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Atmospheric Humidity Estimation From Wind
Profiler Radar Using a Cascaded

Machine Learning Approach
Anas Amaireh , Yan Zhang , Senior Member, IEEE, and P. W. Chan

Abstract—A method for estimating atmospheric relative humid-
ity using wind profiler radar and a “cascaded” machine learning
algorithm is introduced. Unlike existing methods in the literature,
the proposed approach uses only I/Q or moment data from the
profiler radar to generate an intermediate pressure profile, which
serves as training data for humidity estimations without requiring
temperature as an input feature. The study examines the potential
of various machine learning algorithms and evaluates their per-
formance using field data collected by the Hong Kong Observatory
between January and June 2021. Importantly, this is the first time a
cascading machine-learning solution has been successfully applied
to the humidity estimation problem, resulting in a simplified model
with reduced complexity and fewer required features.

Index Terms—Decision tree, ensemble tree, machine learning
(ML), neural network (NN), profiler radar, relative humidity (RH).

I. INTRODUCTION

E STIMATING the atmospheric humidity profile is essential
for various fields, including weather prediction, climate

studies, aviation safety, agriculture, hydrology, and environ-
mental monitoring [1], [2], [3], [4], [5], [6], [7], [8]. Accurate
estimates of the humidity profile can help improve decision-
making and planning in these fields and ultimately lead to a
better understanding of the earth’s atmosphere and its role in
the global climate system [9], [10]. The challenge of retrieving
low-medium (up to 10 km) atmosphere humidity using Doppler
wind profiler radar has been discussed in numerous previous
studies [11], [12], [13], [14], [15], [16], [17], [18], [19], [20].

Most of the existing methods depend on the physical models,
which are based on a set of assumptions about the behavior of
the atmosphere, and they rely on precise input data to make
accurate predictions. On the other hand, the physical models
are limited in their accuracy and adaptation capability due to
the interactions of uncertainties in the physical parameters, the
limited data availability, and the model structure limitations [21].
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For example, these models require input values for physical
parameters such as temperature, pressure, and wind speed;
but the measurement of these parameters is often uncertain,
leading to small input faults and significant model prediction
errors [22]. Additionally, the models require large amounts of
data and can be biased by data gaps and errors, which may
not accurately reflect the behavior of the real-world system.
These limitations could result in physical models providing
unreliable or inaccurate predictions of atmospheric humidity
profiles. In such cases, alternative methods, such as machine
learning (ML) algorithms, may be desirable to offer humid-
ity profile estimations based on less dependence on physical
modeling.

ML algorithms capable of constructing complex, nonlin-
ear relationships between input variables from vast datasets
had diverse applications across energy, environmental engi-
neering, and atmospheric predictions [23], [24], [25], [26],
[27], [28], [29], [30]. The unique characteristics of ML algo-
rithms are the flexibility and reducing necessity for accurate
physical parameters [24]. Therefore, ML algorithms supple-
ment traditional physical models through their adaptability to
unknown and dynamic environments. In the recent develop-
ments, critical parameters like interfacial tension and viscosity
have been modeled using techniques such as multilayer per-
ceptron (MLP) optimized with Levenberg–Marquardt (LMA)
and gradient boosting decision tree (GBDT) [25], [26], [29],
[30].

Exploring ML methods for atmospheric parameter prediction
is an active field of study. For example, artificial neural networks
(ANNs) have been utilized for refractivity prediction in several
studies [31], while these studies do not address the specific
needs of profiler radar sensing. Other studies have demonstrated
the application of ML to weather forecasting using various
types of meteorological data. For instance, linear and functional
regression models have been employed to forecast maximum
and minimum temperatures for seven days using two days’ worth
of weather data [32]. Similarly, an hourly rainfall forecast model
based on a support vector machine (SVM) was developed to
predict rainfall with high temporal resolution and accuracy [33].
For satellite remote sensing, ML has been integrated to improve
data interpretation. A standalone cloud detection algorithm was
designed for the Microwave Humidity Sounder-2 (MWHS-
2) satellite sensors, utilizing a GBDT. This algorithm was
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trained on observations from China’s new-generation weather
radar [34]. Looking at the incorporation of Global Navigation
Satellite System-Radio Occultation data, ML has been leveraged
to forecast wind fields in the Beijing–Tianjin–Hebei region of
China [35]. Initial processing established relationships between
thermodynamic and kinetic parameters through historical mon-
itoring data. This step was followed by predictions using ML
models, such as long short-term memory (LSTM), convolutional
neural networks (CNNs), and deep neural networks (DNNs). ML
has also been applied to estimate relative humidity (RH) with
specific resolutions. A study used random forest and XGBoost to
estimate daily near-surface RH at a 1-km resolution over Japan
and South Korea, with separate schemes for clear and cloudy
sky conditions [36], has been reported.

In this study, we explore a potentially novel approach that
primarily uses ML for improved estimation of humidity. First,
we separate the clutter return from useful atmosphere echoes
through spectrum processing to obtain the basic wind estima-
tion and clutter spectrum properties. Next, we feed the pro-
filer estimation outputs to generate a set of “features.” Finally,
those higher level features and part of the low-level moment
estimations from spectrum processing are combined as training
features for ML. The bagged learning tree obtained from tuning
and comparison with other algorithms is applied as the optimal
solution of ML algorithm. It is proven the most effective and
computationally efficient algorithm based on the evaluations.
The novel contribution includes: 1) The radar profiler moment
data is sufficient to obtain reasonably accurate humidity estima-
tions. 2) This is the first time that a “cascading ML” solution,
which produces an intermediate training stage with “synthetic”
pressure data, is successfully applied to the humidity estimation
problem. 3) The RH is estimated with no need to use the
temperature as an intermediate input feature.

This article is organized as follows: Section II summarizes
the instrumentation, data collection, and existing methods based
on physical models. In Section III, the proposed approach is
described in detail. Climatology details for the first half of
2021 in Hong Kong are presented in Section IV. Section V offers
a comprehensive methodology for the study, including sections
on ML algorithms, performance evaluation, data cleaning and
preprocessing, and a dataset description. Validation results based
on the available datasets are presented in Sections VI, while
Section VII provides conclusions and suggestions for future
work.

II. INSTRUMENTATION AND PHYSICAL MODELING METHODS

HKO’s wind profilers operate at 1299 MHz and locate at
multiple locations in Hong Kong. Two of the three profilers
are installed at the airport, while the third is installed at the city
center. A profile has three beams, one vertical and two 50 ◦C
tilted from the vertical. These three beams can support retrieval
of the 3-D vector wind (u, v, w). Raw I/Q data can be collected,
and it is useful for estimating the vector wind profiles. On
the other hand, spectral moment data directly from the profiler
outputs can be used to study atmospheric turbulence parame-
ters, which are related to the RH profiles. For the radiosonde

truth data, HKO uses Vaisala RS41-SG radiosondes to perform
daily routine soundings for both automatic (AUTOSONDE) and
manual launches. These radiosondes are used to measure RH,
temperature, and pressure with 2% to 4% range of accuracies.
The sounding data are collected every 6 min. In addition to
information on RH, temperature, and pressure, it also provides
information such as wind speed, wind direction, and dew points.
The data covered up to an altitude of around 10 km. The HKO
used the measurement data collected by the city center’s profiler
for training and testing. The combination of the wind profiler
data and the radiosonde data provide a comprehensive view of
the atmospheric conditions, which improves weather parameters
forecasting.

