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SDRCNN: A Single-Scale Dense Residual Connected
Convolutional Neural Network for Pansharpening
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Abstract—Pansharpening is a process of fusing a high spatial
resolution panchromatic image and a low spatial resolution mul-
tispectral (MS) image to create a high-resolution MS image. A
novel single-branch, single-scale lightweight convolutional neural
network, named SDRCNN, is developed in this article. By using
a novel dense residual connected structure and convolution block,
SDRCNN achieved a better tradeoff between accuracy and effi-
ciency. The performance of SDRCNN was tested using four datasets
from the WorldView-3, WorldView-2, and QuickBird satellites.
The compared methods include eight traditional methods (i.e.,
GS, Gram–Schmidt adaptive, partial replacement adaptive CS,
band-related spatial detail, smoothing-filter-based intensity mod-
ulation, GLP-CBD, CDIF, and LRTCFPan) and five lightweight
deep-learning methods (i.e., pansharpening neural network, Pan-
Net, BayesianNet, DMDNet, and FusionNet). Based on a visual
inspection of the pansharpened images created and the associated
absolute residual maps, SDRCNN exhibited least spatial detail
blurring and spectral distortion, among all the methods considered.
The values of the quantitative evaluation metrics were closest to
their ideal values when SDRCNN was used. The processing time
of SDRCNN was also the shortest among all methods tested. Fi-
nally, the effectiveness of each component in the SDRCNN was
demonstrated in ablation experiments. All of these confirmed the
superiority of SDRCNN.

Index Terms—Convolutional neural network (CNN), deep
learning (DL), fusion, multispectral (MS) image, pansharpening,
resolution.

I. INTRODUCTION

W ITH the rapid development of earth observation satel-
lites, remotely sensed images have widely been used

for various applications, such as object detection and semantic
segmentation [1], [2], [3], [4]. However, due to the physical
constraints of the existing single sensors, a tradeoff between
the spectral resolution and the spatial resolution of an image to
be acquired needs to be considered [5], [6]. Therefore, remote
sensing satellites typically carry two imaging sensors to capture
multispectral (MS) images and panchromatic (PAN) images,
respectively. MS images consist of multiple bands at the cost
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Fig. 1. Example of pansharpening: H ×W and h×w represent the image
size (h < H and w < W ), b and B represent the number of image bands
(1 = b < B).

of a relatively low spatial resolution, while PAN images contain
finer spatial details in a single image band. To combine their
advantages, pansharpening is a typical technique used to fuse an
MS image and a PAN image to form a high-resolution multispec-
tral (HRMS) image that shares the same spatial resolution of the
PAN image and the same spectral resolution of the MS image.
An example of this process is illustrated in Fig. 1. Pansharpening
has become a preprocessing step of image enhancement in many
remote sensing tasks, such as object detection [7], [8], anomaly
detection [9], [10], and agricultural management [11], [12].

Over the last few decades, various methods have been pro-
posed to achieve pansharpening. They can be divided into
four categories, including component substitution (CS) meth-
ods, multiresolution analysis (MRA) methods, variational opti-
mization (VO) techniques, and deep-learning (DL) approaches.
CS-based methods have widely been used due to their simple
principle and easy implementation. They project an interpolated
MS image into a transformed domain to separate the spectral and
the spatial information. The separated spatial components are
then replaced by a PAN image, followed by an inverse trans-
formation to generate the HRMS image. Representative CS-
based methods include intensity–hue–saturation [13], principle
component analysis (PCA) [14], Gram–Schmidt adaptive (GSA)
technique [15], partial replacement adaptive CS (PRACS) [16],
and band-related spatial detail (BDSD) scheme [17]. These
CS-based methods are effective in increasing spatial resolution,
but incur spectral distortion [18]. MRA-based methods inject
spatial details extracted from PAN images by spatial filtering
into interpolated MS images. Spatial details can be extracted
by different decomposition methods. Compared to CS-based
methods, this class of methods preserves spectral information
well. However, artifacts are prone to occur due to aliasing
effects, resulting in spatial distortion [6]. MRA-based methods
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include wavelet transform [19], smoothing-filter-based intensity
modulation (SFIM) [20], additive wavelet luminance proportion
[21], and the modulation transfer function generalized Laplacian
pyramid with full-resolution regression-based injection model
[22]. VO-based methods mainly need to construct and optimize
an energy function. After the P+XS [23] method was proposed,
such methods have received more attention and research efforts.
They can well model the relationships between PAN, MS,
and HRMS images and produce a high-quality image fusion.
However, compared to CS-based and MRA-based pansharpen-
ing methods, VO-based methods are complex in operation and
computationally expensive, which limit their wide applications
[24], [25], [26].

In recent years, the successful application of DL in computer
vision has attracted a lot of attention [27], [28], [29], [30],
[31], [32]. In particular, convolutional neural networks (CNNs)
stand out for powerful nonlinear modeling capabilities and have
made significant progress in pansharpening [33], [34], [35].
As a pioneering attempt, Masi et al. [33] proposed a simple
three-layer pansharpening neural network (PNN) that was based
on a modification of the super-resolution CNN [36] and led to
promising results. Based on PNN, Wei et al. [37] proposed a
deeper residual pansharpening network. Yuan et al. [38] intro-
duced multilevel feature extraction and proposed a multiscale
multidepth CNN. Shao and Cai [39] proposed a two-branch
network called RSIFNN. It was noticed that the majority of
DL improve the pansharpening accuracy by utilizing complex
network structure designs and/or diverse computational units
[40], which are often achieved by using multiscale structures
[41], [42], [43], [44], multibranch structures [45], [46], [47],
[48], deeper network [49], generative adversarial networks [50],
[51], [52], [53], attention mechanism [54], [55], [56], and trans-
former modules [57], [58], [59]. However, these would make
CNNs far larger in size (i.e., number of parameters) than PNN,
and consequently lead to reduced computational efficiency [49],
[60], [61].

