing techniques were
unable to meet these requirements. During this time, signifi-
cant developments have been made in spatial-domain filtering
algorithms, and many classical filters, such as Lee filter [10],
Kuan filter [11], and Frost filter [12], have been proposed.
Well noise-suppressing capability is provided by these filters,
but they are easily affected by the filter window size and it is
difficult to balance the relationship between image denoising and
detail retention. The gradient-domain information was extracted
by Maji et al. [13] by calculating the numerical value in the
spatial domain and exponential layer decomposition was used
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to remove background noise, alleviating the influence of the
window size in traditional spatial-domain filtering. Aghababaei
et al. [14] improved the nonlocal (NL) model and presented
an independent, model-free despeckling framework that filters
noisy images based on the similarity of subblocks. Good de-
noising performance was achieved by these two algorithms
under low-level noise, but the denoising performance declined
under high-level noise. Therefore, researchers have proposed
transform-domain filtering algorithms that extract clear original
signals from noisy data through different transforms, such as
wavelet transform, projection transform, etc. Structural infor-
mation in the transform domain is effectively used by these algo-
rithms to remove noise. These algorithms have high performance
in both denoising effect and computational complexity and have
gradually become the mainstream algorithm for SAR image
denoising. Multiplicative noise was transformed into additive
noise through homomorphic transform by Zhang et al. [15], and
an SAR image despeckling method based on weighted sparse
representation was presented. The method achieved good results
on both synthetic and real-world SAR images. However, these
methods are sensitive to the selection of the transform function,
and differences in geometric properties in remote sensing images
are not considered.

In recent years, there has been a significant advancement
in artificial intelligence and deep learning technology, and it
has been widely applied in various fields, including computer
vision and image processing. Many researchers have utilized
convolutional neural networks (CNNs) as the main approach
for SAR image speckle reduction. For instance, Qin et al. [16]
combined traditional wavelet domain denoising methods
with deep learning, using CNNs to automatically learn
image denoising thresholds. This approach has achieved
high accuracy in SAR image target recognition and noise
enhancement tasks, overcoming the reliance on professional
experience for threshold setting in traditional transform
domain and spatial domain filtering methods. A method
combining the classic nonlocal means approach with neural
networks was proposed by Cozzolino et al. [17], where the
weights of the target pixels were estimated using the CNN
with nonlocal layers. It is important to note that in standard
CNN-based workflows, noise-free images are required to train
the network. However, due to the coherence of SAR imaging,
there are no noise-free signals. An effective solution to this
issue is to train the CNN by adding artificial speckle functions
onto an optical image or dataset used for image recognition
(e.g., an ImageNet dataset), instead of using real SAR images.
A simple yet effective deep learning model was proposed by
Sebastianelli et al. [18] for the denoising task of simulated
speckle noise and real SAR images. Liu et al. [19] added
artificial noise to natural image datasets and utilized the CNN to
extract features from the noise image in the spatial domain and
transform domain and further reduce detail loss by separating
detail features from the noise features, achieving a good denois-
ing performance. MRDDANet [20] and ASGDNet [21] added
simulated speckle noise to optical remote sensing images for
network training, which enabled the network to better recognize
noise information in the image. However, in optical remote
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sensing simulated images, there are significant differences
between optical remote sensing images and actual SAR images
in terms of the imaging mechanism of the device and the
distribution of pixel intensity, which diminishes the robustness
and generalization capability of SAR filters. In order to
address this issue, the utilization of the MuLoG algorithm and
multitemporal SAR images to restore pixel intensities in noisy
images was proposed by Dalsasso et al. [22]. Furthermore, it
was demonstrated that deep neural networks trained on natural
images can achieve the same level of performance as networks
trained on real SAR images.

The use of multitemporal SAR images and unsupervised
algorithms for SAR denoising research has been explored by
scholars to improve the denoising performance of SAR images.
The multitemporal SAR image denoising method integrates
images from multiple observation periods to find similar images
and uses these similar images to eliminate noise. Therefore,
the true SAR image can be studied by the denoising algorithm
using multitemporal SAR images, and the algorithm is more
in line with the inherent information of SAR images in the
denoising task. For example, the impact of noise was counter-
acted by RABASAR [23] using the time-sequence information
in multitemporal SAR images, avoiding the impact of noise in a
single frame image, and ratio images were used to improve the
spatial stationary of an image within a time sequence, resulting in
more effective denoising than comparing the original multitime
and space stacked images. An SAR deep learning filter based
on noise reference was presented by Ma et al. [24], which
demonstrated satisfactory generalization capacity on single-time
datasets by using complementary images from different times
in the same area as training references. However, it is difficult
to obtain data from different time sequences of the same target
for multitemporal SAR images, and the denoising performance
of the algorithm depends heavily on the accuracy of image reg-
istration, making the algorithm not flexible to use. The inherent
information of the original SAR image is used during training
by unsupervised algorithms [25], [26] to learn the denoising
model, making them more flexible to use compared to mul-
titemporal denoising algorithms. Sparse representation-based
denoising methods and autoencoder-based denoising methods
are typical unsupervised denoising algorithms. The former rep-
resents SAR images as sparse coefficients to learn the denoising
model, while the latter trains a network to learn the denoising
model. A new end-to-end self-supervised denoising model was
presented in [27], which incorporates perceptual features from
prelearned CNNs and recovers spatial details through a mixed
loss function, maintaining the robustness of the entire time-series
image and reducing the uncertainty in SAR images caused by
random noise. However, due to the presence of contaminated
information in the SAR images used for training in the network,
it becomes challenging for the network to accurately extract
texture details from the images. This issue may impact the loss
of details and image blurring in the restored images. Recently,
a self-supervised Bayesian despeckling method was proposed
in [28]. This method assumes spatial independence of noise
and can effectively preserve the statistical properties and edge
information of the images without relying on clear images
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for training. This offers a new perspective for self-supervised
denoising methods.

In fact, multitemporal sequence denoising methods and self-
supervised denoising algorithms are in some cases more difficult
to extract texture details correctly from SAR images due to
the existence of pollution information like speckle noise and
artifacts. Relatively speaking training with simulated images can
help the network learn a wider range of detailed information
from different scenes, making it more useful for preserving
texture information in real SAR image restoration tasks. It
should be noted that in most deep learning-based SAR image de-
noising algorithms, prior knowledge such as observation feature
modeling and degradation mechanisms in traditional methods
are neglected and the network only learns a direct mapping
from low-quality images to high-quality images. Knowledge
was transferred and Gaussian prior knowledge and structural
boundary prior knowledge were incorporated to improve the
VGG-16 network by a scholar [29]. Although great results were
achieved in removing speckle noise, multiple iterations were still
required, making the algorithm computationally inefficient. A
denoising prior-driven deep neural network (DPDNN) for image
restoration was presented by Dong based on the finding that
convolutional generative networks can capture a large amount of
statistical information without learning [30], [31]. The DPDNN
improves the generalization ability of the network by learning
image prior knowledge, resulting in significant improvements
in tasks such as Gaussian denoising, deblurring, and superreso-
lution, but it does not apply to SAR image despeckling tasks.

This article proposes a prior-driven and structural-preserving
SAR despeckling framework to tackle the shortcomings
of current CNN-based denoising methods and the poor
generalization ability of networks trained on simulated SAR
datasets, inspired by [30] and [31]. The proposed framework
consists of three steps. First, an optimization algorithm that
is suitable for the SAR image despeckling task is derived,
thus formulating the despeckling task as an optimization
problem. Second, a prior-driven despeckling neural network
(PDSNet) is introduced to solve the optimization problem,
resulting in the best image restoration outcomes. Finally, in
order to enable the network to better learn the structural prior
information in images, a novel joint loss function is designed
for network training. The experimental results demonstrate that
the proposed method outperforms state-of-the-art methods in
SAR despeckling both visually and quantitatively.

Compared with the previous SAR image despeckling meth-
ods, the primary innovations presented in this article can be
outlined as follows.

1) An optimization algorithm is derived for the SAR im-
age despeckling task, combining traditional model-based
methods with deep learning by utilizing neural networks
to learn the noise model, providing better adaptability to
nonsimulated noise removal tasks in SAR images.

2) A prior-driven denoising network is proposed. In this
network, inherent information is first extracted from the
image using a CNN, then passed to the denoiser as prior
knowledge for network training. By learning the inherent
prior information of various types of images, valuable
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information for denoising can be extracted by the network,
making it adaptable when applied to real SAR images.

3) A joint loss function based on the MSE and the Canny
edge detection operator was proposed. The aim of this
loss function is to mitigate the blurring of images caused
by the upsampling and MSE loss function, and to enhance
the ability of the network to preserve image details while
accelerating the convergence speed of the network.

The remaining sections of this article will be organized
as follows. In Section II, the basic concepts of SAR image
denoising and relevant literature will be reviewed. A detailed
description of the proposed method will be provided in
Section III. In Section IV, a comparison of the proposed method
with state-of-the-art methods on both simulated dataset and
real SAR images will be presented. Section V discusses the
complexity evaluation of various algorithm models. Finally,
Section VI concludes this article.

II. RELATED WORKS

A. SAR Image Speckle Noise Model

Speckle noise in SAR images is a commonly encountered
noise, and its effects can be significant in certain applications.
To gain a better understanding of the generation mechanism of
speckle noise, this section will introduce the relevant concepts
and theories of speckle noise modeling.