The classical method of estimating the humidity profile is
based on the following (1) and (2). In these equations, q0 is the
humidity at level z0. T represents the temperature, P represents
the atmospheric pressure, and θ is θ = (1000/P )

2
7 . M is the

vertical (z-direction) gradient of the atmosphere refractivity. C2
n

is the turbulence structure parameter, which can be estimated
from the zeroth radar moment (or total power) of radar return
signals. α2 is a scalar constant dependent on specific regions.
dV
dz is the vertical shear of the horizontal wind vector, which
can be estimated from the second radar moment (wind velocity
estimations). Turbulent kinetic energy ε is directly related to the
third radar moment or spectrum width.

Although (1) and (2) are used as the initial guidance to
RH retrieval algorithms, they reveal the importance of accu-
rate estimations of the spectrum moments. They also inspire
the application of ML algorithms in the way that temperature,
pressure, or radar spectrum moments might be directly used
as feature vectors for humidity retrieval. However, the precise
estimation of radar moments is affected by many factors, such as
clutter, noise, and equipment quality. Even with preprocessing as
a way to enhance the estimation performance, using the physical
models still have many challenges. Our approach as follows
will then focus on ML solution that is “inspired” by the physical
model parameters

q(z) = θ2
∫ z
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P
+

1

7750

dθ
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)
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C2
n = α2 ε

2/3M2(
dV
dz

)2 . (2)

III. APPROACH AND METHODOLOGY

A. Processing Flow

The overall technical solution is described in Fig. 1. Typically,
the first step is using classic Doppler radar signal processing to
obtain an accurate estimation of the Doppler spectrum and wind
estimation for different altitudes (up to 10 km). Spectral data
from the three beams of the wind profiler have been used to
estimate three moments, power (first moment), velocity (second
moment), and spectrum width (third moment). Next, we sepa-
rate the clutter return from useful atmosphere echoes through
spectrum processing and obtain both the basic wind estimation
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Fig. 1. Comparison of traditional physical model-based method (a) and the
cascaded ML method (b) for humidity profile estimation.

and clutter spectrum properties. Next, the profiler estimation
outputs and other in-situ probe information (such as pressure)
are combined to generate a set of training features for ML.

For a complex physical model in (1) and (2), the normal way
of processing, which was adopted in existing literature, is to
estimate the wind vectors first and then calculate turbulence
parameters, an M , as in Fig. 1. However, the lack of access
to vendor-specific and proprietary information on the profiler
processing algorithms has been an obstacle to obtain the val-
idated wind vector estimations. Therefore, we explored a new
approach that moves the “entry-point” of ML closer to the raw
spectrum data. The proposed idea is that instead of performing
precise wind estimation, we use the moment data from the raw
spectrum directly as ML feature variables. Here the moments are
calculated from the three beams of the wind profiler as feature
variables for ML models to predict RH directly. So, instead of
relying on precise wind estimation and temperature and pressure
parameters from radiosonde data, which is not always available,
the moment data from the raw spectrum are used to predict the
RH in two-cascaded steps. In the first step, the moment data
are used as input features to predict the pressure. In the second

step, the predicted pressure and moment data are combined to
predict the RH without using temperature. In the cascaded ML
solution, the temperature, which is typically regarded as a crucial
element in predicting humidity according to the literature, is no
longer necessary. This simplifies the ML model and reduces the
computational loads for the RH estimation.

The level-II radar profiler moments are acquired as the inputs.
To ensure the integrity of the processing pipeline, the processing
procedure includes a range of data cleaning steps, such as outlier
removal and smoothing, which are detailed in the subsequent
sections. The feature engineering phase was exploratory and
iterative. It involved exploring potential features and assessing
their correlation with the target variables of pressure and hu-
midity. A set of features was selected based on their optimal
correlation with the target variables and their wide variance. An
innovative aspect of the study is the creation and application of
the “synthetic” pressure data. Following a rigorous data-cleaning
process, the algorithm begins with selecting suitable moment
data and other features for pressure prediction. Next, various ML
algorithms are trained to achieve an optimal pressure estimation.
This optimal pressure estimation is an additional input feature
for humidity estimation. The moment data and the predicted
pressure are then trimmed again to ensure optimal correlation
with RH and the highest variance. These high-quality input
features are then used in training different ML algorithms to
achieve the most accurate possible humidity prediction.

B. General Climatology of Hong Kong

Understanding the climatology trend of the region will help us
better understand data and algorithm verification. The first half
of 2021, from January to June, was unusually warm, primarily
due to the four months’ worth of temperatures that were much
above average. The average maximum, the average minimum,
and the entire time average temperature were 26.3, 23.3, and
21.3 ◦C, respectively. For January 2021, the early half expe-
rienced cooler temperatures than the second half, which was
comparatively warmer. The mean temperature for the month
was 16.2 ◦C, 0.3 ◦C cooler than the average of 16.5 ◦C. It was
drier and sunnier in January 2021 than typical. Total sunlight
hours for the month were 217.3, which is 49% more than
the average of 145.8 h. In the month, there was very little
rain. February 2021 was significantly sunnier and warmer in
Hong Kong than usual due to the northeast monsoon across
southern China being less than typical for the majority of
the month. The average maximum and minimum temperatures
were 23.5 and 17.5 ◦C, respectively, which are 4.1 and 2.2 ◦C
higher than the corresponding normal. More than double the
average of 101.7 h, the total number of hours of bright sunlight
in February was 205.1. As a result, the winter in Hong Kong
during December 2020, January 2021, and February 2021 was
hotter than typical, mainly due to the unusually sunny and warm
weather. March 2021 in Hong Kong continued to be unusually
warm despite fewer outbreaks of cold air from the north. The
monthly average minimum and maximum temperatures were
22.0 and 24.8 ◦C, respectively. These three temperatures were
2.5 and 2.9 ◦C, above their respective normals, and were the
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TABLE I
SUMMARY OF THE CLIMATE IN HONG KONG DURING THE FIRST HALF OF