The efficiency of the PAN sharpening methods is important for
practical applications, especially considering the huge volume of
data captured by satellite. Therefore, it is of interest to develop a
lightweight network for higher pansharpening accuracy. To this
end, a single-branch, single-scale, lightweight convolutional net-
work named SDRCNN is developed in this article. In SDRCNN,
novel convolutional block and dense residual connected struc-
tures are designed to recover spatial details from coarse to fine.
The effectiveness and the efficiency of SDRCNN are tested using
MS images acquired by three satellites, including WorldView-2,
WorldView-3, and QuickBird. The major contributions of this
article are as follows:

1) Development of a lightweight pansharpening network
(i.e., SDRCNN) to achieve a better tradeoff between ac-
curacy and efficiency.

2) A comprehensive fair (i.e., with similar numbers of param-
eters) evaluation of the performance of various lightweight
network structures and the convolutional blocks.

The rest of the article is organized as follows. Section II
describes the methodology. Experimental results and the asso-
ciated discussions are presented in Sections III and IV, respec-
tively. Finally, Section V concludes this article.

II. METHODOLOGY

A. Overall Architecture of SDRCNN

As illustrated in Fig. 2, the proposed SDRCNN takes a PAN
image and an upsampled low-resolution multi-spectral (LRMS)
image as the inputs. Different levels of structural details are
extracted through a Stem Block and three Residual Blocks,
which are arranged in a concatenated manner. Using the pro-
posed dense residual connection mechanism, 52 feature maps are
obtained at each of the 3 different network depths (i.e., after the
three Residual Blocks). In addition to the Stem Block, reaching
these three network depths requires passing one, two, and three
identical residual blocks, respectively. A total of 156 feature
maps are concatenated and passed through a layer of 1 × 1
convolution operations to enable the transfer of different levels
of feature information, generating a data cube with the same
number of channels as the input MS image. The output data
cube is then directly summed with the input upsampled LRMS
to produce the final HRMS image. The L1 loss is adopted in
the network as the loss function in this article. An elaboration
of proposed SDRCNN is presented in Sections II-B, II-C, and
II-D.

B. Preprocessing

The existing CNN-based pansharpening methods usually rely
on large-scale training datasets to learn the nonlinear mapping
between the input PAN and MS images and the ground-truth
HRMS image. However, this process treats pansharpening as
an image regression problem in a black-box learning process.
Ideally, pansharpening is to inject useful spatial details from the
input PAN image into the input MS image. In order to better
preserve the spectral information, our network directly maps an
input upsampled MS image to the output of the network, which
achieves lossless propagation of the spectral information on the
one hand, and makes the network more focused on the extraction
of spatial features on the other, thus significantly reducing the
difficulty of network learning. The ablation experiment results in
Section III-E3 show that adding spectral mapping can improve
the spectral accuracy of the fused image.

C. Dense Residual Connection

To further improve the learning capability and efficiency of
feature extraction in SDRCNN, we propose a dense residual
connection strategy, as shown in Fig. 2. As the key idea of this
strategy, three different levels of feature maps are integrated and
added to the input upsampled LRMS to obtain HRMS images
with more spatial details. In other words, features output from
Residual Blocks of different depths are stacked with the feature
information output from all previous blocks and fed into the
next Residual Block, thus making fuller use of the residual
information at different levels to learn features from coarse to
fine to enhance the network’s ability on reconstructing the spatial
information of the fused image. The inputs to the Stem Block and
each of the three residual blocks in SDRCNN can be expressed
as the following formulae:

IS = PAN+ LRMS↑4 (1)
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Fig. 2. Overall architecture of proposed SDRCNN.

I1R = FS (2)

I2R = FS ⊕ F 1
R (3)

I3R = (FS ⊕ F 1
R)⊕ F 2

R (4)

where IS and FS are the input and output feature maps of
the Stem Block, respectively; IiR and F i

R are the input and
output feature maps of the ith Residual Block, respectively;
↑4 represents the operation of upsampling by a factor of 4; +
indicates a series connection; and ⊕ indicates the operation of
adding the values of each element.

Using this dense residual connection mechanism, the Addi-
tion Layer following each Residual Block numerically sums the
residuals obtained from all blocks before that network depth and
forms a set of feature maps (i.e., 52 maps). The output features
from a deeper layer would include more spatial information. In
total, 156 feature maps from the three levels are concatenated
to propagate and integrate the information at different levels
through a 1 × 1 convolution operation. The generated residual
information is summed with the input upsampled LRMS to
produce a fused HRMS image. This dense residual connec-
tion mechanism allows the proposed single-branch, single-scale
SDRCNN to learn diverse (i.e., different levels) features similar
to that of complex (e.g., multibranch, multiscale) networks.