SAR speckle noise refers to the nonuniform regions of bright-
ness or darkness in an image with a size of several pixels.
Speckle noise typically exhibits a random distribution and is
primarily caused by limitations in the hardware or software
of the radar system, rather than environmental factors. The
generation mechanism of speckle noise is highly complex and
influenced by various factors. The most significant factors in-
clude the inherent noise of the SAR system and its nonlinear
characteristics. Additionally, the nonideal characteristics of the
antenna, signal transmission losses, and receiver noise also
contribute to the generation of speckle noise. Therefore, all
SAR images contain noise information, which can have adverse
effects on applications such as feature extraction and target
detection. Meanwhile, the coherent speckle noise in the image
is more difficult to remove than the additive noise in normal
images [32].

In order to eliminate noise information in SAR images, the
specific formation mechanism and characteristics of speckle
noise in SAR images have been extensively studied. Many
researchers have attempted to explain and simulate the formation
process of speckle noise through models. Typically, itis assumed
that the multiplicative noise in SAR images follows a gamma
distribution [33], and its model can be represented as such

I(z,y) = u(z,y) x N(z,y). ¢))

The coordinates of (x, y) are used to denote the central pixel of
the cell in the azimuthal and distance direction. The intensity
of each image pixel, which is contaminated by coherent speckle
noise, is represented by I(x, y) as the observed image intensity.
The observed true image intensity, which is uncontaminated by
coherent speckle noise, is denoted by u(x, y) as the radar echo
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of a random ground target. The coherent speckle noise, which
is caused by the fading process, is represented by N(x, y). It is
noted that u(x, y) and N(x, y) are independent of each other, and
N(x, y) follows a generalized Gamma distribution
LL NL—l €_LN

N)=——77—— 2
p(N) (L) )
where L >1, N >0, and I'(-) denotes the Gamma distribution
function, with L being the number of looks in the SAR image

X
var

L= 3)
where X and var are the mean and variance of SAR image I.

Combining the aforementioned mathematical model, it can
be inferred that SAR image denoising corresponds to the re-
moval of coherent speckle noise N from the noisy image I.
Previous studies have demonstrated that denoising algorithms
trained on clean-noisy image pairs exhibit outstanding denoising
performance [34]. Therefore, in this study, the aforementioned
formula will be employed to add simulated noise to optical
remote sensing images, generating clean-noisy image pairs for
training the network parameters. Additionally, according to (2),
the intensity of coherent speckle noise is influenced by the
natural constant e and the number of looks L in the SAR image.
Hence, by modifying different values of the number of looks
L, we can obtain speckle noise of varying degrees to train the
network, thereby enhancing its robustness.

In this study, the aforementioned formula will be employed
to simulate speckle noise and add it to optical remote sens-
ing images for training the denoising network. In subsequent
experiments, the performance of our proposed model will be
compared with other algorithms using reference-based metrics.
However, many methods that perform well in simulating noise
removal using optical data for training SAR despeckling net-
works exhibit poor performance in real SAR image denoising
tasks. Therefore, in this study, various reference-free metrics will
be further employed to evaluate the denoising performance of
our proposed model on real SAR images, aiming to demonstrate
its generalization ability and practical value.

B. Image Restoration Methods

The methods for image restoration can be divided into two
categories: one based on learning, and the other based on a
model. In the following, the core ideas of two algorithms related
to this work will be briefly reviewed.

1) Learning-Based Methods: With the rapid development of
computer hardware, especially the widespread use of Graph-
ics processing units (GPUs), and the advancement of deep
learning technology, research into denoising algorithms based
on learning has been the focus of an increasing number of
scholars. A denoiser is trained using a large number of clean-
noisy image pairs. Good image denoising performance has
been demonstrated, even in the case of unknown noise levels,
i.e., blind denoising tasks, by utilizing neural networks [35].
Although neural network-based algorithms for the SAR image
denoising have gained popularity, some researches indicate that,
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the denoising performance of some early neural network-based
methods may not outperform traditional algorithms. One typical
traditional method is the BM3D, which has demonstrated strong
performance in the SAR image denoising. [36], [37]. This issue
has been addressed in recent years by developing feedforward
denoising neural networks (DnCNNs), which utilize residual
networks and batch normalization algorithms to speed up the
training process of the neural network and improve image
denoising performance [34]. Subsequently, works have been
presented to enhance computational efficiency, such as the use of
dilated convolutions in IRCNN [38] and the use of downsampled
subimages and noise level maps in FFDNet [39].

2) Model-Based Methods: Traditional model-based meth-
ods do not require training and rely on inductive biases as
prior knowledge. The chosen prior knowledge determines the
performance of these methods. These methods are often framed
as an optimization problem with an added regularization term,
with the objective function as

z" = argminF(z;I) + R(z) 4

where FE(z; 1) is a data-related term, such as MSE, that describes
the difference between the reconstructed image and the target
image; z is the reconstructed image; and R(z) is a regularization
term that constrains the solution space based on prior knowledge.

The data term FE(z; I) is often determined by the task at
hand, and the proposed method for E(z; I) will be discussed
in detail later. The regularization term [2(z) is often selected
based on general priors on the image, and the role of priors is
crucial in model-based image restoration algorithms. Different
optimization directions are led by different priors. For instance,
piecewise constant signals are modeled well by total variation
(TV) [40], but it is not effective in restoring more complex edge
and image texture information. Wavelet-based processing [41] is
more effective in restoring local image structures based on exist-
ing transform matrices. A block-based Gaussian mixture model
is built by BM3D [37] by exploiting redundant similar blocks in
natural images and extracting the nonlocal self-similarity of the
image.

Prior knowledge that is manually designed to reconstruct
the image is relied upon by traditional model-based denoising
methods, while the mapping from degraded images to clear im-
ages is learned by the majority of deep-learning-based methods,
ignoring the existing degradation model and prior knowledge.
It has been pointed out by some scholars that the statistical
information of images in these algorithms is captured by the
structure of convolutional generative networks, rather than any
learning ability [30].

C. Residual Learning

In recent years, neural-network-based methods have been
applied to the reconstruction of SAR images, and good results
have been achieved by many researchers. However, simulated
noisy images are often used to train the networks because the
actual noise distribution of SAR images is unknown. As a result,
denoising performance is not ideal when tested on real images.
Good denoising results are achieved by the SAR-CNN [42],
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which transforms SAR images into the logarithmic space, in-
creases the number of CNN layers, and uses a discriminative
model to learn how to reduce SAR image speckles. However, two
major problems arise as the network depth increases: one is that
it can lead to a difficult or even impossible convergence of the
network during long-term training; the other is that the network
performance will gradually saturate and even start to decline,
resulting in the phenomenon of deep network degradation.

The issue of declining performance of network models,
specifically the reduction in training accuracy as the network
depth increases, was initially addressed by residual learning in
CNNs [43]. The residual learning approach assumes the exis-
tence of an optimally layered network and implements redundant
layers to perform identity mapping, ensuring that the input
and output are completely identical after passing through the
identity layer. With such a residual learning strategy, extremely
deep CNNs5s can be easily trained, and better accuracy has been
achieved in image classification and object detection tasks.

III. PROPOSED METHOD

In this section, the problem of speckle reduction in SAR
images is addressed by introducing a forward residual network
framework based on prior driven. The SAR despeckling model
is solved using the variable splitting technique and HQS method,
which separates data items and prior information to guide the
iteration optimization process based on the prior information
of the image. To solve this optimization problem, a prior-driven
forward residual despeckling network PDSNet is proposed, with
the parameters of the recovered image being the weights of the
network to achieve an end-to-end optimization of the denoiser
and parameters. Additionally, a corresponding denoiser based on
the U-Net network architecture is designed, with the denoiser
module divided into feature extraction and image reconstruction
parts to quickly and accurately capture noise features. Finally,
a structural preservation loss function that combines MSE and
the Canny edge detection operator is designed to enhance the
ability of the network to preserve image details and accelerate
network convergence.

A. SAR Image Speckling Strategy

The optimization problem in (1) and (4) can typically be
addressed through the utilization of the variable splitting tech-
nique [44], which separates the data term and the regularization
term while introducing an auxiliary variable d. As a result, (1)
and (4) can be reformulated as

1
(z,d) = arg min§ |z = N -z|2 +20(d), st.z=d (5)
z,d

where A®(d) is the weighted term of R(z). The ideal solution of
the original equation (4) is the solution that minimizes both the
data term and the regularization term weighted by the parameter
A. Based on this, the equality-constrained optimization problem
can be transformed into an unconstrained optimization problem
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using the semiquadratic splitting method [45]

Iz =N -zll;  pl(z —di)l

5 2 (6)

Zp4+1 = argmin
z

pl(d = zi)l3

5 +A9(d). 7)

di41 = argmin
d

The problem of solving zj;; is a quadratic optimization

problem that can be solved using a closed-form solution such as

z = Wb, where W is a matrix related to the correlated noise

matrix N. p is the penalty factor. In general, as the dimension

of the W matrix is high, it is not feasible to directly calculate its

inverse matrix. Hence, a Newton—Raphson iterative algorithm

with an integral term is proposed to calculate zj;. Equations
(6) and (7) can then be rewritten as

w
Zi+1 = Zk — |:NTN+H:| (8)
W=NTN-z, -z +pz,—d)+H (9
k
H=7> (zx41— z) (10)
=0

where + is a positive proportional factor, and H is the integral
term. Since the optimization algorithm proposed in this article
is based on a continuous function, it needs to be discretized to
meet the computation requirements of computer systems. In the
proposed optimization algorithm, the system is controlled using
the PID control algorithm to minimize the error. The PID control
algorithm is a classical control method widely employed in the
field of automatic control. In this approach, the PID algorithm
is incorporated into the design of the optimization algorithm to
address the optimization problem. Specifically, the derivative
of the objective function is used as the input signal, the PID
algorithm is employed as the controller, and the corresponding
adjustment is output to enable the optimization algorithm to
converge faster and more stably toward the optimal solution.
The PID algorithm can be modified as

k
Zpt1 = Kp - S+ KﬁT Zsi + KpTTd (Sk —Sk-1) (D
=0
where Sy, is a steady-state error, K, T;, and Ty represent
different system parameters and the integral term is used to
eliminate the steady-state error and can adjust the performance
of the system in combination with proportional and differential
control. Before reaching the node, S; is always positive and its
integral is always greater than zero. When there is a steady-state
error in the system, the error will remain the same value, but the
integral will change, meaning that the previous steady-state error
value is combined with the proportional control algorithm, and
the integral term will continuously work, allowing the output
of x;, to remain increasing and thus eliminating the steady-state
error. The subproblem of d is a neighborhood operator of ®(d),
and the solution can be obtained through the denoiser: dj 1 =
f(zg), where f(-) represents the denoiser. In conclusion, the task
of despeckling SAR images can be summarized as Algorithm 1.
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Fig. 1.
PDSNet.