2021 [37]

maximum monthly average values for March on record. The
total rainfall for the month was only 3.5 mm, or around 5% of
the average amount of 75.3 mm, making it significantly drier
than typical. April 2021 stayed substantially warmer than usual.
The average monthly minimum temperature was 22.4 ◦C, and
the average monthly maximum temperature was 27.0 ◦C. These
values were 1.3 and 1.4 ◦C higher than normal. With a total
rainfall of just 32.5 mm, or around 21% of the average of
153.0 mm, April 2021 was also significantly drier than usual
due to the dominance of upper-air anticyclones across southern
China for the majority of the month. May 2021 was the warmest
May in Hong Kong, primarily due to the stronger-than-normal
subtropical ridge across southern China. The monthly average
low temperature of 27.0 ◦C was recorded for May and was 2.5 ◦C
beyond its respective normal. The average high temperature,
32.1 ◦C, was 3.3 ◦C higher than average. Hong Kong saw the
hottest spring in history from March to May 2021, along with
unusually warm temperatures in March and April 2021. With
rainfall data of only 65.0 mm, May was also significantly drier
than typical. The local weather was unpredictable on the first
day of June 2021 due to a low-pressure trough with heavy rains
and violent thunderstorms. This month had rainfall totals of
628.0 mm or roughly 28% more than the average of 491.5 mm.
The heavy rains helped Hong Kong recover from the extreme
dryness of the previous several months. With a mean temperature
of 28.8 ◦C, which is 0.5 ◦C higher than the average of 28.3 ◦C,
June was also hotter than typical. In June 2021, three tropical
cyclones passed across the South China Sea, and the western
North Pacific [37]. Table I presents the meteorological values
for January through June, including the mean RH, mean cloud
amount, total rainfall, and total evaporation. The mean RH starts
at 62% in January and gradually increases to 82% in June. On the
other hand, the mean cloud values vary throughout the months,
starting at 47% in January and reaching the highest value of 83%
in June. The total rainfall in January is recorded as a trace, while
it is 62.1 mm in February. It reached its highest value in June,
with a total of 628.0 mm. The total evaporation is similar to
the other elements, in which the lowest value was in January at
87.9 mm, and the highest was in May at 141.0 mm. Fig. 2 shows
the pressure and humidity values for the study region during the
first half of 2021 at different altitudes (from 0 to around 10 km).

C. ML Algorithms and Methods Used in This Study

1) Regression Decision Tree: A decision tree is a multivariate
method that takes into account events that may miss a certain

Fig. 2. Comparison (a) pressure values, (b) RH values of the region with
different times (month) and different altitudes.

condition. Instead of immediately dismissing such events, the
decision tree evaluates whether other conditions could help
categorize them correctly. In theory, a decision tree may han-
dle numerous output classes, with every branch breaking into
many subbranches [38]. The regression tree algorithm typically
consists of several steps: setting the accuracy of the prediction
criterion, picking splits, deciding when to finish splitting, and
determining the ideal tree [39]. For example, the criterion for ac-
curacy in the first stage might be cross-validation, resubstitution
error, or test sample error. As indicated in (3), the resubstitution
error is determined as the mean squared error of the same data
used to generate the prediction p

E(p) =
1

N

N∑
i=1

(ui − p (vi))
2 (3)

whereN is the number of samples, ui and vi represent the learn-
ing samples. To compute cross-validation error, the samples are
divided into k smaller samples of nearly equal sizes. The small
sample is utilized to build the predictor p. The cross-validation
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error is then calculated based on this small sample, as indicated
in the following equation:

ECV (p) =
1

Nk

∑
k

∑
(ui,vi)∈Xk

(
vi − p(k) (ui)

)2

(4)

p(k) is calculated from the small sample Xk. The test sample
error splits the entire number of instances into two subsamples;
X1 with size N1, and X2 with size N2. As indicated in (5), the
error of the test sample is determined

Ets(p) =
1

N2

N∑
(ui,vi)∈Xk

(vi − p (ui))
2 (5)

where Xk is the small sample that is not utilized to build
the predictor. The regression tree technique then determines
splits to estimate continuous variable values. Splits are often
quantified using a node impurity measure, which indicates the
relative homogeneity in terminal nodes. As illustrated in (6), the
least-squared deviation is employed as a metric in a regression
tree for node impurity

R(t) =
1

Nw(t)

∑
i∈t

wifi (ui − v̄(t))2 (6)

where Nw(t) shows instances’ weighted number in node t. wi

presents the amount of the weighting variable for i. fi, ui, and
v̄(t) show the frequency variable, the response variable, and the
node t weighted mean, respectively.

The third stage is to decide when to cease splitting, which is
determined by the number of nodes required. The next stage is
to choose the tree with the right size, often known as the opti-
mum tree, typically attained by tree pruning. The tree pruning
approach utilized in this study is the smallest sized tree with the
least amount of error.

This work estimates pressure and RH using regression ML
techniques. These regression-based algorithms make predictions
based on one or more categorical or continuous predictor fea-
tures [40]. The selection of the DTR method for forecasting
pressure and humidity is due to several advantages over other
methods. The DTR method provides less training time than the
other algorithms, shows a higher accuracy with large datasets,
and is more resilient to changes in data patterns and shifts
in distribution. Also, it uses if–then conditions to determine
optimal value predictions. These factors make the decision tree
method more efficient in resource utilization and a reliable and
robust choice for predicting values in various environments.

2) Bagged and Boosted Regression Trees: Bagging is a
method that minimizes prediction variance and hence enhances
prediction accuracy. Its basic concept is that numerous bootstrap
samples are taken from the available data, a prediction algo-
rithm is applied to each bootstrap sample, and the results are
aggregated. In the case of regression, the findings are averaged
to give the overall forecast, with the variance minimized due
to this averaging [41]. So, the bagged trees are based on the
observation that a portion of the error in a given regression tree
is related to the unique choice of the training data. By resam-
pling with replacement and growing regression trees without

averaging and pruning them, the output’s variance component
is decreased [41]. Boosting decreases variance and bias in su-
pervised learning and turns weak learners into powerful ones
with a high correlation with the real classification [42]. Most
boosting techniques involve iterative learning weak classifiers,
which are combined to form a final strong classifier. Once they
are included, they are evaluated in a way that would be relevant
to the accuracy of the poor learners. The data weighting is
reevaluated once a poor learner is provided. Misclassified input
data gains weight, whereas correctly classified instances lose
weight. As a result, new poor learners focus more on cases mis-
classified by prior weak learners [43]. Boosting involves fitting
models to training data iteratively, gradually increasing focus
on observations inadequately described by the current group of
trees. The methods through which boosting algorithms measure
the lack of fit and pick settings for the following iteration
differ [43]. Furthermore, boosting is a method for reducing the
loss function that involves adding a new tree at each step that best
decreases the loss function. The initial regression tree in BRT is
the one that minimizes the loss function the most. The focus of
the subsequent steps is on the residuals: variance in the response
that is not yet described by the model [44].