D. Structure of Functional Blocks

Two major types of convolution blocks are used in this article,
i.e., Stem Block and Residual Block. Their detailed structures
are shown in Fig. 3. The Stem Block is used to integrate the input
images of the network into a data cube with predetermined width
to obtain the number of channels appropriate to the Residual
Block. The Residual Blocks are used for feature extraction and
processing.

Fig. 3. Illustration of the convolution blocks used in SDRCNN. (a) Stem
Block. (b) Residual Block.

Fig. 4. Process of modifying the block configuration and the associated
specifications. (a) Bottleneck block. (b) Inverted bottleneck block. (c) Adopted
block with the position of the spatial depthwise convolutional layer being moved
to top.

Inspired by the well-known network ResNet [62], the same
residual connections are used in our Residual Blocks, which
can solve the problem of exploding or disappearing gradients.
In order to reduce the number of parameters to be learned for
convolutional computation, all the 3 × 3 convolutional layers
in the network use depthwise separable convolution [63], thus
improving the computational efficiency of SDRCNN. Unlike
the usual bottleneck configuration [Fig. 4(a)], the inverted bot-
tleneck structure [Fig. 4(b)] was employed to avoid the loss from
compressed dimensions during the information transformations
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TABLE I
SEVERAL BENCHMARK PANSHARPENING METHODS CONSIDERED FOR COMPARISONS

between different dimensional feature spaces. However, because
the inverted bottleneck amplifies the intermediate convolutional
layers, a direct replacement will lead to an increase in the number
of parameters. Therefore, the depthwise separable convolutional
layer is moved to the top of a block [Fig. 4(c)] to reduce the com-
putational effort. This block configuration [Fig. 4(c)] is adopted
for the Stem Block and the Residual Blocks in SDRCNN.

In addition, the two convolution blocks (i.e., the Stem Block
and the Residual Block) used in this article removed the com-
monly used batch normalization (BN) layers. For most cases,
using BN can accelerate the training and lower the sensitiv-
ity of the network to initialization. However, our trial experi-
ments indicated that using BN did not consistently improve the
pansharpening accuracy. Simultaneously, due to the additional
computation and memory usage of executing BN, the BN layers
inside the ResNet Block are discarded in our approach. Finally,
in each block, only one ReLU activation function layer is set
between two 1 × 1 layers.

E. Datasets

Four datasets from WorldView-2, WorldView-3, and Quick-
Bird (three different sensors working in the visible and near-
infrared spectral ranges) were used to test our network SDR-
CNN in this article. WorldView-2 and WorldView-3 provide MS
images with eight bands (coastal, blue, green, yellow, red, red
edge, near-infrared 1, and near-infrared 2) and single-band PAN
images. The spatial resolutions of these MS and PAN images are
approximately 1.8 and 0.5 m, respectively, for WorldView-2, 1.2
and 0.3 m, respectively, for WorldView-3. QuickBird provides
MS images with four bands (red, green, blue, and near-infrared)
and single-band PAN images. The spatial resolutions are ap-
proximately 2.44 m for MS images and 0.61 m for PAN images.

F. Implementation Simulation

1) Dataset Simulation: Since there is no ground truth (GT)
image as a reference, the Wald’s protocol [64] was adopted.
According to this protocol, the original MS images were used
as the GT images. In addition, the original MS and PAN im-
ages were simultaneously blurred and downsampled to produce
modified images that were used as input images. Taking the two

WorldView-3 datasets (i.e., Tripoli and Rio) as an example, each
dataset was simulated with 12 580 samples (also called patch
pairs), in which each sample includes PAN (256 × 256 in size),
LRMS (64 × 64 × 8 in size), and GT (256 × 256 × 8 in size)
patches. These 12 580 samples were randomly split into 70%,
20%, and 10% for training, validation, and test, respectively.
Furthermore, another eight-band dataset (i.e., WorldView-2)
and a four-band dataset (i.e., QuickBird) were also used for
performance evaluations in this article.

2) Benchmark: To check the performance of our network
SDRCNN, several representative pansharpening methods of
various categories were implemented for comparisons, as sum-
marized in Table I. The traditional methods were considered
because they are still widely used in applications. In terms of
DL-based methods, PNN, PanNet [34], and three state-of-the-
art lightweight networks with the number of parameters being
consistent with PNN were considered. For fair comparisons,
PanNet, BayesianNet [65], DMDNet [66], FusionNet [60], and
SDRCNN were adjusted to have almost the same number of
parameters (i.e., approximately 100 000 parameters) as PNN.

III. EXPERIMENTAL RESULTS

A. Reduced-Resolution Assessment

The reduced-resolution assessment measures the similarity
between a pansharpened HRMS image and a reference image
(i.e., the original MS image). The similarity can be determined
by several evaluation indices, such as the spectral angle mapper
(SAM) [67], the dimensionless global error in synthesis (ER-
GAS) [68], the spatial correlation coefficient (SCC) [69], and the
Q2n [70] (e.g., Q8 for eight-band datasets and Q4 for four-band
datasets). The ideal values are 0 for SAM and ERGAS, and 1
for Q2n and SCC.

As described in Section II-F1, there are two groups of test
samples from WorldView-3 datasets (i.e., Tripoli and Rio). Each
consisted of 1258 test samples and was processed for compar-
ing SDRCNN with 5 representative CNN-based pansharpening
methods (i.e., PNN, PanNet, BayesianNet, DMDNet, and Fu-
sionNet). As shown in Table II, SDRCNN achieved the best av-
erage quantitative performance in all the metrics, demonstrating
that it performed better than the other methods compared. This
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TABLE II
AVERAGE VALUES OF THE METRICS FOR PROPOSED SDRCNN AND ALL THE COMPARED CNNS, BASED ON 1258 REDUCED-RESOLUTION SAMPLES: (A) TRIPOLI

DATASET AND (B) RIO DATASET

Fig. 5. Visual comparisons of the HRMS images from the compared methods on the reduced-resolution Tripoli dataset (sensor: WorldView-3).