Core structure of the proposed priori-driven denoising network

Algorithm 1: Restoration of SAR Images by the Integral
Newton Iterative Algorithm.
1. Initial the observation matrix N, W, A, u>0, v>0, k =
0,29 =NTz*
2. While not converge do
Compute dy. 41 = f(z1)
Compute zy 1 =z, —
k=k+1
end while
3. Output zj, 41

NTN+p

The speckle denoising problem is transformed into an opti-
mization problem using a PID controller, which can preserve
image details and edge information while removing speckle
noise. Furthermore, the performance of the algorithm can be
adaptively adjusted by optimizing the parameters of the PID
controller, resulting in improved denoising results in different
images.

B. Priori-Driven Residual Networks PDSNet

As indicated in the Related Works section, it is evident that
Algorithm 1 for solving the problem necessitates numerous it-
erations to attain an optimized noise model, which in turn incurs
a substantial computational cost. Moreover, the parameters and
denoiser cannot be optimized jointly in an end-to-end fashion
during the algorithm process. Consequently, our objective is to
explore the possibility of capturing the inherent prior images
by selecting an appropriate generator network structure before
learning any parameters.

Incorporating the ideas from literature [31] and [34], we sub-
stitute the denoiser f(-) in dx11 = f(zx) with a neural network
in the form di+1 = fo(zr), where 6 represents the network
parameters, and the network-based fp(-) maps the parameters
0 to the denoised signal d. The parameters ¢ encompass the
weights and biases of filters in the network. The network itself
has a conventional structure and performs alternating filtering
operations, such as linear convolution, upsampling, and non-
linear activation functions. At the same time, the implicit prior
is obtained by throwing out the regularizer R(z) and using the
neural network to participate in digitization, shown as follows:

0" = argminE (fo(d); 20) , 2" = fo (d). (12)

According to the mathematical formulation in (12), Algo-
rithm 1 can be reformulated as the deep CNN architecture shown
in Fig. 1, referred to as PDSNet. The proposed network can
precisely implement the ¢ iterations in Algorithm 1 to obtain
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the noise information in the noisy image. The input degraded
image I is first passed through a linear layer parameterized
by the degradation matrix N to obtain the initial estimate zg.
Then, zg is fed into the denoising module and a linear layer
parameterized by the matrix W, followed by adding a weighted
denoising signal d; to the output of the linear layers N and
W, resulting in an updated z; through the shortcut connection
of a residual network. By iteratively repeating this process, the
corresponding noise signal z;, can be obtained.

None of the aspects of this prior network fy(-) are learned
in advance by learning from the data, thus it has performance
similar to manually set priors like using the TV norm. The
contribution of this article is that it demonstrates the effec-
tiveness of the prior-driven network architecture for various
image restoration tasks and performs even better than traditional
learning methods with manually crafted priors, which will be
shown in Section IV.

C. Denoiser Module

For the denoiser module in Fig. 1, we combined the neural
network structures presented by U-Net [46] to design a denoiser
module. As shown in Fig. 2, the denoiser module is comprised of
13 layers and divided into two distinct parts: a feature encoding
part and a feature decoding part.

In the encoding part, a series of convolution layers with a size
of 3 x 3 and a nonlinear ReLU function compose the feature
encoder, as shown in Fig. 3(b). In this work, downsampling is
performed with a scaling factor of 2 along both axes of the
feature map in the downsampling layers, and the scaling factor
is set to 0.5. The convolution operation is utilized to extract
features, while the downsampling operation reduces the size of
the feature maps by half. This part aims to extract the original
input image features, and simultaneously, decrease the size of
the feature maps, providing more effective feature information
for subsequent processing.

The pooling layer in the U-Net network simply reduces the
image size by scaling, which cannot determine which parts of
different images need to be preserved. Therefore, an attention
mechanism module replaces the pooling layer in the original
U-Net network structure in this article. The purpose of this
module is to use the information from the current stage to guide
the learning of noise information in the previous stage, thus
focusing the network on the significant information in the noise
image, ignoring unimportant information, and improving the
efficiency and accuracy of information processing. The architec-
ture of the attention mechanism module is depicted in Fig. 3(a),
which comprises two components: the channel attention module
and the spatial attention module. The channel attention module
consists of a maximum pooling layer, an average pooling layer,
and a series of convolutional layers, whereas the spatial atten-
tion module comprises a convolutional layer and an activation
function.

The decoder component, as shown in Fig. 3(c), The purpose
of this part is to restore the downscaled feature maps to their
original size and merge the feature information from the encoder
layers with that from the decoder layers. This allows the network
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to have an enhanced generalization capability. It comprises a
series of convolutional layers, which are grouped into four
feature decoders, as indicated by the purple arrows in Fig. 2.

Down Sample
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-
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An upsampling layer is utilized subsequently. Given that the
final extracted features tend to lose a considerable amount of
spatial information, directly using these features to reconstruct
the image may result in a lack of detail. To compensate for
this limitation, the upsampled feature maps generated in the
decoding phase are fused with the feature maps of the same
spatial resolution generated in the encoding phase. This way, the
original features are preserved, and the lost spatial information
is supplemented, resulting in a more fine-grained reconstructed
image.

Finally, the algorithm in Fig. 1 uses six such denoisers to help
converge, with all parameters forced to be shared to prevent
overfitting. In the final step of Fig. 2, this article introduces skip
connections from the input to the reconstructed image in the
denoising network. By performing a residual operation between
the inputimage and the predicted noise image by the network, the
denoised image is obtained. The residual prediction in this step
means that during the training phase, the network learns with the
goal of predicting the noise of the SAR image, rather than di-
rectly predicting the original image. Through residual operation,
the texture features of the SAR image can be preserved while
removing the noise. This residual learning approach has been
proven to be more robust [34]. Table I provides the denoising
model and parameter configuration designed in this article.

D. Structural Loss Function

Previous literature [47] has indicated that the utilization of the
MSE as the sole loss function may result in smoothened regions
in denoised images and poor visual quality. To enhance the
ability of the network to preserve edge information and mitigate
the blurring effect introduced by upsampling, a structural loss
term was proposed in this study to complement the limitations
of MSE in the task of image denoising. The proposed joint loss
function cannot only guide the training directions of the network,
making the network converge faster, but also ensure that the
texture information in the repaired image takes into account the
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TABLE I
PARAMETER CONFIGURATION OF THE PROPOSED PDSNET

Type Configuration
Size of convolution: 64x64x3, padding: 1, ReLU
Size of convolution: 64x64x3, padding: 1, ReLU
Size of convolution: 64x64x3, padding: 1, ReLU
Size of convolution: 64x64x3, padding: 1, stride: 2, ReLU
Pooling layer: average pooling layer and maximum pooling layer are parallel
Shared MLP: full connection layer] (64x4x1), ReLU,
full connection layer2 (4x64x1), Sigmoid
Size of deconvolution: 64x64x3, padding: 1,stride: 2, output_padding: 1
Size of convolution: 128x3x3, ReLU
Size of convolution: 64x64x3, padding: 1, ReLU
Size of convolution: 64x64x3, padding: 1, ReLU
Size of convolution: 64x64x3, padding: 1, ReLU
Size of convolution: 64x64x3, padding: 1
Size of convolution: 64x1x3, padding: 1

Feature encoder

Downsample

Attention module

Upsample

Feature decoder

Conv

quality and visual effect of the generated denoised image. Given
a training set with K pairs of images {Xnoise  Yeround } o1, the
improved loss function is represented as

K
1
IOSS(@) = ﬁ Z ||\I’ (Xnoise 5 9) — Yground ||2
i=1

K
1
+ ﬁ ; HC (Xnoise , (1, 0&2) - C (Yground ,Q, Oég)” .
(13)

The first half of (13) represents the traditional similarity loss
function based on MSE, and the latter half is the structural loss
function added. K represents the number of image pairs without
noise, © represents the network parameters, Xpoise represents
the noisy image input to the network, ygouna represents the
ground truth, W(x,ise ; ©) represents the reconstructed image
obtained through the PDSNet network, and C'(-) represents the
structural information of the image. a; and o are high and
low values in the structure information extraction algorithm.
According to the experimental results, it was found that the
best determination of edge and nonedge pixels in the proposed
algorithm was achieved when «; and as were set to 50 and
150, respectively. In this article, the Canny operator [48] was
improved and selected as the structural information extraction
algorithm. The Canny edge detection algorithm has been widely
referenced in practical engineering, but in traditional algorithms,
a 2 x 2 neighborhood first-order finite difference is used to
calculate the image gradient. This method is simple to calculate
but is sensitive to noise information, and because it does not
take into account the deviation in the 45° and 135° directions,
it is easy to lose real edge information. For images such as
SAR images with rich edge information, the traditional edge
detection algorithm is not ideal and can easily lose local feature
edge information. Therefore, this article introduces the concept
of gravity field intensity to replace the image gradient.