3) Artificial Neural Networks (ANNs): In this study, differ-
ent ANN configurations are tested, such as wide ANN (large
layer size), medium ANN (medium layer size), and narrow
ANN (small layer size), and ANN with two layers (BiNN) or
three layers (TriNN). We use the Rectified Linear Unit (ReLU)
function as the activation function for different types of ANNs.
This function, which controls neuron activation, has proven to
be more effective in backpropagation and gradient descent than
other activation functions, and it can prevent potential issues of
gradient vanishing and exploding. A systematic manual tuning
process was carried out to identify the most suitable hyper-
parameters for the neural network (NN) models. This process
entailed examining various combinations of hyperparameters,
including different learning rates, numbers of hidden layers and
neurons, activation functions, and regularization techniques. The
model’s performance was evaluated after implementing these
various combinations, and then the mean squared error was used
to assess the effectiveness of each combination. The guiding
principle for the selection was the set of hyperparameters that
delivered the most robust performance on a validation dataset.
The manual tuning process employed in this study yielded
considerable benefits. First, its simplicity helped deepen the
understanding of how various hyperparameters influenced the
model’s performance. Moreover, it demonstrated its efficiency
and practicality in selecting appropriate hyperparameters.

4) Selection of the ML Solutions: The selection of ML
solutions included model complexity, ease of interpretation,
computational efficiency, and prediction accuracy. The bagged
ensemble tree (BET), coarse tree, and wide neural network
(WNN) emerged as the primary algorithms for this task. How-
ever, several alternative methods were also examined and com-
pared to validate these choices and gain a broader perspective.
The bagged ensemble tree emerged as a particularly effective
tool in this study. Its strength lies in robustly managing high-
dimensional data and its natural ability to resist overfitting.
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TABLE II
DETAILS OF THE HYPERPARAMETERS OF THE PROPOSED ML MODELS

As an ensemble method, the BET combines the predictions of
multiple decision trees, thereby reducing variance and enhancing
model accuracy. Plus, it yields crucial insights into the factors
influencing humidity prediction via feature importance scores.
However, it is worth noting that bagged trees can demand
substantial computational resources, especially when dealing
with huge datasets. In contrast, the coarse tree, known for its
simplicity and interpretability, facilitates easier visualization and
understanding of data relationships. This straightforwardness
reduces the risk of overfitting, which is crucial given the intricate
nature of atmospheric data. However, this simplicity might also
restrict its ability to understand complex, nonlinear relationships
between features, potentially compromising accuracy. The wide
NN model was chosen for its proficiency in modeling nonlinear
relationships. With a single layer and numerous neurons, the
WNN successfully grasps the complicated interplay between
atmospheric parameters. However, it might struggle to effec-
tively capture more intricate hierarchical representations that
deeper networks handle better. Also, careful tuning of neurons
is needed to prevent overfitting.

The models and their chosen hyperparameters are shown in
Table II.

D. Method for Performance Evaluation

The root-mean-square-error (RMSE), mean square error
(MSE), correlation coefficient (ρ), mean absolute error (MAE),
and the coefficient of determination (R-Squared or R2) metrics
are used to examine the estimation errors of pressure and RH, in
order to assess the performance of the different algorithms. The

RMSE is calculated by the following equation:

RMSE =

√√√√√
⎡
⎣
(∑N

i=1 (Xtrue(i)− Xpredicted(i))
2
)
/

N

⎤
⎦ (7)

where N is the total number of samples, Xtrue and Xpredicted are
the true and estimated (or predicted) values, respectively.

The MSE is the average of the squared errors between the true
and estimated (or predicted) values. The equation of the mean
squared error is as follows:

MSE =
1

2N

N∑
i=1

(Xtrue (i)− Xpredicted (i))
2 . (8)

The correlation coefficient has values range from −1 to 1.
The following equation depicts the correlation coefficient (ρ)
between the true and estimated values:

ρ (Xtrue , Xpredicted) =
1

N − 1

N∑
i=1

(
Xtrue (i)− μtrue

σtrue

)

(
Xpredicted (i)− μpredicted

σpredicted

)
(9)

whereμ and σ are the mean and standard deviation, respectively.
The fourth evaluation metric in this study is the MAE, which

calculates the errors’ average magnitude in a group of predic-
tions without considering their direction. MAE is the mean of
the absolute differences between actual and forecast observation
over the test samples, with equal weights for all individual
differences [45]:

MAE =
1

N

N∑
i=1

|Xtrue (i)− Xpredicted (i)| . (10)

Finally, the coefficient of determination (also known as R-
Squared or R2) is a statistical metric used to evaluate the
performance of a regression model. It measures the amount of
variation in the dependent variable that can be explained by the
independent variable. The R-squared value ranges from 0 to 1. A
higher R-squared value indicates that the model explains more
of the variability in the dependent variable and that there are
fewer discrepancies between the observed and fitted data [46].
R-squared is typically calculated by comparing the total sum of
squares to the residual sum of squares, where ¯Xtrue is the mean
of the truth values

R2 = 1−
∑N

i=1 (Xtrue (i)− Xpredicted (i))
2

∑N
i=1

(
Xtrue (i)− ¯Xtrue

)2 . (11)

E. Data Quality Control and Prepossessing

The outliers and missing numbers could impact the ML
algorithm’s reliability and validity, leading to inaccurate re-
sults. Detecting and handling missing variables and outliers
to maintain the quality and validity of study results can be
accomplished using various strategies, such as imputing missing
values, eliminating outliers, or changing the data to a more
appropriate scale [47]. Missing data can either be discarded
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during preprocessing or substituted with values calculated using
statistical algorithms. In this study, all missing values have been
removed to ensure accurate and reliable results [48]. Outliers
must either be modified once their sources have been found or
replaced with replacement values. In this work, all the outliers
have been removed (similar to [47]). After removing the outliers
and missing data from the complete dataset, the data were
further smoothed to enhance the correlation between the input
features and the targets [49]. The moving median smoothing
method [50], also known as the linear Gaussian filter, was used
in this study. It is remarkably robust against uncommon events,
such as sudden shocks, which can be well handled by the Laplace
distribution [51]. Furthermore, this method can enhance the
correlation between the input features and targets.

F. Description of the Dataset

A six-month dataset encompasses both Doppler spectral mo-
ments and radiosonde data taken at 49 different heights, from
300 to 9900 m, with an interval of 200 m, were used for the ver-
ification. In the Doppler spectral data, one sample was recorded
every 1 min and 42 s, while in the radiosonde data, samples were
collected at 12 PM and 12 AM every day. Each set of radiosonde
data consisted of samples taken every 2 s until the 47th minute.
The data were adequately assigned to match the corresponding
height, date, and time, ensuring accuracy and reliability in the
results. The dataset collected over the course of 6 months offers a
comprehensive understanding of the pressure and RH patterns.
To effectively utilize this information, we employed a cross-
validation approach with K = 5 to evaluate the performance
of our proposed ML algorithms. The cross-validation dataset
consisted of 85% of the 1 406 688 unique samples, while the
remaining 15% was used as the testing dataset to validate the
accuracy of the algorithms. The complete 6 month data were
divided into a cross-validation dataset with 1 195 688 samples
and a testing dataset with 211 000 samples.