Fig. 6. Corresponding AEMs using the reference (GT) image on the reduced-resolution Tripoli dataset (sensor: WorldView-3).

can be justified as compared to other CNN-based pansharpening
methods, SDRCNN utilizes a dense residual connection mech-
anism to more fully exploit the residual information of different
layers and achieves feature extraction for different levels from
coarse to fine. In addition, combined with the proposed residual
blocks, SDRCNN can obtain more detailed spatial features
using a deeper network structure without increasing the number
of parameters, thus improving the learning capability of the
network.

In addition, two test cases using Rio and Tripoli at a re-
duced resolution by applying the Wald’s protocol stated in

Section II-F1 were generated. Figs. 5 and 7 show the visual
comparisons of the pansharpened images derived using all
the pansharpening methods considered for Tripoli and Rio,
respectively. These visualizations were based on the three spec-
tral channels: Red, Green, and Blue. For a better visualization of
their differences, a small local area (highlighted by the smaller
square) was selected, zoomed in and shown in the larger square
at the corner. Figs. 6 and 8 show the corresponding residuals,
i.e., absolute error maps (AEMs), between the pansharpened
images and GT images for Tripoli and Rio, respectively. The
pansharpened images from the traditional methods (i.e., GS,
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Fig. 7. Visual comparisons of the HRMS images from the compared methods on the reduced-resolution Rio dataset (sensor: WorldView-3).

Fig. 8. Corresponding AEMs on the reduced-resolution Rio dataset (sensor: WorldView-3).

GSA, PRACS, BDSD, SFIM, GLP-CBD, CDIF, and LRTCF-
Pan) showed some large spatial blurring and spectral distortions
(indicated here by the color distortions), particularly near the
boundaries of buildings. All the CNN methods considered per-
formed better (spatially and spectrally) than the traditional meth-
ods. Due to the size of the individual images shown in Figs. 5
and 7, it is not easy to distinguish the visual differences between
the pansharpened images from the CNN methods. However,
some differences can be observed in Figs. 6 and 8. For example,
in the AEMs of SDRCNN, the color of the zoomed region has a
larger area tending to be the same dark blue as GT and showed
less spectral residuals at the object boundaries, which suggests a
good spectral preservation. Meanwhile, the AEMs of SDRCNN
showed less details and textures than the other methods, which
suggests that SDRCNN achieved the best spatial preservation.
To better show their differences in performance, the values of
the quantitative evaluation metrics were calculated and shown
in Table III, which confirm that SDRCNN obtained the best
performance with the smallest spatial and spectral distortions in
the pansharpened images.

Figs. 9 and 10 show the loss curves with the iterations for
the considered network structures trained on Tripoli and Rio
datasets, respectively. To better evaluate the convergence of the

Fig. 9. Training loss curves for considered networks on Tripoli dataset (sensor:
WorldView-3).

networks, the vertical coordinates of the graphs use the mean
value of the training loss for a total of 100 iterations before
this iteration, thus reducing the fluctuation of the curves. It
is clear that the SDRCNN exhibits the lowest test error after
the curve has stabilized, which is consistent with the previous
quantitative evaluation. In addition, the convergence rate of all
these networks considered is approximately the same.
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TABLE III
QUALITY METRICS FOR ALL THE COMPARED APPROACHES ON THE REDUCED-RESOLUTION TRIPOLI AND RIO DATASETS, RESPECTIVELY: (A) TRIPOLI DATASET

AND (B) RIO DATASET

Fig. 10. Training loss curves for considered networks on Rio dataset (sensor:
WorldView-3).

B. Full-Resolution Assessment

To confirm the results obtained at reduced resolutions, a full-
resolution analysis involving the original MS and PAN images
was also needed. In this case, however, there are no GT images.
For the full-resolution assessments where GT images are absent,
the widely used metrics in the literature include the quality with
no reference (QNR) index, the spectral distortion Dλ index, and
the spatial distortion Ds index [71], which were also adopted
in this article. The ideal values of QNR, Dλ, and Ds are 1, 0,
and 0, respectively. In this case, the spectral quality of a fused
image was referenced to the original MS image, while the spatial
detail of a higher quality fused image should be more similar to
that of the original PAN image. Table IV reports the average
performances of 50 full-resolution examples. On the indices
considered, their values obtained for SDRCNN were closest to
the ideal values with a small standard deviation, confirming the
superiority of SDRCNN against the other methods compared.