A new edge detection algorithm based on the theory of univer-
sal gravitation is presented in reference [49]. It performs better
than Sobel and Prewitt operators in single criterion edge ex-
traction and retains more useful edge information while having
a good noise suppression. However, due to the calculation of
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Fig. 4. 3 x 3 field pixel point locations.

gravitational intensity by equating the gray level value of each
pixel to mass, the performance of the gravitational edge detection
algorithm will be greatly different in bright areas (high gray level
areas) and dark areas (low gray level areas). When a pixel in a
bright area and a pixel in a dark area have the same gradient,
the total gravitational force generated in the dark area pixel is
smaller than that in the bright area, causing the gradient of some
dark area pixels to be insensitive, resulting in loss of edge points.
To overcome the difference between the bright and dark regions,
the gravitational field strength is introduced. Assuming that p
represents the current observation pixel point and q is any point
in its neighborhood, the gravitational field intensity U (p, q)
between them can be calculated by the following formula in this

article:
Dip.q) = _Coatmn) _ nnf-@h) o
1(m, n) — (a,0)12 || (myn) — (a, b (1:)

where q(m, n) is the gray value of pixel q, G is the gravitational
field number, and (a, b) and (m, n) are the coordinate positions
of p and q pixels in the image, respectively. {2} represents
the collection of other pixel points in the s X s neighborhood
centered on p. This method replaces the original edge gradient
algorithm with the gravitational field strength and assumes that
the total gravitational field strength produced at each point is a
combination of the gravitational field strength produced by the
surrounding pixels. The edge point is the point with the highest
gradient intensity in the image. Hence, the total field strength of
p can be calculated by the following formula:

—

Uow = 3 U(p.a),q € 0. (15)
Assuming s = 3, the pixel position in the neighborhood Qf,
of pixel p is shown in Fig. 4. Set the distance between two
horizontal or vertical pixels is 1, the distance between two
diagonal pixels is /2. At the same time, the attraction strength
of the observation pixel from the pixels that far away decreases
rapidly as the distance increases, so the influence of the gravity
strength of the distant pixels can be ignored. Therefore, the
horizontal and vertical gravitational strength in neighborhood
Q?I’) can be calculated by (16) and (17), respectively,

= 2
UIL:G'{q(a+lab)_q(a_1ab)+§'

[qla+1,b—1)—q(la—1,b+ 1)+

Qa+1,b+1)—qa-1,6-1)}-1 (16
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qla+1,b+1)—qa—1,b—1]}- 3 (7

- - . . . .
where i and j arethe unit vectors in the horizontal and vertical
directions, respectively, at which point the new gradient size is

as
—2 —2
Tl =\U,+U,.

Letting the constant G = 1, the horizontal direction operator G,
and vertical direction operator G, of 3 x 3 neighborhood can
be obtained as

(18)

_V2 g 2
1 a
Gy, = -1 0 1 (19)
_V2 g 2
1 2
V2 0 V2
4 2
G, = 0 0 0 (20)

The similarity loss in the texture feature space is introduced
by the proposed structural loss function, which allows for the
details and texture of the image to be better captured and
preserved in the process of image restoration. As a result, a
more visually appealing restored image is produced, and the
oversmoothing effect caused by the mean squared error loss is
reduced. Additionally, the optimization direction for the network
is more clearly defined, which leads to faster convergence dur-
ing network training. Various image-processing tasks, such as
image denoising, reconstruction, deblurring, etc., can be highly
effectively addressed with this combined loss function.

E. Difference Between the Proposed Method and Traditional
CNN-Based Method

Fig. 5 illustrates the distinction between the proposed method
and the traditional CNN-based method to more effectively
comprehend the novelty of the SAR despeckling framework.
High-dimensional features of the image extracted by the network
are leveraged by conventional CNN-based SAR despeckling
models to restore a clean ground truth and attain relatively
high denoising accuracy. However, these methods often involve
complex optimization problems during the testing stage, lead-
ing to a lengthy denoising process and difficulty in achieving
high performance without sacrificing computation efficiency.
The SAR despeckling problem is considered as a mathematical
optimization problem by the proposed method, which is solved
iteratively via CNNs to separate noise from the image, making
the denoising network a simple discriminative learning problem
that can focus on the existing degradation models and prior in-
formation within the image. Additionally, to allow the prior term
to better assist the network optimization, the method integrates
the denoiser and the prior network and unfolds the iteration
process into a feedforward neural network, which optimizes the
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Fig. 5. Overall denoising strategy for the SAR despeckling algorithm.
(a) Traditional CNN-based method. (b) Proposed method.

parameters of the denoiser through end-to-end learning. This not
only achieves high-precision and high-computation efficiency
through deep learning but also integrates prior knowledge, re-
sulting in an exceptional denoising performance.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed method trains an SAR despeckling network
using optical data, which may lead to a performance degra-
dation when applied to real SAR data. To address this issue,
this study incorporates the concept of CNN networks having
high impedance characteristics and utilizes the captured real
image features by CNN networks as prior information for the
subsequent denoising process. To validate the effectiveness of
the proposed network, experiments were conducted on both
naturally corrupted images with simulated speckle noise and
real SAR images. The obtained results demonstrated the superior
performance of the proposed method, confirming its efficacy and
practicality.

A. Experimental Setup

In the training and testing process, the deep learning network
was constructed on the Pytorch 1.11.0 platform. The ADAM
optimizer was employed to process minibatches of size 32, with
the learning rate initialized at 0.0005 and halved every 45000
minibatch updates. The hyperparameters of ADAM, (1 and [32
are set to 0.9 and 0.999, respectively . The operating system
used in this study was Ubuntu 20.04, with a GPU of NVIDIA
Quadro RTX 6000. The computation ability of the GPU was
accelerated through the use of CUDA 11.7 and CUDN 8.6.0,
thereby expediting the training process.

To verify the reliability and effectiveness of the algorithm,
this article employs the following 11 well-known and advanced
learning-based SAR denoising techniques as the benchmark
methods.

1) Bayesian shearlet shrinkage for SAR image denoising
via sparse representation (BSS-SR) [50].
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2) Probability block weighted iterative weighted maximum
likelihood SAR image coherent speckle suppression
method (PPB) [51].

3) CNN-guided filter for eliminating noise in SAR images
(CNN-GFF) [52].

4) Learning deep denoising priors CNN denoising method
(IRCNN) [38].

5) Fast and flexible CNN denoising method (FFDNet) [39].

6) CNN and consistent circular rotated SAR image denois-
ing algorithm (CCSNet) [53].

7) Self-supervised denoising algorithm for single noise im-
age (Nb2NbD) [25].

8) Deep self-supervised SAR despeckling algorithm with
blind spot CNN (S2V) [28].

9) Self-supervised SAR despeckling method with support
from implicit deep denoiser prior (SAR-IDDP) [26].

10) SAR image denoising method based on sharp image

features (SIFSDNet) [54].
11) SAR denoising method based on attention and gradient
(ASGDNet) [21].

In conducting comparative experiments, the parameters for all
the comparison methods were kept identical to those provided in
the respective reference literature, thereby ensuring fairness and
replicability of the experiments and guaranteeing the reliability
of the results. In addition, the code is available for download
from the corresponding articles of the authors.

B. Experimental Preparation

1) Training Data: In terms of training data, optical remote
sensing images are often used for training despeckling models
for SAR images, because they are typically not affected by
the multiplicative noise that is commonly encountered in SAR
images. This makes it possible to train a despeckling model
on optical remote sensing images that can be more effectively
applied to SAR images. In addition, optical remote sensing
images often have a higher spatial resolution and lower noise
levels, which can provide more accurate and reliable reference
data, and help to improve the performance and accuracy of the
despeckling model. This article selected the NWPU-RESISC45
sensing image public data created by Northwestern Polytechni-
cal University as the training dataset [55]. This dataset comprises
31 500 images, covering 45 scene categories, with 700 images
per category, and each image has the same size, and dimensions
of 256 x 256. The study randomly selected 800 images as the
training set, and after each training phase, ten images not in the
training set were selected as the test set.

Due to the fact that the NWPU-RESISC45 dataset consists
of color images, which contain more complex and diverse color
information and saturation details compared to real SAR images,
the task undertaken in this article is primarily focused on enhanc-
ing the applicability of the proposed model in SAR image de-
noising. Therefore, it is necessary to convert the aforementioned
NWPU-RESISC45 dataset into grayscale images, allowing the
network to better learn the features relevant to SAR image
denoising tasks. Additionally, various levels of multiplicative
noise were introduced into the training set of simulated data.
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Fig. 6. Real SAR images. (a) SARI. (b) SAR2. (c) SAR3.

TABLE I
SAR SATELLITE IMAGING PARAMETERS INVOLVED IN THE THREE IMAGES

Figure = Band Polarization Operating mode
SARI1 X HH, VH, HV, VV  Stripmap, ScanSAR
SAR2 L HH Interferometric
SAR3 Ku HH, HV Interferometric

This facilitates improved learning of textures and fine details
similar to those found in SAR images, thereby enhancing the
model’s capability to handle denoising tasks in real SAR images.

2) Test Data: The test data consists of simulated image test-
ing and real SAR image testing. For simulated images, five looks
(L=1,2,4,8,10) were added to four publicly available natural
image datasets: classic5 [56], Kodak24 [57], McMaster [58], and
Set12 [59]. The pixel intensities of all images in these datasets
range from O to 255. For each image in these four datasets,
the performance of the proposed denoising method as well as
other comparative algorithms were tested, and the denoising
results were averaged to ensure fair comparison. This testing
approach mitigates the possibility of any algorithm excelling on
specific images, thus enabling a more accurate assessment of the
denoising performance of each algorithm under varying noise
conditions.