G. Prevention of Overfitting

To prevent overfitting, a strategy was adopted to apply the
K-fold cross-validation technique with K set to 5. This technique
divides the data into five distinct subsets, running a training
cycle and validating the model five times, using a different
subset as validation data. This comprehensive approach gives
a reliable estimate of how the model might perform on unseen
data. Moreover, out of the 1 406 688 unique samples, a majority,
85% or 1 195 688 samples, were used in the cross-validation
dataset, with the remaining 15% (211 000 samples) set aside as
a testing dataset. This large set of previously unseen data, held
throughout the model’s training phase, helps correctly measure
the model’s performance and provides a safety net against
overfitting. Furthermore, early stopping was used during the
model’s training process. This strategy continuously evaluates
the model’s performance on the validation set during training and
stops the procedure if the validation error rises. This proactive
technique protects against overfitting caused by intrinsic noise
in training data. As a result, these metrics balanced the tradeoff

between bias and variance, which leads to limiting models’
overfitting.

IV. RESULTS AND DISCUSSION

We first evaluate the entire 6 month dataset, then investi-
gate the result data from each individual month. The results
of both evaluation are compared and analyzed to provide a
comprehensive understanding of the pressure and RH patterns
and the performance of the proposed ML algorithms. For ei-
ther evaluations, we first present a section, which estimates
the pressure values using regression techniques with Doppler
spectral moments as input features. Then, based on the cascading
ML algorithm, the second section estimates RH using the same
features plus the predicted pressure values from the first step. The
experiments were conducted on a desktop computer equipped
with an i7-2600 K CPU at 3.40 GHz and 24 GB of RAM. The
detailed data tables related to this section are included in the
appendix of this article.

A. Analysis of Results From 6 Months Data

1) Pressure Prediction: Tables IV and V summarize compar-
isons of the performance of various ML algorithms, evaluated
using six different metrics, namely root mean squared error
(RMSE), mean squared error (MSE), correlation coefficient,
mean absolute error (MAE), R-squared, prediction speed (ob-
servations/second), and training time in seconds. The analysis
was conducted on both the cross-validation and testing datasets.
The best four RMSEs and MSEs values achieved by the ML
methods of the predicted pressure for the cross-validation dataset
are (87.09, 7585.12), (92.43, 8542.43), (92.55, 8564.87), and
(94.54, 8938.46) for the bagged ensemble tree (BET), coarse
tree (CT), medium tree (MT), and wide neural network (WNN),
respectively. Therefore, these models have the highest accuracy
in evaluating the predicting mistakes for the cross-validation
dataset and the lowest distances between the predicted mean
and actual values. Moreover, the achieved MAE values of the
same ML algorithms are 61.42, 64.03, 64.07, and 64.67 for the
bagged ensemble tree (BET), coarse tree (CT), fine tree (FT),
and medium tree (MT), respectively. Furthermore, based on
cross-validation dataset analysis, the correlation coefficients for
the best four ML models are 0.91, 0.9, 0.89, and 0.88 for FT,
BET, MT, and CT, respectively. The tree models and the BET
offer the best outcomes in correlation. The best three R-squared
values of the utilized models for the cross-validation dataset are
0.78, 0.75, and 0.75 for the BET, MT, and CT, respectively. This
demonstrates that the BET model explains 78% of the variability
found in the pressure variable. Linear regression, on the other
hand, performs poorly, implying that the selection criteria are
not linear.

On the other hand, the best four RMSEs and MSEs values
achieved for pressure estimation are (86.64, 7505.88), (92.26,
8511.95), (92.28, 8516.51), and (93.63, 8766.93) for the WNN,
BET, narrow neural network (NNN), and boosted ensemble
tree (BoostedET), respectively. Further, the MAE values of the
same ML algorithms were 60.98, 63.19, 63.56, and 64.36 for the
WNN, BoostedET, BET, and NNN, respectively. These results
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Fig. 3. Partial dependence plots (PDR) between pressure and inputs features
of the six-month dataset. (a) PDR for Pr and pressure, (b) PDR for velocity and
pressure, (c) PDR for SNR and pressure, (d) PDR for SW and pressure.

prove that the BET and WNN methods have better stability than
the others in having low estimation errors for pressure param-
eters in cross validation and testing datasets. According to the
testing dataset evaluation, the correlation coefficients for the top
four ML models were 0.91, 0.9, 0.89, and 0.88 for BoostedET,
WNN, BET, and NNN, respectively, correspondingly. As can
be seen, the ensemble tree and NN models produce the highest
performance in terms of correlation. The top three R-squared
values for the BET, WNN, and NNN for the testing dataset
were 0.78, 0.78, and 0.76, respectively, indicating that the BET
and WNN models can account for 78% of the variability in the
pressure variable.

In term of computational speed, all of the employed NNs
can predict up to 1 445 728 observations per second, the linear
regression model can estimate roughly 652 257 observations per
second, the decision trees can estimate approximately 603 824
observations per second, and the ensemble trees can handle
128 835 observations per second. However, the NN methods and
the FDT have longer training times than the other models, with
the WNN, which has 100 neurons, being the slowest. In contrast,
the linear regression and ensemble trees were the fastest models
during training, taking around 37 s and 560 s, respectively.

In summary, the bagged ensemble tree was found to have
the optimal overall performance. So it is used to estimate
pressure value, which are then used as an input feature to
estimate the RH in the next step.

A partial dependence plot (PDP) is shown in Fig. 3 to better
illustrate the relationship between the input features and the
target response. This plot demonstrates how the predicted target
response varies with changes in the input features. For example,
the expected pressure increases as the received power increases
above −40 dBm. In the case of the WNN model, there is a
linear relationship between the velocity and the pressure when

Fig. 4. Scatter density graphs with a color map of predicted versus actual
pressure of the (all months) validation dataset using different ML methods.
(a) Coarse tree. (b) Bagged tree. (c) Wide NN.

the velocity is less than 0. On the other hand, the BET and MT
models exhibit an exponential relationship between the SNR
and the pressure, mainly when the SNR is around −25 dB. Con-
versely, all models demonstrate an inverse relationship between
the spectrum width and the pressure values. These observations
highlight the importance of considering the impact of individual
input features on the predicted target response.

Scatter plots of truth and the estimated pressure values are
displayed as density figures with color maps in two ways to
address the issue of many sample points in the plots. Fig. 4
shows a typical scatter density plot with a color map of the
estimated pressure by the multiple regression models versus the
actual pressure data. Fig. 5 presents a different shape of scatter
density plot that includes minisquares with a color map inside the
plot. All these figures describe using the cross-validation data
of 6 months. According to these plots, a slight improvement
can be observed for the bagged tree model compared to the
other two mentioned models: coarse tree and wide NN, since the
scatter points for the bagged tree are concentrated more around
the center than the other models. Figs. 6 and 7 show a normal
scatter density plot with a color map and a scatter density plot
with squares of the predicted pressure by the three ML models
versus the truth pressure values. Similar to the cross-validation
dataset, the bagged tree model performs better than CT and
WNN because the points are clustered closer to the center.