C. Assessment on WorldView-2 and QuickBird Datasets

To study the generalization of SDRCNN, the proposed net-
work was also tested using the data from another eight-band

TABLE IV
AVERAGE VALUES OF QNR, Ds, AND Dλ WITH THE RELATED STANDARD

DEVIATIONS (STD) FOR 50 FULL-RESOLUTION WORLDVIEW-3
(TRIPOLI) SAMPLES

sensor (i.e., the Washington DC dataset acquired by WorldView-
2) and a four-band sensor (i.e., the QuickBird dataset). For a
standard evaluation, the training and test data were generated
according to the Wald’s protocol. Visual comparisons of the
results on the WorldView-2 dataset are shown in Figs. 11 and
12. It was observed that the fused image derived by SDRCNN
was the most qualified one, evidenced not only by sharper and
clearer edges, but also by unobservable ghosting and blurring.
A visualization of the output HRMS images on QuickBird was
not provided as the difference could not be seen clearly with
a naked eye. The values of the quality indices for the HRMS
images obtained are reported in Table V for the two datasets,
which show that SDRCNN performed best among the methods
considered. This suggests the generalization of our approach.

D. Visual Analysis of Dense Residual Connection

It was expected that the dense residual connection mechanism
proposed in this article extracted different levels of features at
different network depths and thus enhanced the spatial details
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Fig. 11. Visual comparisons of the HRMS images from the compared methods on the reduced-resolution Washington DC dataset (sensor: WorldView-2).

Fig. 12. Corresponding AEMs on the reduced-resolution Washington DC dataset (sensor: WorldView-2).

TABLE V
QUALITY METRICS FOR ALL THE COMPARED APPROACHES ON THE REDUCED-RESOLUTION WORLDVIEW-2 AND QUICKBIRD DATASETS, RESPECTIVELY: (A)

WORLDVIEW-2 (WASHINGTON DC) DATASET AND (B) QUICKBIRD DATASET

of output images. To explore its effectiveness, the feature maps
obtained at the three depths (i.e., three addition layers after
Residual Blocks) in SDRCNN were visualized. For 52 feature
maps obtained from each addition layer, it was considered as a
data cube with 52 channels. PCA was performed using the singu-
lar value decomposition method to achieve a dimensionality re-
duction of the data, resulting in four principle component bands.

For visualization, the principle component values were rescaled
to the range [0, 1]. Fig. 13 shows an example of a 256× 256
size region taken from the Tripoli dataset of WorldView-3. The
subplots in the first, second, and third rows correspond to the
visualized feature maps obtained from the addition layer after
Residual Block 1, 2, and 3, respectively. It was observed that
the feature maps in the first row included relatively coarse (i.e.,
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Fig. 13. Visual comparisons of the feature maps from three network depths of SDRCNN on the reduced-resolution Tripoli dataset (sensor: WorldView-3). A, B,
and C correspond to the addition layers after the residual block 1, 2, and 3, respectively; the numbers 1, 2, 3, and 4 correspond to the four principle component
bands generated by the dimensionality reduction of the data.

Fig. 14. Corresponding AEMs of the feature maps from two adjacent addition layers on the reduced-resolution Tripoli dataset (sensor: WorldView-3). D
corresponds to the residual of the shallower two addition layers, and E corresponds to the residual of the deeper two addition layers, the numbers 1, 2, 3, and 4
correspond to the four principle component bands generated by the dimensionality reduction of the data.

larger objects) contour information. Although the maps in the
second row showed similar edge information as those in the first
row, these edges appeared to be darker and clearer, making the
delineation between different objects or regions clearer. From
the maps in the third row, more detailed (i.e., smaller objects)
contour information and some building textures were observed.
Overall, as the network depth increased, features extracted by
SDRCNN varied from coarse to more detailed. In other words,
the feature maps generated at a deeper level were found to have

included more detailed spatial information. In order to better
show the differences between the feature maps generated at the
three depths in SDRCNN, Fig. 14 shows the AEMs obtained by
subtracting the four principle component bands of the previous
addition layer from those of the deeper addition layer. It was
seen from the maps in the first row of Fig. 14 that the second
addition layer included more spatial features than the first layer
mainly in the edges of buildings. The maps associated with the
third addition layer showed more detailed texture information
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TABLE VI
QUANTITATIVE COMPARISON OF THE NETWORKS COMBINING BASIC BLOCK OF SDRCNN AND STRUCTURES OF BENCHMARK METHODS (DL-BASED) ON 1258

TEST SAMPLES FOR TRIPOLI (WORLVIEW-3) DATASET

TABLE VII
QUANTITATIVE COMPARISON OF THE NETWORKS COMBINING STRUCTURE OF SDRCNN AND BASIC BLOCKS OF BENCHMARK METHODS (DL-BASED) ON 1258

TEST SAMPLES FOR TRIPOLI (WORLVIEW-3) DATASET

of the objects/buildings than the second layer. These visual
observations were reasonable and as expected. By connecting
the residual information from the shallow layers and feeding
it into the deeper convolutional layers for feature extraction,
the residuals from different layers can be more fully utilized to
obtain more detailed spatial features than the shallower layers of
the network, thus improving the learning ability of the network
for feature extraction.

E. Ablation Study

Ablation studies were conducted to explore the effect of each
component of SDRCNN. The WorldView-3 Tripoli dataset was
used for these ablation studies.