For the real image test, three real SAR images in different
scenarios as shown in Fig. 6 are used to further illustrate the
superiority of the proposed algorithm. For convenience, these
three images are named SAR1, SAR2, and SAR3, and each has a
size of 256 x 256. Fig. 6(a) shows a two-look X-band amplitude
image (Bedfordshire) in Southeast England, offering fine spatial
resolution and detailed observations of the target area. Fig. 6(b)
shows a three-look amplitude image obtained by the airborne
system of the Sandia National Laboratories. The airborne system
enables SAR data collection from a platform such as an aircraft,
allowing for greater flexibility in acquiring images of various
areas of interest. Fig. 6(c) shows a four-look Ku-band amplitude
SAR image with 1-m resolution over Horse Track, Albuquerque,
NM, USA. Compared to X-band, the Ku-band SAR system used
for this imagery offers higher frequencies, better penetration of
vegetation, and improved target identification.

The aforementioned three images are real SAR images ob-
tained from satellites with the parameters shown in Table II.
These three test images represent SAR images obtained through
scanning in three different frequency bands, thereby providing
a more comprehensive evaluation of the effectiveness of the
proposed algorithm in this study.
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3) Evaluation Metrics: In the quantitative evaluation of the
synthetic dataset, PSNR, SSIM, MSE, MAE, and VIF [60]
were used to better demonstrate the superiority of the proposed
method. The difference between the restored image and the
clean image can be effectively estimated by the PSNR, and the
ability of the method for noise suppression is stronger with a
higher value, and the restored image is also closer to the clean
image. The ability to preserve edges in denoised images can be
effectively evaluated by SSIM, and the ability of the algorithm to
restore edge details in the image is stronger with a larger value.
MSE is measured by calculating the variance of pixel values
between two images, while MAE is evaluated by computing
the average difference of pixel values between two images.
Smaller values of MSE and MAE indicate a closer resemblance
between the restored image and the original image. The degree
of preservation of image details and structure can be quantified
using VIF. A higher VIF value implies a greater capability of
the algorithm to preserve image details and structure. Therefore,
an increase in the VIF value can indicate an improvement in the
algorithm’s ability to maintain the image quality.

This article evaluates the performance of various denoising
methods using several reference-free indices: ENL [61], EPD-
ROA along the horizontal direction (HD) and vertical direction
(VD) [62], UM based on first- and second-order descriptors [63],
MoR [62], and information entropy. ENL measures the relative
strength of speckle noise in an image and the performance of
a filter. The higher the ENL value, the smoother the filtered
image and the better the filtering effect. EPD-ROA measures
the ability of the denoised image to preserve details, the closer
its value is to 1, the stronger the ability of the image to preserve
details. For ENL and EPD-ROA, if the repaired image is too
smooth, the ENL value will be high, because the spatial details
and edge preservation are high, making the repaired image lack
texture detail information, and the EPD-ROA index is far from
1. Therefore, for SAR image filtering, a filter with excellent
performance should be able to ensure that the filtered image is as
clean as possible while still retaining a large amount of texture
detail information so that it can achieve high performance in
both the ENL and EPD-ROA indices. UM measures the overall
denoising ability of the image. The smaller the UM value, the
better the denoising effect of the algorithm, and the better the
overall performance of the denoised image. The closer the MoR
value is to 1, the better the preservation of radiation in the re-
paired image. The magnitude of information entropy represents
the amount of information in a denoised image. In general, the
denoised image should be simpler than the original image as
the impact of noise has been reduced or eliminated, resulting
in lower entropy values. Therefore, evaluating the effectiveness
of denoising algorithms can be done by calculating the entropy
of the denoised image. If a denoising algorithm is successful in
reducing the noise and improving the image clarity, the entropy
value should decrease.

C. Performance Comparisons on Synthetic Noises

The synthetic data with synthetic speckle noise was used to
test the algorithms on two reference metrics, PSNR and SSIM.
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The test dataset, which contains five levels of speckle noise
(L =1, 2,4, 8, 10), was used to evaluate the performance of
different denoising algorithms on four different datasets. The
average PSNR and SSIM values obtained by different denoising
algorithms on four different datasets are shown in Tables III and
IV. The best results are highlighted in bold, and the second-best
results are highlighted in red. It is shown that model-based meth-
ods, BSS-SR and PPB, are outperformed by PDSNet, indicating
that the properties of clean images can be better simulated by
deep learning for image restoration tasks compared to traditional
manual denoising models. The average PSNR/SSIM values of
the proposed network have a significant difference compared
to other methods and surpass all comparison techniques. Better
denoising ability is demonstrated by PDSNet, which can have
a difference in the PSNR of 0.04—4.42 dB and SSIM of 0-0.05
compared to the second-best method. The results of the remain-
ing three metrics, including MSE, MAE, and VIF, are presented
in Tables V— VII. Based on the results of these three metrics,
it can also be observed that the proposed algorithm exhibits the
best performance.

The visual results in Fig. 7 show a comparison between the
noise image restoration results of the proposed network and
other networks by magnifying some areas. It can be observed
from the areas outside the letters in Fig. 7 that PPB, S2V,
SIFSDNet, and AGSDNet have better denoising ability and
can effectively remove noise in that area. However, the ability
of these denoising algorithms to preserve fine details in the
image is poor, resulting in blurred letters. Simulated image
denoising by several CNN-based methods is also ineffective,
and there is still a lot of noise information in the denoised
image. Texture information in the image is well preserved by
traditional model-based algorithms such as BSS-SR, CNN-GFF,
CCSNet, and Nb2Nb based on deep learning, but they cannot
completely remove speckle noise. The SAR-IDDP algorithm
not only fails to completely eliminate noise information in the
image, but also destroys the original texture and detail features
in the image. Compared to other methods, the IRCNN shows
good denoising performance, but a staircase effect appears in
the denoised image, affecting the denoising effect. FFDNet,
SIFSDNet, and AGSDNet can effectively suppress noise in the
image, but some image details are lost. The proposed denoising
model PDSNet has better visual effects compared to the other
11 methods, and the image background can be more accurately
identified and denoised, resulting in a result closer to the true
image.

D. Performance Comparisons on Real SAR Images

The ability of testing nine denoising algorithms on three real
SAR images in Fig. 6 to denoise is further demonstrated. The
results of the algorithms on the three images are shown in Figs.
8-10. The performance of the denoising algorithm on the SAR1
image is shown in Fig. 8. The red-bordered areas are marked
and magnified for comparison. As can be seen from the figure,
speckle noise can be removed to some extent by BSS-SR and
S2V, but the denoised image is too blurred, and a lot of texture
information is lost. Poor denoising performance is exhibited
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TABLE III
AVERAGE PSNR VALUE OF 11 DENOISING METHODS ON FOUR DATASETS