As illustrated in Fig. 8, three pressure profiles are computed
sequentially from the predicted pressure values using the BET,
CT, and WNN and then compared to simultaneous radiosonde
profiles. This figure shows how well the proposed ML algorithms
can predict the pressure at different heights from 0 to 10 km,
which is evident that the Bagged tree could estimate the pressure
values at various altitudes with high accuracy, significantly
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Fig. 5. Different scatter density plots with color maps within of expected
versus actual pressure of the (all months) validation dataset using various ML
algorithms. (a) Coarse tree. (b) Bagged tree. (c) Wide NN.

Fig. 6. Scatter density graphs with a color map of expected versus actual pres-
sure of the (all months) test dataset generated by the following ML algorithms.
(a) Coarse tree. (b) Bagged tree. (c) Wide NN.

below 7 km. Similar observations can be seen in both WNN
and coarse tree plots. Finally, it is worth mentioning that all the
plotted samples are random samples from the 6 month dataset
to prove the ability of these ML methods to predict the pressure
values during different seasons and times.

2) Humidity Estimation: Next, we uses the same dataset
of 6 month, including the four input features, along with the

Fig. 7. Scatter density graphs with color maps of estimated versus truth
pressure of the (all months) test dataset using several ML algorithms. (a) Coarse
tree. (b) Bagged tree. (c) Wide NN (WNN).

Fig. 8. Vertical profiles of predicted and actual/true pressure values for the
three ML algorithms. (a) Bagged tree. (b) Coarse tree. (c) Wide NN.

previously predicted pressure to estimate the RH. The data are
split into two datasets: cross-validation, with 1 195 688 samples,
and testing, with 211 000 samples. The same 11 ML models with
the same hyperparameters were used in the pressure prediction
stage to train and test the dataset. Tables VI and VII show
the performance details of the ML algorithms in terms of the



AMAIREH et al.: ATMOSPHERIC HUMIDITY ESTIMATION FROM WIND PROFILER RADAR USING A CASCADED MACHINE LEARNING APPROACH 6361

six performance metrics for the cross-validation and the testing
datasets, respectively.

The top three RMSEs and MSEs results of the cross-validation
dataset based on the RH (RH) are (22.2, 493.02), (24.17, 584.14),
and (24.47, 598.7), respectively, corresponding to the BET, CT,
and WNN methods. On the other hand, the ML algorithms with
the best MAE performances are BET, MT, and FT, with result
values of 17.44, 18.76, and 18.88, respectively. In addition, the
FT and BET models had the highest correlation coefficients
at 0.86 and 0.83, respectively, with a significant difference
from the other ML approaches. Moreover, the best achievable
R-squared value for the BET in the cross-validation dataset is
0.48, indicating that it explains 48% of the variability seen in
the humidity.

For the testing dataset, the ML methods that achieved the
minimal RMSEs and MSEs values of the predicted humidity
are (21.9, 479.51), (24.04, 578.03), and (24.5, 600.05) using
BET, CT, and MT. Meanwhile, the best achieved MAE values
are 17.14, 18.43, and 18.45 for the BET, FT, and MT. The BET,
MT, and CT algorithms obtained the best correlation coefficient
values, which are 0.70, 0.62, and 0.62, respectively. As can
be noticed, the ensemble and decision tree models have the
highest correlation coefficient, indicating that these models have
linear correlations between truth and estimated humidity values.
Furthermore, the BET technique has the highest R-squared value
(0.49) for the testing dataset.

Similarly to the pressure value estimating, all of the NNs,
decision trees, linear regression, and ensemble trees can predict
up to 1 406 412, 836 348, 519 682, and 121 471 observations per
second, respectively. The NNs and FDT had the slowest training
time compared to the other models. The linear regression model
and the BoostedET are the fastest models throughout the training
phase, with times of roughly 53 s and 803 s, respectively. As a
result, the bagged ensemble tree is the best ML model to predict
RH when compared to the other proposed ML techniques.

The partial dependence plot (PDP) for the four input features
(velocity, SNR, SW, and projected pressure) versus RH is shown
in Fig. 9. The bagged tree displays a nonlinear connection with
humidity in the PDR for velocity and SW values. When the
SNR is less than −10 dB, it can be shown that there is a linear
relationship between the SNR and the humidity for the BET and
CT. The link between anticipated pressure and RH is linear in
the last plot for all the models presented.

Figs. 10 and 11 illustrate two scatter density plots with col-
ormaps of the three predicted humidity versus the truth humidity,
using three different algorithms. All of these results are based on
the 6 months of cross-validation data. These results show that the
bagged tree model performs better than the other two models.
For the testing dataset, Figs. 12 and 13 show a typical scatter
density plot with a colormap and a scatter density plot with
squares of the predicted RH versus the actual humidity values.
Similarly, the bagged tree model outperforms all of the other
techniques. As shown in Fig. 14, a humidity profile is generated
progressively from predicted humidity values using the best ML
model (BET) compared to the corresponding radiosonde profile.
The plotted humidity profile was selected randomly from the
6 month dataset to demonstrate the BET method’s ability to

Fig. 9. PDRs between humidity and input variables of the whole 6 month
dataset. (a) PDR for velocity and humidity. (b) SNR and humidity. (c) SW and
humidity. (d) Predicted pressure and humidity.

Fig. 10. Scatter density plots with a color map of predicted versus actual
humidity of the validation dataset (all months) using several ML algorithms.
(a) Coarse tree. (b) Bagged tree. (c) Wide NN.

estimate humidity at different periods. The graph depicts the
BET technique prediction of RH at various heights ranging from
0 to 10 km. The BET could estimate humidity at various heights
with good accuracy, particularly below 5 km.

3) Computational Efficiency: The suggested ML algo-
rithms’ computational efficiency is assessed in terms of training
time and memory usage. Tables IV and VI show a detailed
comparison of several models in predicting atmospheric pres-
sure and humidity with 6 months of cross-validation data. The
interactions linear regression (ILR) model was shown to be the
most time-efficient in the context of pressure prediction, taking
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Fig. 11. Different scatter density plots with color maps of predicted versus
true humidity of the (all months) validation dataset utilizing the following ML
algorithms. (a) Coarse tree. (b) Bagged tree. (c) Wide NN.