1) Network Structure of SDRCNN: To verify the effective-
ness of the single-branch single-scale network structure with a
dense residual connectivity mechanism of SDRCNN, this abla-
tion experiment replaced the structure of SDRCNN with those
of other comparison networks (i.e., PNN, PanNet, Bayesian-
Net, DMDNet, and FusionNet) for comparison, respectively.
Table VI shows the average results of the quantitative analysis
of these combined networks and SDRCNN on 1258 test data
from the Tripoli dataset. For a fair comparison, the number
of parameters for all networks is 100 K (K stands for 103).
The results show that the averaging performance of all metrics
decreases when the network structure of SDRCNN was replaced
with any other structure, thus demonstrating the effectiveness of
the SDRCNN structure. It is worth noting that the quantification
results corresponding to the network structures of PanNet and
DMDNet in Table VI are the same, which is because of the
same structures of these two networks. In addition, during this
experiment, we found that the network framework of FusionNet
is also the same as these two, but with a deeper structure than
them by stringing one more basic block together. The last column
of Table VI shows the corresponding testing times for each
network. Since the PNN structure is much shallower than the

others, it is reasonable that it has the shortest testing time.
However, the testing times corresponding to the other structures
are all longer than SDRCNN, thus further indicating that the
SDRCNN structure is more computationally efficient.

2) Residual Block of SDRCNN: To demonstrate the
effectiveness of the proposed residual block, this ablation
experiment retains the network structure of the SDRCNN and
replaces the blocks in the SDRCNN with the basic blocks of
other comparison networks (i.e., PNN, PanNet, BayesianNet,
DMDNet, and FusionNet), respectively. Table VII shows the
test results of these combined networks and SDRCNN (with
the same 100 K parameters) on the Tripoli dataset. It is obvious
that the accuracy of all metrics decreases when the basic
blocks in the SDRCNN are replaced with blocks from other
networks, thus proving that better pansharpening accuracy can
be obtained with blocks of SDRCNN. In addition, SDRCNN
takes the shortest testing time, which further proves that the
blocks of SDRCNN have higher efficiency.

3) Spectral Mapping: The spectral mapping refers to the
operation of directly adding an upsampled MS image to an
output image, and has been widely used in CNNs for pansharp-
ening tasks. To verify whether it can improve the pansharpening
accuracy of CNN, two networks, PNN and SDRCNN, were
considered in this section for experiments. Table VIII shows
the values of the accuracy metrics for PNN and SDRCNN with
and without the spectral mapping on the 50 testdata. Compared
with PNN, the fusion accuracy of the network with the spectral
mapping were higher in all the metrics. In addition, the accu-
racy of pansharpening decreases when the spectral mapping
of SDRCNN was removed. These suggest that the spectral
mapping could enhance the performance of CNN for a higher
pansharpening accuracy.

4) Removal of the BN Layer: In the existing CNNs for pan-
sharpening, there is no agreement on whether the BN layer
should be retained or not. To demonstrate the effectiveness of
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TABLE VIII
QUALITY METRICS FOR ALL THE ABLATION STUDIES ON 50 TEST SAMPLES FOR TRIPOLI (WORLDVIEW-3) DATASET

TABLE IX
QUANTITATIVE COMPARISONS WITH THE BENCHMARK METHODS (PANNET, BAYESIANNET, DMDNET, AND FUSIONNET) UNDER DIFFERENT PARAMETER

NUMBERS ON 1258 TEST SAMPLES FOR TRIPOLI (WORLVIEW-3) DATASET

removing BN as described in Section II-D, experiments were
conducted by plugging BN into our SDRCNN model. The
BN operation was deployed after each convolution operation.
Table VIII shows the average results of SDRCNN before and
after the BN inclusion on 50 testdata using the WorldView-3
dataset. It was seen that the performance of SDRCNN with
BN decreased. In addition, BN operations consumed additional
computation and storage resources. As such, it is beneficial to
exclude BN for higher pansharpening accuracy and improved
computational and storage budget.

5) Reduced Activation Function: Similar to the problem of
BN layer, there is no conclusion on the effect of activation
function on the performance of CNN for pansharpening. In this
section, the effectiveness of the reduced activation functions
(i.e., ReLU) described in Section II-D was investigated by
inserting more activation functions into our SDRCNN model.
The additional activation functions were deployed after each
depthwise convolution operation and concentration operation.
Table VIII shows the average results of SDRCNN before and
after the insertion of more activation functions on the 50 testdata.
It was seen that better average results were obtained for the
SDRCNN model retaining only one activation function between
the two 1 × 1 layers.

6) Effect of the Number of Parameters: To check the effects
of the network size on the performance of the networks (i.e.,
the benchmark methods PanNet, BayesianNet, DMDNet, and
FusionNet, and our method SDRCNN), three network sizes

with approximately 50 K, 100 K, and 200 K parameters were
tested using the Tripoli dataset (containing 1258 test samples)
from WorldView-3. Table IX shows the results of the quantity
evaluation of the five CNN methods for the three network sizes
considered. It can be seen that in each network size tested,
SDRCNN achieved the closest average results to the ideal values
and the smallest standard deviations in all quality metrics. In
addition, as expected, increasing the network size can further
improve the accuracy of SDRCNN.

IV. DISCUSSION

Based on the experimental results of this article, the CNN-
based methods exhibited better performances in pansharpening
than the classical CS and MRA methods. This is mainly due to
the fact that CNN-based methods exploit large-scale data during
the training phase. In this section, the convolution kernel size,
the network complexity, and the testing time were discussed.