Datasets L BSS-SR PPB CNN-GFF IRCNN FFDNet CCSNet Nb2Nb S2V  SAR-IDDP  SIFSDNet AGSDNet Proposed
1 26.62 23.54 24.87 26.65 26.56 26.51 25.29 25.33 26.16 25.35 25.19 26.69
2 26.78 24.67 27.33 27.54 27.45 27.42 26.74 26.58 27.03 26.45 26.68 27.67
Classic5 4 26.86 25.98 27.98 28.46 28.46 28.28 27.11 27.21 27.89 27.85 28.02 29.40
8 26.90 27.01 28.80 29.77 29.53 29.59 28.83 28.19 29.18 29.45 29.45 30.93
10 26.91 27.89 29.12 30.23 30.09 30.20 30.07 29.31 30.12 30.33 30.42 32.12
1 25.83 23.86 25.03 26.74 26.82 26.74 25.81 25.05 25.84 25.17 25.68 27.07
2 25.92 25.25 27.47 27.68 27.67 27.57 26.63 25.46 27.08 27.23 27.01 27.73
Kodak24 4 25.97 27.14 28.23 28.85 28.83 28.66 27.48 26.53 28.13 27.99 28.25 30.13
8 25.99 28.00 29.21 30.00 30.29 30.13 29.99 29.23 30.54 29.21 29.36 31.79
10 26.00 28.58 29.62 30.35 30.85 30.71 30.52 29.94 31.28 30.18 30.27 32.88
1 28.03 25.31 27.08 27.38 27.41 28.22 27.63 26.24 27.85 27.66 27.31 28.46
2 28.17 26.93 28.38 28.56 28.74 28.62 28.12 27.84 28.10 28.43 28.78 29.12
McMaster 4 28.24 27.45 29.26 29.39 29.75 29.66 28.97 28.48 29.26 29.43 30.14 31.85
8 28.27 28.14 30.33 30.41 30.99 30.90 30.06 29.13 30.67 31.08 31.35 33.59
10 28.28 28.67 30.71 30.75 31.45 31.36 31.11 30.04 31.33 31.65 32.33 34.41
1 25.67 24.44 26.58 27.03 27.01 26.49 25.41 24.56 25.52 25.37 25.11 28.75
2 25.80 25.12 27.42 27.59 27.26 27.12 26.67 26.15 26.90 26.58 26.58 29.28
Setl2 4 25.85 26.97 28.08 28.49 28.36 28.35 27.32 27.84 28.04 28.01 27.96 31.97
8 25.88 27.76 28.89 29.56 29.58 29.62 29.16 29.05 30.11 29.22 29.19 33.46
10 25.90 28.13 29.91 29.99 30.14 30.17 30.01 29.89 31.45 30.14 30.15 35.87
TABLE IV
AVERAGE SSIM VALUE OF 11 DENOISING METHODS ON FOUR DATASETS
Datasets L BSS-SR  PPB CNN-GFF IRCNN FFDNet CCSNet Nb2Nb S2V  SAR-IDDP  SIFSDNet AGSDNet Proposed
1 0.71 0.57 0.72 0.69 0.68 0.70 0.68 0.65 0.71 0.63 0.62 0.72
2 0.72 0.61 0.74 0.72 0.71 0.72 0.70 0.73 0.73 0.70 0.71 0.75
Classic5 4 0.72 0.69 0.81 0.75 0.75 0.76 0.74 0.73 0.76 0.73 0.75 0.82
8 0.73 0.71 0.85 0.79 0.76 0.84 0.77 0.78 0.83 0.79 0.79 0.86
10 0.72 0.79 0.85 0.81 0.77 0.85 0.82 0.82 0.88 0.83 0.83 0.91
1 0.69 0.59 0.70 0.69 0.69 0.71 0.68 0.66 0.68 0.62 0.64 0.75
2 0.70 0.67 0.71 0.70 0.71 0.71 0.72 0.66 0.71 0.71 0.69 0.77
Kodak24 4 0.70 0.73 0.72 0.79 0.78 0.72 0.76 0.73 0.77 0.74 0.77 0.84
8 0.71 0.81 0.75 0.81 0.73 0.75 0.81 0.80 0.85 0.78 0.78 0.88
10 0.71 0.83 0.76 0.83 0.74 0.76 0.83 0.86 0.89 0.82 0.82 0.90
1 0.79 0.68 0.76 0.68 0.68 0.70 0.72 0.72 0.80 0.72 0.72 0.82
2 0.80 0.71 0.79 0.70 0.69 0.71 0.80 0.75 0.81 0.75 0.75 0.83
McMaster 4 0.81 0.74 0.82 0.73 0.72 0.77 0.84 0.80 0.84 0.81 0.81 0.89
8 0.81 0.82 0.84 0.77 0.77 0.80 0.86 0.82 0.88 0.84 0.84 0.92
10 0.81 0.83 0.84 0.81 0.80 0.82 0.88 0.88 0.91 0.88 0.88 0.95
1 0.75 0.60 0.71 0.71 0.70 0.68 0.69 0.64 0.72 0.64 0.64 0.80
2 0.76 0.63 0.72 0.72 0.70 0.70 0.75 0.72 0.77 0.69 0.69 079
Setl12 4 0.77 0.70 0.72 0.77 0.73 0.73 0.81 0.75 0.82 0.74 0.72 0.87
8 0.77 0.75 0.75 0.79 0.76 0.77 0.84 0.82 0.86 0.78 0.77 0.89
10 0.77 0.79 0.80 0.80 0.79 0.82 0.88 0.84 0.91 0.81 0.81 0.93
TABLE V
AVERAGE MSE VALUE OF 11 DENOISING METHODS ON FOUR DATASETS
Datasets L  BSS-SR PPB CNN-GFF  IRCNN  FFDNet CCSNet Nb2Nb S2V SAR-IDDP  SIFSDNet ~ AGSDNet  Proposed
1 141.61 287.79 211.88 140.63 143.68 145.23 192.34  190.58 157.43 189.71 196.83 139.34
2 136.48  221.86 120.25 114.57 116.97 117.78 137.74 14291 128.84 147.25 139.66 111.19
Classic5 4 133.99 164.08 103.53 92.70 92.70 96.62 12649  123.61 105.70 106.67 102.58 74.65
8 132.76 129.44 85.72 68.56 72.46 71.46 85.12 98.64 78.53 73.80 73.80 52.49
10 132.45 105.70 79.63 61.67 63.69 62.09 63.98 76.20 63.25 60.26 59.03 39.90
1 169.86  267.35 204.21 137.75 135.23 137.75 170.64  203.27 169.47 197.73 175.82 127.67
2 166.37 194.12 116.43 110.94 111.19 113.78 141.28  184.96 127.37 123.05 129.44 109.67
Kodak24 4 164.47 125.63 97.74 84.74 85.13 88.53 116.17  144.57 100.02 103.30 97.29 63.11
8 163.71 103.06 78.00 65.03 60.82 63.11 65.17 77.64 57.42 78.00 75.35 43.06
10 163.34 90.17 70.97 59.99 53.47 55.22 57.69 65.93 48.43 62.39 61.11 33.50
1 102.35 191.46 127.37 118.87 118.05 97.97 11222 154.55 106.68 111.45 120.80 92.70
2 99.10 131.85 94.42 90.59 86.91 89.35 100.25  106.19 100.71 93.34 86.12 78.54
McMaster 4 97.52 116.97 77.1 74.83 68.88 70.32 82.43 92.27 77.10 74.14 62.96 42.47
8 96.85 99.79 60.27 59.17 51.77 52.85 64.13 79.45 55.73 50.71 47.65 28.45
10 96.62 88.32 55.22 54.71 46.57 47.54 50.36 64.43 47.87 44.47 38.03 23.55
1 176.23  233.93 142.92 128.85 129.44 14591 187.10  227.55 182.42 188.83 200.48 86.71
2 171.03  200.02 117.78 113.26 122.20 126.21 139.98  157.79 132.76 142.92 142.92 76.75
Set12 4 169.08 130.64 101.18 92.06 94.86 95.08 120.53  106.93 102.11 102.82 104.01 41.31
8 167.91 108.91 83.96 71.96 71.63 70.97 78.9 81.67 63.40 77.82 78.36 29.31
10 167.14 100.02 66.39 65.17 62.96 62.53 64.88 66.69 46.57 62.96 62.82 16.83
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TABLE VI
AVERAGE MAE VALUE OF 11 DENOISING METHODS ON FOUR DATASETS

Datasets L  BSS-SR PPB CNN-GFF  IRCNN  FFDNet CCSNet Nb2Nb S2V SAR-IDDP  SIFSDNet  AGSDNet  Proposed
1 0.0465  0.0663 0.0569 0.0463 0.0468 0.0471 0.0542  0.0539 0.0490 0.0538 0.0548 0.0461
2 0.0456  0.0582 0.0428 0.0418 0.0422 0.0424 0.0458  0.0467 0.0443 0.0474 0.0462 0.0412
Classic5 4 0.0452  0.0500 0.0397 0.0376 0.0376 0.0384 0.0439  0.0434 0.0402 0.0403 0.0396 0.0338
8 0.0450  0.0444 0.0362 0.0323 0.0333 0.0330 0.0360  0.0388 0.0346 0.0336 0.0336 0.0283
10 0.0450  0.0402 0.0349 0.0307 0.0312 0.0308 0.0312  0.0341 0.0311 0.0303 0.0300 0.0247
1 0.0261 0.0327 0.0286 0.0235 0.0233 0.0235 0.0261  0.0285 0.0260 0.0281 0.0265 0.0226
2 0.0258  0.0279 0.0216 0.0211 0.0211 0.0213 0.0238  0.0272 0.0226 0.0222 0.0228 0.0209
Kodak24 4 0.0256  0.0224 0.0198 0.0184 0.0185 0.0188 0.0216  0.0240 0.0200 0.0203 0.0197 0.0159
8 0.0256  0.0203 0.0177 0.0161 0.0156 0.0159 0.0161  0.0176 0.0152 0.0177 0.0174 0.0131
10 0.0256  0.0190 0.0168 0.0155 0.0146 0.0149 0.0152  0.0162 0.0139 0.0158 0.0156 0.0116
1 0.0202  0.0277 0.0226 0.0218 0.0217 0.0198 0.0212  0.0249 0.0207 0.0211 0.0220 0.0193
2 0.0199  0.0230 0.0194 0.0190 0.0186 0.0189 0.0200  0.0206 0.0201 0.0193 0.0186 0.0177
McMaster 4 0.0198  0.0216 0.0176 0.0173 0.0166 0.0168 0.0182  0.0192 0.0176 0.0172 0.0159 0.0130
8 0.0197  0.0200 0.0155 0.0154 0.0144 0.0145 0.0160  0.0178 0.0149 0.0142 0.0138 0.0107
10 0.0197  0.0188 0.0149 0.0148 0.0136 0.0138 0.0142  0.0161 0.0138 0.0133 0.0123 0.0097
1 0.0519  0.0597 0.0467 0.0443 0.0444 0.0472 0.0534  0.0589 0.0528 0.0537 0.0553 0.0304
2 0.0511 0.0552 0.0424 0.0416 0.0432 0.0439 0.0462  0.0491 0.0450 0.0467 0.0467 0.0342
Setl2 4 0.0508  0.0446 0.0393 0.0375 0.0380 0.0381 0.0429  0.0404 0.0395 0.0396 0.0398 0.0251
8 0.0506  0.0408 0.0358 0.0331 0.0331 0.0329 0.0347  0.0353 0.0311 0.0345 0.0346 0.0211
10 0.0505  0.0391 0.0318 0.0315 0.0310 0.0309 0.0315  0.0319 0.0267 0.0310 0.0310 0.0160
TABLE VII
AVERAGE VIF VALUE OF 11 DENOISING METHODS ON FOUR DATASETS
Datasets L BSS-SR  PPB CNN-GFF IRCNN FFDNet CCSNet Nb2Nb S2V  SAR-IDDP  SIFSDNet AGSDNet Proposed
1 2.85 2.53 2.69 2.85 2.83 2.84 272 2.71 2.81 2.70 2.69 2.86
2 2.87 2.64 2.95 2.94 293 2.93 2.86 2.85 2.90 2.83 2.86 2.97
Classic5 4 2.88 278 3.02 3.05 3.05 3.03 291 291 2.99 2.98 3.00 3.17
8 2.88 2.89 3.12 3.20 3.16 3.20 3.09 3.03 3.15 3.16 3.16 3.36
10 2.88 3.01 3.16 3.26 3.22 3.27 3.24 3.16 3.28 3.28 3.29 3.51
1 2.77 2.56 2.70 2.85 2.86 2.86 2.76 2.69 277 2.68 2.74 291
2 2.78 271 2.93 2.95 2.95 2.94 2.86 2.72 2.89 291 2.88 2.98
Kodak24 4 2.79 291 3.01 3.10 3.10 3.05 2.95 2.85 3.02 2.99 3.03 3.26
8 2.79 3.02 3.12 3.23 3.23 322 3.23 3.15 3.31 3.14 3.15 3.46
10 2.79 3.09 3.17 3.28 3.29 3.29 3.30 3.25 3.41 3.26 3.27 3.60
1 3.02 272 291 291 291 3.00 2.95 2.82 3.01 2.95 292 3.08
2 3.04 2.88 3.05 3.04 3.05 3.05 3.03 2.99 3.03 3.04 3.08 3.15
McMaster 4 3.05 2.94 3.16 3.13 3.17 3.18 3.14 3.07 3.17 3.17 3.25 3.47
8 3.05 3.04 3.28 3.26 3.32 3.33 3.26 3.14 3.34 3.36 3.39 3.69
10 3.05 3.10 3.32 3.31 3.39 3.39 3.38 3.27 3.42 3.45 3.52 3.81
1 2.78 2.61 2.85 2.89 2.88 2.83 2.73 2.64 2.75 2.71 2.69 3.10
2 2.79 2.68 2.93 2.95 291 2.89 2.87 2.81 2.90 2.84 2.84 3.15
Set12 4 2.80 2.88 3.00 3.06 3.03 3.03 2.96 2.98 3.03 3.00 2.98 3.48
8 2.80 2.98 3.09 3.18 3.17 3.17 3.16 3.13 3.27 3.14 3.13 3.66
10 2.81 3.03 322 3.23 3.24 3.25 3.26 3.23 3.44 3.25 3.25 3.99