Fig. 12. Scatter density graphs with a color map of predicted versus true
humidity of the (all months) test dataset created by the following ML algorithms.
(a) Coarse tree. (b) Bagged tree. (c) Wide NN.

just 37.51 s for training. The WNN model, on the other hand,
required the most training time, clocking in at 18 863.05 s. In
addition, ensemble methods such as the boosted ensemble tree
and bagged ensemble tree models showcased average training
times. Similar patterns were seen during humidity prediction,
when the ILR model displayed efficiency in training time,
in contrast to the WNN model’s long training period. As
shown in Table III, the lowest, maximum, and mean memory
consumption values are summarized using the whole 6 month
dataset, providing an understanding of these methods’ compu-
tational needs and resource use. The coarse tree approach used
the least memory for pressure prediction, with a mean memory

Fig. 13. Different scatter density graphs with color maps of expected versus
actual humidity of the (all months) test dataset using the ML algorithms.
(a) Coarse tree. (b) Bagged tree. (c) Wide NN.

Fig. 14. Bagged tree algorithm’s vertical profile of predicted and true RH
values.

TABLE III
COMPARISON OF THE MOST SIGNIFICANT ML MODELS’ PERFORMANCE IN

TERMS OF MEMORY CONSUMPTION

use of 426.6462 Mbytes. In contrast, the WNN algorithm con-
sumed the most memory, with a mean of 2.2607e + 03 Mbytes.
Humidity prediction followed a similar trend, with the Coarse
Tree approach using the least amount of memory (668.9355
Mbytes) while the WNN algorithm used the most (2.1123e +
03 Mbytes). These memory usage patterns indicate significant
differences in processing needs across different ML algorithms
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Fig. 15. Vertical pressure profiles of the Bagged tree during the following
months. (a) January. (b) February. (c) March. (d) April. (e) May. (f) June.

Fig. 16. PDRs between pressure and input features (for each month individ-
ually). (a) PDR for Pr and pressure. (b) Velocity and pressure. (c) SNR and
pressure. (d) SW and pressure.

and prediction workloads. These findings have practical signif-
icance, especially in resource-constrained circumstances where
memory restrictions may be challenging.

Fig. 17. Scatter density graphs of predicted versus true pressure values of
the validation dataset (for each month separately) using bagged tree, for the
following months. (a) January. (b) February. (c) March. (d) April. (e) May.
(f) June.

B. Month-by-Month Evaluations

1) Pressure Estimation: During various months and different
seasons, there can be significant changes in pressure and RH.
As a result, estimation performance of each individual month is
further examined. To conduct this analysis, the dataset for each
month includes all the Doppler spectral moments and radiosonde
data collected during that month are used. The total samples
collected in January, February, March, April, May, and June are
158 766, 185 791, 194 460, 272 808, 286 727, and 308 140,
respectively.

All the datasets for different months were trained using the
same ML models. However, for the sake of brevity, we only
list the best-performing ML algorithms in the decision tree,
ensemble tree, and ANN. Tables VIII and IX include detailed
data on each month’s effectiveness of the top three ML al-
gorithms. In addition, these tables include information on all
performance evaluation methodologies, including root mean
squared error (RMSE), mean squared error (MSE), correlation
coefficient, mean absolute error (MAE), prediction speed (ob-
servations/second), and training time in seconds.
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Fig. 18. Different scatter density graphs of predicted versus true pressure
values from the validation dataset (for each month individually) using bagged
tree, for the following months. (a) January. (b) February. (c) March. (d) April.
(e) May. (f) June.

According to both tables, the BET technique outperformed the
WNN and CT methods in terms of RMSEs, MSEs, and MAE in
all months, with a substantial difference. This demonstrates that
BET has the best estimation accuracy for pressure. Furthermore,
based on cross-validation dataset analysis, the BET technique
achieved the following correlation coefficient values: 0.93, 0.94,
0.95, 0.95, 0.93, and 0.9 for January, February, March, April,
May, and June, accordingly. Based on testing dataset analysis,
the following correlation values were obtained: 0.93, 0.94, 0.95,
0.95, 0.93, and 0.91 for January to June.

In addition, the BET model consistently outperformed the
other models regarding R-squared values for both cross-
validation and testing datasets across all months. For example,
the BET in the March dataset obtained the highest R-squared
value of 0.88, indicating that the BET model accounts for
88% of the variability in the pressure variable. These findings
demonstrate that the BET technique is more reliable and stable
than the other methods in terms of having minimal errors in
pressure predictions across all datasets. On average, the WNN
can predict the highest number of observations per second, while
the bagged ensemble trees can observe the least observations per

Fig. 19. Scatter density graphs showing the test dataset’s predicted versus
true pressure values (for each month individually) using bagged tree, for the
following months. (a) January. (b) February. (c) March. (d) April. (e) May.
(f) June.

second. However, regarding the training speed, the WNN takes
the most time, followed by the BET and finally by the CT. To
summarize, it seems clear that the Bagged ensemble tree is the
best ML model for effectively predicting pressure.

Fig. 15 displays multiple pressure profiles created from pre-
dicted pressure values in all 6 months using the best ML
model (BET) compared to the related radiosonde profile. The
BET model has high accuracy in predicting pressure at various
heights, as seen in the monthly plots. Also, the plots show
good agreement between the predicted and truth pressure val-
ues, indicating that the BET model effectively captures the
underlying patterns and trends in the data. Fig. 16 depicts the
partial dependence plot (PDP) for the four input characteristics
(Pr, velocity, SNR, and SW) against pressure. Each of these
numbers contains the outcomes of all months utilizing BET. The
BET behaves differently depending on the pressure readings in
other months while having a linear relationship with pressure
in the PDR for Pr and SNR values. When the velocity is
more significant than zero, it is possible to demonstrate an



AMAIREH et al.: ATMOSPHERIC HUMIDITY ESTIMATION FROM WIND PROFILER RADAR USING A CASCADED MACHINE LEARNING APPROACH 6365

Fig. 20. Different scatter density plots of predicted versus true pressure values
from the test dataset (for each month separately) using bagged tree for the
following months. (a) January. (b) February. (c) March. (d) April. (e) May.
(f) June.

Fig. 21. PDRs for relative humidity and input variables (for each month
individually). (a) PDR for Pr and humidity. (b) Velocity and humidity. (c) SNR
and humidity. (d) SW and humidity. (e) Predicted pressure and humidity.

Fig. 22. Scatter density graphs showing the validation dataset’s predicted
versus true humidity values (for each month individually) using bagged tree,
for the following months. (a) January. (b) February. (c) March. (d) April.
(e) May. (f) June.

inverse connection between the velocity and the pressure for
the BET in all months. The same is true for the SW feature,
which exhibits an inverse relationship when SW is smaller than
two.

Figs. 17 and 18 show two scatter density plots with color
maps of predicted pressure using BET versus the truth pressure
data. These results are based on cross-validation data of each
individual month. The bagged tree model works well since most
scatter points cluster around the center. Figs. 19 and 20 for
the testing dataset show a typical scatter density plot with a
color map, and a scatter density plot with squares of the BET’s
predicted pressure versus true pressure data.