A. Convolution Kernel Size

Currently, some researchers argued that increasing the recep-
tive field can improve the pansharpening performance of CNN
models, and as such they used larger convolutional kernel sizes in
their proposed methods [66]. This idea came from an observation
of the behavior of CNNs applied in some other image processing
areas. In the proposed SDRCNN model, we also considered the
behavior of increasing the convolutional kernel. Initially, we
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tried using convolutional kernel sizes that are larger than 3 ×
3, for example, 7 × 7 and 11 × 11. However, the reduction in
network width or depth was necessary to control the network
with a consistent number of parameters. In order not to change
the width or depth of the network, we considered the use of
the atrous convolution to explore the effect of increasing the
receptive field. It was found that increasing the receptive field
using the atrous convolution did not significantly improve the
pansharpening performance of the CNN. It is possible that the
limitations of the atrous convolution, such as grid effects, ad-
versely affected the fusion results, which may lead to inaccurate
results. In addition, it was also thought that a larger receptive field
could improve the performance of CNNs in some other image
processing domains because these image processing tasks are
usually highly dependent on the relationship between a pixel and
its surrounding pixels, such as semantic segmentation and object
detection. However, for pansharpening, in the process of spatial
and spectral information transfer and fusion, more attention
should be paid to the relationship of features between images.
In addition, larger convolution kernels usually bring a larger set
of parameters, which often increase the computational cost and
learning difficulty. Therefore, increasing the size of the convolu-
tion kernel or receptive field may not be suitable for improving
the performance of the CNN model in the pansharpening task.

B. Network Complexity

SDRCNN is simpler than DMDNet because SDRCNN does
not need to compute high-pass filtered images from the input
PAN and MS images and uses smaller convolution kernels and a
single-scale network structure. FusionNet replicates the input
PAN image to the same number of bands as the input MS
image and then feeds those into the network, which increases the
workload of subsequent processing and feature extractions on
the input images. In addition, SDRCNN has fewer layers than
FusionNet. However, given that SDRCNN uses the depthwise
separable convolutions, it is difficult to directly compare its
network complexity with FusionNet. Furthermore, the structure
of PNN is a simple three-layer network without any jump
connections. However, it is too shallow to extract enough image
features from this simple network. Therefore, SDRCNN not only
improves the accuracy of pansharpening without increasing the
network size, but also avoids unnecessary increases in network
complexity. PanNet has a similar network structure and input
data preprocessing requirement as DMDNet. BayesianNet is a
multibranch network, which is more complex than the single-
branch single-scale SDRCNN.

C. Testing Time

Fig. 15 reports the testing times for PanNet, BayesianNet,
DMDNet, FusionNet, and SDRCNN on the Tripoli test set
(containing 1258 test samples) from WorldView-3. DMDNet
took more than twice as long as the other four networks, and
the time spent on the testing increased notably with increasing
number of parameters. As the number of parameters increases,
SDRCNN always takes the least amount of time, and the effi-
ciency of SDRCNN becomes more evident when the number of
parameters reaches 200K.

Fig. 15. Testing times for SDRCNN, DMDNet, and FusionNet under different
parameter numbers for 1258 test samples from Tripoli (WorldView-3) dataset.

V. CONCLUSION

Developing highly accurate and efficient pansharpening
methods can be very valuable. In this article, a novel single-
branch, single-scale lightweight CNN architecture named SDR-
CNN was developed to this end. It uses a dense residual con-
nected structure and novel convolution blocks to achieve a better
tradeoff between accuracy and efficiency. The performances of
SDRCNN were compared to eight traditional methods (i.e., GS,
GSA, PRACS, BDSD, SFIM, GLP-CBD, CDIF, and LRTCF-
Pan) and five lightweight CNN-based pansharpening methods
(i.e., PNN, PanNet, BayesianNet, DMDNet, and FusionNet),
using the reduced-resolution and the full-resolution tests. SDR-
CNN achieved highest pansharpening accuracies (i.e., SAM,
ERGAS, SCC, Q2n, QNR, Ds, and Dλ) on all four datasets
tested. SDRCNN exhibited least spatial detail blurring and spec-
tral distortions in visual comparisons using the pansharpened
images and the associated AEMs. Furthermore, the ablation
study confirmed the effectiveness of the dense residual con-
nected structure and the convolutional block used in SDRCNN.
Finally, it is demonstrated that SDRCNN is the most efficient
among the compared lightweight networks. All these results
demonstrated the superiority of SDRCNN against the traditional
and lightweight CNN-based methods compared, in preserving
both spatial and spectral information in fused HRMS images.

REFERENCES

[1] W. Ma et al., “Feature split-merge-enhancement network for remote sens-
ing object detection,” IEEE Trans. Geosci. Remote Sens., vol. 60, Jan. 2022,
Art. no. 5616217, doi: 10.1109/TGRS.2022.3140856.

[2] M. H. R. Sales, S. de Bruin, C. Souza, and M. Herold, “Land use and land
cover area estimates from class membership probability of a random forest
classification,” IEEE Trans. Geosci. Remote Sens., vol. 60, Jun. 2022,
Art. no. 4402711, doi: 10.1109/TGRS.2021.3080083.

[3] Y. Cai, L. Fan, P. M. Atkinson, and C. Zhang, “Semantic segmentation of
terrestrial laser scanning point clouds using locally enhanced image-based
geometric representations,” IEEE Trans. Geosci. Remote Sens., vol. 60,
Mar. 2022, Art. no. 5702815, doi: 10.1109/TGRS.2022.3161982.

[4] Y. Cai, L. Fan, and Y. Fang, “SBSS: Stacking-based semantic segmenta-
tion framework for very high-resolution remote sensing image,” IEEE
Trans. Geosci. Remote Sens., vol. 61, Jan. 2023, Art. no. 5600514,
doi: 10.1109/TGRS.2023.3234549.