McMaster(L=2)

(O]

Fig. 7. Denoised results of different methods for image with L = 2 speckle noise. (a) Original. (b) BSS-SR. (c) PPB. (d) CNN-GFF. (e) IRCNN. (f) FFDNet.
(g) CCSNet. (h) Nb2Nb. (i) S2V. (j) SAR-IDDP. (k) SIFSDNet. (1) AGSDNet. (m) Proposed.
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Fig. 8.
(f) CCS-Net. (g) S2V. (h) SIFSDNet. (i) AGSDNet. (j) Proposed.

Performance comparison results of different methods on the real SAR image SARI1. (a) BSS-SR. (b) PPB. (¢) CNN-GFF. (d) IRCNN. (e) FFDNet.

® (€3] ()

Fig. 9.
(f) CCS-Net. (g) S2V. (h) SIFSDNet. (i) AGSDNet. (j) Proposed.

by PPB, CNN-GFF, IRCNN, and CCS-Net. Although they can
keep the clear texture information in the image, the noise in the
original image has not been removed, and the denoised image
is similar to the original noisy image. Good coherence speckle
suppression and edge preservation capabilities are demonstrated
by FFDNet, SIFSDNet, and AGSDNet algorithms but introduce
false shadows in the denoised image. By carefully observing the
magnified area, it can be seen that not only does the proposed
method PDSNet remove speckle noise better and retain the
contours of the blocks in the farmland, but it also does not
introduce additional false shadows in the image. Figs. 9 and

® @

Performance comparison results of different methods on the real SAR image SAR2. (a) BSS-SR. (b) PPB. (¢) CNN-GFF. (d) IRCNN. (e) FFDNet.

10 show the results of the recovery of the other two images. The
results are similar to those of SAR1. From the visual effects of
Figs. 8-10, it can be seen that, compared to other denoising
methods, the details in the image such as the edges can be
better preserved by PDSNet, the integrity of the structure of the
denoised image can be ensured, and the appearance of blocky
effects and false shadows can be suppressed.

Table VIII displays the overall evaluation results of six
quality metrics for SARI image, with the best results in each
column shown in bold and the second-best results in red. From
the table, it can be observed that the smallest UM value belongs
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Fig. 10.
(f) CCS-Net. (g) S2V. (h) SIFSDNet. (i) AGSDNet. (j) Proposed.

TABLE VIII
OBJECTIVE EVALUATION INDEX VALUES OF DIFFERENT DENOISING
METHODS FOR SAR1 IMAGE
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®

Performance comparison results of different methods on the real SAR image SAR3. (a) BSS-SR. (b) PPB. (¢) CNN-GFFE. (d) IRCNN. (e) FFDNet.

TABLE IX
OBJECTIVE EVALUATION INDEX VALUES OF DIFFERENT DENOISING METHODS
FOR SAR2 IMAGE

Method ENL MoR UM EPD-ROA-HD  EPD-ROA-VD  Entropy Method ENL MoR UM EPD-ROA-HD  EPD-ROA-VD  Entropy
BSS-SR 44079 09839  97.0955 0.4763 0.6459 6.97 BSS-SR 6.5498 0.8760  51.5728 0.7050 0.6753 6.50
PPB 49700 09464 949313 0.5744 0.5016 7.18 PPB 7.0206 09626  82.1540 0.7296 0.7201 6.40
CNN-GFF  4.0854 09759  3420.8 0.7881 0.7835 7.36 CNN-GFF 58464 09772 199.9934 0.7681 0.7455 6.77
IRCNN  4.8984 0.8013  96.1634 0.8031 0.7718 717 IRCNN 67507 09857  50.9886 0.7316 0.7632 6.5
FFDNet 49624 0.9803  222.1988 0.8046 0.7874 7.07 FFDNet ~ 7.0186 09835  50.1246 0.7358 0.7591 6.41
CCSNet  4.8653  0.8959  87.6783 0.9321 0.8976 7.24 CCSNet ~ 7.1445 09917 489166 0.7751 0.7638 6.46
S2v 53076 0.9852  93.3415 0.8166 0.7924 6.79 S2v 7.1264  0.8864  47.7278 0.9386 0.8759 6.35
SIFSDNet 54701 0.9524  338.5627 0.9205 0.9054 7.05 SIFSDNet  7.2919  0.9509  68.3541 0.9406 0.9248 6.48
AGSDNet 54702  0.9624  345.8649 0.9207 0.8939 6.84 AGSDNet  7.2647  0.9868  69.1356 0.9120 0.9204 6.49
Proposed ~ 6.0357 0.9853  82.5173 0.9466 09111 6.66 Proposed ~ 7.3020 0.9884  35.8438 0.9407 0.9563 598

to PDSNet, indicating that PDSNet exhibits the best denoising TABLE X

performance. Additionally, while the highest ENL value also
belongs to PDSNet, its EPD-ROA values along HD and VD are
also closest to 1, indicating that the best smoothing performance
and the best edge preservation ability are provided by PDSNet.
In comparison to other methods, PDSNet exhibits a higher
MoR value than all other algorithms, indicating that it can
achieve better radiation preservation performance. Based on the
results obtained from the entropy analysis, it can be observed that
the proposed algorithm has also achieved optimal outcomes.
This indicates that the algorithm proposed in this article is
capable of effectively removing noise from the image and
enhancing the clarity of the denoised image. Similarly, Tables
IX and X display the repair results of SAR2 and SAR3. From
Tables VIII-X, the following can be concluded. First, the
smallest UM value belongs to PDSNet, indicating that it has the
best overall noise suppression performance. Second, PDSNet
exhibits a higher ENL value than all other denoising methods.
Third, the EPD-ROA values and MoR along HD and VD are

OBJECTIVE EVALUATION INDEX VALUES OF DIFFERENT DENOISING METHODS
FOR SAR3 IMAGE

Method ~ ENL ~ MoR UM EPD-ROA-HD  EPD-ROA-VD  Entropy
BSS-SR 34888 0.8762 693165 0.6515 0.5644 6.97
PPB 30170 09728 81.1955 0.7704 0.6258 7.16
CNN-GFF  2.6489  0.9757  385.9755 0.8395 0.7560 7.16
IRCNN 32818 09735  69.4630 0.8255 0.7548 721
FFDNet 33042 09644  67.0258 0.8124 0.7569 7.19
CCSNet ~ 3.6082 09879  65.8058 0.8408 0.7605 123
S2v 32507 09358 527821 0.8495 0.7836 6.83
SIFSDNet  3.9432 09717 843843 0.8629 0.8225 7.08
AGSDNet  3.7653 09788  83.7434 0.8550 0.8121 6.97
Proposed 39720  0.9881  19.4002 0.8644 0.8408 6.81

closer to 1, indicating that our method has a better radiation
preservation performance and the best edge preservation ability.
Finally, the algorithm proposed in this article exhibits superior
entropy results compared to any other restoration algorithms.
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E. Edge Preservation Performance Comparison

The focus of this study is on the restoration of a large amount
of noise present in SAR images using a filtering model, aim-
ing to improve the performance of subsequent tasks such as
image segmentation and target recognition. To demonstrate the
effectiveness of texture preservation after restoration by various
algorithms, images in Figs. 7 and 9 were selected and specific
regions were magnified. The Canny edge detection operator
was employed to showcase the edge details of the restored
SAR images by each algorithm. The visualization results are
presented in Figs. 11 and 12.

The Canny edge detection results for the letter region are
illustrated in Fig. 11. The aforementioned filtering algorithms,
which failed to completely eliminate noise, exhibit a significant
presence of false edge information in the edge detection results.
Additionally, other algorithms with strong denoising capabilities
lead to edge disappearance. In comparison to other algorithms,
the edges of the image restored by the proposed algorithm are
closest to the edges of the original image.