2) Humidity Estimation: Each month’s dataset, including the
Doppler spectral moments and predicted pressure, was trained
using the same set of ML algorithms as in the previous section,
to predict the RH, and we compared the results of decision tree,
ensemble tree, and ANN here. Tables X and XI, which exhibit
the cross-validation and testing datasets, include detailed data
on each month’s results of the three ML algorithms. In addition,
these tables include results for all the performance metrics (root
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Fig. 23. Different scatter density graphs of predicted versus true humidity
values from the validation dataset (for each month individually) using bagged
tree, for the following months. (a) January. (b) February. (c) March. (d) April.
(e) May. (f) June.

mean squared error (RMSE), mean squared error (MSE), corre-
lation coefficient, mean absolute error (MAE), prediction speed
(observations/second), and training time in seconds). According
to both tables, the BET technique surpasses the WNN and CT
techniques in all months in terms of RMSEs, MSEs, and MAE.
The BET approach produced good correlation coefficient values
based on cross-validation dataset analysis, ranging from 0.83
to 0.94 for May and June. While the corresponding values for
testing dataset analysis ranged from 0.71 to 0.91 for May and
June, respectively. Further, the BET had the good R-squared
values for cross-validation and testing datasets across all months.
For example, the best R-squared value among all months for the
BET is 0.78 in the March dataset. Overall, the bagged ensemble
tree is the most accurate ML model for forecasting RH based on
the results from each individual month.

The partial dependence plot (PDP) for the five input variables
(Pr, velocity, SNR, SW, projected pressure) against RH is shown
in Fig. 21. Each feature is seen to have a reasonable correlation
with humidity, but the relationship scales differently among

Fig. 24. Scatter density graphs for the following months of the test dataset’s
predicted versus true humidity results (for each month separately) using bagged
tree. (a) January. (b) February. (c) March. (d) April. (e) May. (f) June.

different months. Figs. 22 and 23 illustrate scatter density plots
of the estimated humidity using BET versus the true humidity
values. These results are based on cross-validation data collected
for each month separately. The scatter density plot with a col-
ormap of the BET’s projected humidity versus actual humidity
data is shown in Figs. 24 and 25 for the testing dataset. These
figures show that the bagged tree model works well since most
of the scatter points cluster around the center line. Fig. 26 shows
different humidity profiles generated from predicted humidity
values over all 6 month using the BET method compared to
the relevant radiosonde profile. The BET method accurately
estimates humidity at various heights for all the 6 months.

C. Advantages and Limitations of the Study

This study has shown numerous significant strengths and
improvements in atmospheric humidity estimation. First, the
proposed innovative cascaded ML approach outperforms pre-
vious approaches significantly. Second, this approach uses raw
moment data from a wind profiler radar as ML feature variables,
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Fig. 25. Different scatter density plots of estimated versus true RH from the
test dataset (for each month independently) using bagged tree for the following
months. (a) January. (b) February. (c) March. (d) April. (e) May. (f) June.

simplifying and decreasing the model’s complexity. Third, the
lack of dependence on accurate wind estimates, temperature, and
pressure data, which are sometimes unavailable, emphasizes the
resilience and usefulness of the suggested technique. As part
of the implementations, we applied an intermediate training
stage using synthetic pressure data initially introduced in this
study. This cascade ML system has demonstrated promising
application potential in calculating various atmospheric param-
eters. Finally, the bagging learning tree algorithm’s superior
computational efficiency and prediction efficacy distinguish this
study and improve the reliability and performance compared
to existing physical models. For the limitations, the reliance
on high-quality I/Q or moment data from the profiler radar is
a significant restriction. Noise, data incompletion, or incon-
sistencies in this data might impact the model’s performance.
Furthermore, the model’s ability to be generalized may be
constrained by its training on data from a specific site over
a defined period. Environmental and climatic variability may
challenge the model’s prediction accuracy across multiple geo-
graphical areas and time intervals. Also, although measures were
taken to minimize overfitting, the model may find challenges

Fig. 26. Vertical RH profiles of the Bagged tree in (a) January, (b) February,
(c) March, (d) April, (e) May, and (f) June.

when dealing with scenarios that diverge greatly from those seen
in the training data.

V. CONCLUSION AND FUTURE WORK

This article proposes a novel cascaded ML approach for
estimating atmospheric humidity from wind profiler radar data.
Unlike existing methods, this approach uses moment data from
the raw spectrum as ML feature variables and predicts RH
in two cascaded steps. The bagging learning tree algorithm
is identified as the most effective and computationally effi-
cient method for predicting pressure and RH. The proposed
approach improves reliability and performance compared to
physical models, and does not require precise wind estimates,
temperature, and pressure parameters from radiosonde data that
are not always available. The results show that this approach
can provide reasonably accurate humidity estimates. In addition,
the cascaded ML solution produces an intermediate training
stage with “synthetic” pressure data, which is applied to the
humidity estimation problem for the first time. This method
has the potential to be extended to estimate other atmospheric
parameters, and future studies could explore the integration
of different sensor data, such as radiometers, as well as more
sophisticated ML techniques.

APPENDIX

SUMMARY OF THE RESULT TABLES
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TABLE IV
COMPARISON OF PERFORMANCE OF THE PROPOSED ML MODELS IN

PREDICTING PRESSURE FOR THE 6 MONTH OF CROSS-VALIDATION DATA

TABLE V
COMPARISON OF PERFORMANCE OF THE PROPOSED ML MODELS IN

PREDICTING THE PRESSURE FOR THE 6 MONTHS OF TEST DATA

TABLE VI
COMPARISON OF THE ML MODELS’ PERFORMANCE IN FORECASTING

HUMIDITY ACROSS 6 MONTHS OF CROSS-VALIDATION DATA

TABLE VII
COMPARISON OF THE PERFORMANCE OF ML MODELS IN PREDICTING

HUMIDITY ACROSS A 6 MONTH TEST DATASET

TABLE VIII
COMPARISON OF THE PERFORMANCE OF ML MODELS IN PREDICTING

PRESSURE (THROUGHOUT EACH MONTH SEPARATELY) OF CROSS-VALIDATION

DATA
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TABLE IX
COMPARISON OF THE RESULTS OF ML ALGORITHMS IN PREDICTING PRESSURE

IN THE TEST DATASET (FOR EACH MONTH SEPARATELY)

TABLE X
COMPARISON OF THE RESULTS OF ML ALGORITHMS FOR PREDICTING

RELATIVE HUMIDITY USING CROSS-VALIDATION DATASET (FOR EACH MONTH

INDIVIDUALLY)

TABLE XI
COMPARISON OF ML ALGORITHMS’ PREDICTIONS OF RELATIVE HUMIDITY IN

THE TEST DATASET (FOR EACH MONTH INDIVIDUALLY)
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