Upon observing Fig. 12, it can be noted that algorithms (d) and
(f) fail to completely remove noise, resulting in the presence of a
significant number of false edges in the filtered edge images. On
the other hand, algorithms (a), (b), (c), (e), and (g) successfully
eliminate noise, but mistakenly remove certain genuine texture
information, leading to insufficient richness in texture details.
Considering the overall restoration performance of each algo-
rithm, it can be concluded that the proposed algorithm exhibits
the best balance, as it achieves the denoising task while better
preserving the edge and texture features of the SAR image.

F. Verifying the Validity of the Improved Loss Function

Figs. 13 and 14, respectively, display the training iteration
of PDSNet with the addition of a structured loss and the image
restoration effect. As can be seen in Fig. 13, in the initial training
stage, using MSE as the loss function has a faster speed, but
oscillates and converges slowly in the later stages, requiring
40 rounds of training to complete. In contrast, PDSNet with
the added structural loss function demonstrates stability in the
training process and converges after 25 rounds. The network
with the added structural loss function performs better than the
traditional MSE loss function in terms of both training speed
and accuracy. This is because the new loss function trains the
denoising network in a more determinate direction, effectively
accelerating the training speed while ensuring image quality.
Additionally, the original image structure is better preserved dur-
ing the training process, resulting in more significant denoising
effects and improved metrics.

A challenge arises in objectively evaluating the effectiveness
and visual impact of incorporating a structural loss function due
to the lack of a corresponding clean image for SAR images.
To address this issue, an airport image with abundant textural
details was selected and subjected to speckle noise with a level
of L = 8. The restoration results are depicted in Fig. 14. The
substantial amount of brick pattern information present on the
airport’s ground in Fig. 14(a) was retained in the lower part of the
aircraft after incorporating the structural loss function, as shown

6387

® ()

Fig. 11. [Edge detection results of simulated speckle noise inpainting.
(a) Original. (b) BSS-SR. (c) PPB. (d) CNN-GFE. (e) IRCNN. (f) FFDNet.
(g) CCSNet. (h) Nb2Nb. (i) S2V. (j) SAR-IDDP. (k) SIFSDNet. (1) AGSDNet.
(m) Proposed.

in Fig. 14(d). Although the network successfully removed the
noise from the image in Fig. 14(b) through the PDSNet network
without incorporating a structural loss function, the brick texture
features of the airport’s ground were lost, as shown in Fig. 14(c).
It is important to note that the texture of the brick stripes above
the aircraft was not substantial, and following the addition of
speckle noise [as shown in Fig. 14(b)], the texture information
was almost completely lost. As a result, it is challenging to
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Fig. 12.  Edge detection results of real SAR inpainting. (a) BSS-SR. (b) PPB.
(c) CNN-GFF. (d) IRCNN. (e) FFDNet. (f) CCSNet. (g) S2V. (h) SIFSDNet.
(i) AGSDNet. (j) Proposed.

fully recover the information on these severely damaged brick
patterns during the subsequent restoration process.

To further validate the effectiveness and generalization ability
of the proposed joint loss function, experiments were conducted
on simulated datasets by adding the proposed structural loss
function to algorithms that only used MSE as a loss function.
Fig. 15 presents a comparison of the results of the algorithm
before and after adding the structural loss function in the task
of denoising simulated speckle noise in the Setl2 dataset for
four different L values (L = 1, 2, 4, 8). As can be seen from
Fig. 15, the addition of the structural loss function significantly
improved the performance of the three algorithms in the de-
noising task. The proposed denoising model PDSNet achieved
amaximum improvement of 10% in the SSIM index after adding
the structural loss function. The restored image texture was
better preserved compared to traditional denoisers that only used
mean squared error. Meanwhile, the PSNR index also increased
slightly, indicating that the model trained with the joint loss
function had better overall denoising performance. In SIFSDNet
and AGSDNet, although PSNR decreased by about 2%, the
SSIM index increased by up to 14%, indicating that the proposed
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Fig.14.  Improved loss function denoising effect. (a) Original. (b) Noise image.
(c) Proposed with MSE loss. (d) Proposed with MSE and structural loss.

joint loss function effectively improved the ability to preserve
edge detail information in the task of denoising simulated noise
without causing a decrease in the network’s performance in
denoising speckle noise.

The improved joint loss function was additionally tested on
real SAR image denoising, and the results were evaluated using
five nonreference metrics, as shown in Table XI. It was observed
that the ENL metric, which measures the smoothness of the
restored image, decreased for all three algorithms after the
addition of the structural loss. However, the UM values also
decreased (the smaller the value of UM, the better), indicat-
ing an improvement in the combined denoising ability. The
EPD-ROA and MoR along HD and VD values got closer to
1, indicating better radiosity preservation and edge preservation
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Synthetic speckle noise restoration results of several speckling methods under different number of views. (a) L=1.(b) L=2.(c) L=4.(d) L=8.

TABLE XI
THE PERFORMANCE OF STRUCTURAL LOSS ON SEVERAL NETWORKS

Method ENL MOR UM EPD-ROA-HD  EPD-ROA-VD

SIFSDNet+MSE Loss 5.4701 0.9524 338.5627 0.9205 0.9054
SIFSDNet+MSE and Structural Loss 5.3052 0.9612 318.2385 0.9311 0.9273
Change Amplitude 1301%  1092% 1 6.00% 1 1.15% 1 2.42%
AGSDNet+MSE Loss 5.4702 0.9624 345.8649 0.9207 0.8939
AGSDNet+MSE and Structural Loss 5.3124 0.9669 327.6871 0.9342 0.9075
Change Amplitude 1 288% 1047% 1 5.26% 1 1.47% 1 1.52%
Proposed+MSE Loss 6.8925 0.9514 88.3154 0.9242 0.8962
Proposed+MSE and Structural Loss 6.0357 0.9846 82.5173 0.9466 09111
Change Amplitude 1 1243%  1349% 1 6.57% 1 2.42% 1 1.66%

performance for the networks trained with the added structural
loss function. It is worth noting that the ENL values for the
proposed PDSNet algorithm had a significant change after the
addition of the structured loss function. This is because PDSNet
uses more pooling layers to reduce the size of the image and
retain important features, but during the upsampling process,
it increases the size of the image without adding the original
image information, causing blurring and a higher level of image
smoothing. The addition of the structural loss function alleviated
the image smoothing problem caused by the MSE loss function
and the upsampling process, and ensured the image smoothness
while retaining more texture features to achieve better visual
effects. The ENI index of PDSNet is not much different from
the other two methods after the addition of the structural loss
function, which fully proves the effectiveness of the proposed
structural loss function.

V. DISCUSSION

This section discusses the complexity evaluation of various
algorithm models, including parameter size and testing time. The

specific results can be found in Table XII. For algorithms based
on traditional filtering methods, only the testing time is provided.
And for methods using deep learning, the model parameter sizes
and testing times are provided. The testing time is calculated
as the average time required to restore three real SAR image
data. The experiments for the first two traditional models are
conducted using the mentioned CPU, while the experiments for
the following six deep learning models are conducted on the
mentioned GPU.

The results show that the traditional BSS-SR algorithm is less
complex, and thus, faster compared to the PPB algorithm. On
the other hand, deep-learning-based algorithms perform better in
terms of time. Considering the image restoration results from the
previous section, deep-learning-based algorithms outperform
traditional methods in terms of performance and restoration
speed.

The proposed algorithms have smaller sizes compared to the
S2V, SIFSDNet, and AGSDNet models, making them more
suitable for deployment and operation on resource-limited em-
bedded devices. By introducing prior knowledge and attention
mechanisms, the proposed algorithms can better understand the
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TABLE XII
PARAMETER SIZES OF COMPARATIVE MODELS AND AVERAGE TEST TIME

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

BSS-SR PPB IRCNN  FFDNet S2v SIFSDNet  AGSDNet  Proposed
Parameters(MB) - - 18.7 2.59 15.9 8.25 7.68 5.25
Test time(S) 3.6306  27.5218  2.2789 2.6957 1.2638 1.2157 1.8362 2.8641

noise distribution and structural information in SAR images,
resulting in more accurate denoising processing. Although this
detailed processing approach may increase the computational
burden and restoration time, it significantly enhances denoising
effectiveness, making the restored SAR images clearer and more
usable.

Furthermore, with the continuous improvement of comput-
ing power in embedded devices, for resource-limited embed-
ded devices, smaller model sizes mean less storage space and
lower memory usage, enabling embedded devices to easily
handle SAR image denoising tasks. At the same time, through
reasonable optimization and parallelization of algorithms, the
restoration time can also be reduced to some extent, making the
proposed algorithms more feasible in practical applications.

VI. CONCLUSION

A deep CNN model called PDSNet was proposed, based on
prior-driven and structural loss functions, to solve the problem
of lack of discriminative ability and loss of details in remote
sensing image de-noising. Prior knowledge of remote sensing
images and structural loss functions are used by the model
to more accurately identify important information, thus accu-
rately removing noise while preserving more texture and detail
information. Additionally, an integral term was added to the
denoising network to robustly protect against a large amount
of noise interference. Experiments were conducted on optical
remote sensing images and real SAR images to validate the
effectiveness of the proposed algorithm. Comparisons with other
denoising methods show that the proposed method has the best
visual effect and highest objective evaluation index in terms of
suppression of speckle noise and real SAR image noise. Further,
results of loss function modification experiments show that the
problem of oversmoothing images caused by traditional mean-
squared-error-based loss functions can be effectively solved by
adding structural loss functions.

The denoised SAR images after the proposed method make an
important contribution to improving the accuracy of downstream
task image detection and classification. The application of iter-
ative algorithms and related neural networks in various images,
including image denoising, deblurring, and superresolution, will
be the focus of future research.
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