[5] Q. Xu, Y. Zhang, and B. Li, “Recent advances in pansharpening and
key problems in applications,” Int. J. Image Data Fusion, vol. 5, no. 3,
pp. 175–195, Jul. 2014, doi: 10.1080/19479832.2014.889227.

https://dx.doi.org/10.1109/TGRS.2022.3140856
https://dx.doi.org/10.1109/TGRS.2021.3080083
https://dx.doi.org/10.1109/TGRS.2022.3161982
https://dx.doi.org/10.1109/TGRS.2023.3234549
https://dx.doi.org/10.1080/19479832.2014.889227


FANG et al.: SDRCNN: A SINGLE-SCALE DENSE RESIDUAL CONNECTED CNN FOR PANSHARPENING 6337

[6] X. Meng, H. Shen, H. Li, L. Zhang, and R. Fu, “Review of the pansharpen-
ing methods for remote sensing images based on the idea of meta-analysis:
Practical discussion and challenges,” Inf. Fusion, vol. 46, pp. 102–113,
Mar. 2019, doi: 10.1016/j.inffus.2018.05.006.

[7] Y. Qu, H. Qi, B. Ayhan, C. Kwan, and R. Kidd, “DOES multispec-
tral /hyperspectral pansharpening improve the performance of anomaly
detection?,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2017,
pp. 6130–6133, doi: 10.1109/IGARSS.2017.8128408.

[8] A. Mohammadzadeh, A. Tavakoli, and M. J. Valadan Zoej, “Road
extraction based on fuzzy logic and mathematical morphology from
pan-sharpened IKONOS images,” Photogramm. Rec., vol. 21, no. 113,
pp. 44–60, Mar. 2006, doi: 10.1111/j.1477-9730.2006.00353.x.

[9] P. Du, S. Liu, J. Xia, and Y. Zhao, “Information fusion techniques for
change detection from multi-temporal remote sensing images,” Inf. Fusion,
vol. 14, no. 1, pp. 19–27, Jan. 2013, doi: 10.1016/j.inffus.2012.05.003.

[10] F. Bovolo, L. Bruzzone, L. Capobianco, A. Garzelli, S. Marchesi, and F.
Nencini, “Analysis of the effects of pansharpening in change detection on
VHR images,” IEEE Geosci. Remote Sens. Lett., vol. 7, no. 1, pp. 53–57,
Jan. 2010, doi: 10.1109/LGRS.2009.2029248.

[11] E. Ibarrola-Ulzurrun, C. Gonzalo-Martin, and J. Marcello-Ruiz, “Influence
of pansharpening techniques in obtaining accurate vegetation thematic
maps,” in Proc. Earth Resour. Environ. Remote Sens./GIS Appl. VII, 2016,
pp. 311–330, doi: 10.1117/12.2241501.

[12] A. Jenerowicz and M. Woroszkiewicz, “The pan-sharpening of satel-
lite and UAV imagery for agricultural applications,” in Proc. Re-
mote Sens. Agriculture, Ecosyst., Hydrol. XVIII, 2016, pp. 565–575,
doi: 10.1117/12.2241645.

[13] T.-M. Tu, P. S. Huang, C.-L. Hung, and C.-P. Chang, “A fast intensity–
hue–saturation fusion technique with spectral adjustment for IKONOS
imagery,” IEEE Geosci. Remote Sens. Lett., vol. 1, no. 4, pp. 309–312,
Oct. 2004, doi: 10.1109/LGRS.2004.834804.

[14] V. P. Shah, N. H. Younan, and R. L. King, “An efficient pan-sharpening
method via a combined adaptive PCA approach and contourlets,” IEEE
Trans. Geosci. Remote Sens., vol. 46, no. 5, pp. 1323–1335, May 2008,
doi: 10.1109/TGRS.2008.916211.

[15] B. Aiazzi, S. Baronti, and M. Selva, “Improving component substitution
pansharpening through multivariate regression of MS + pan data,” IEEE
Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3230–3239, Oct. 2007,
doi: 10.1109/TGRS.2007.901007.

[16] J. Choi, K. Yu, and Y. Kim, “A new adaptive component-substitution-
based satellite image fusion by using partial replacement,” IEEE
Trans. Geosci. Remote Sens., vol. 49, no. 1, pp. 295–309, Jan. 2011,
doi: 10.1109/TGRS.2010.2051674.

[17] G. Vivone, “Robust band-dependent spatial-detail approaches for panchro-
matic sharpening,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 9,
pp. 6421–6433, Sep. 2019, doi: 10.1109/TGRS.2019.2906073.

[18] Y. Yang, H. Lu, S. Huang, and W. Tu, “Pansharpening based
on joint-guided detail extraction,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 14, pp. 389–401, Oct. 2021,
doi: 10.1109/JSTARS.2020.3032472.

[19] Y. Kim, C. Lee, D. Han, Y. Kim, and Y. Kim, “Improved additive-wavelet
image fusion,” IEEE Geosci. Remote Sens. Lett., vol. 8, no. 2, pp. 263–267,
Mar. 2011, doi: 10.1109/LGRS.2010.2067192.

[20] J. G. Liu, “Smoothing filter-based intensity modulation: A spec-
tral preserve image fusion technique for improving spatial details,”
Int. J. Remote Sens., vol. 21, no. 18, pp. 3461–3472, Jan. 2000,
doi: 10.1080/014311600750037499.

[21] X. Otazu, M. Gonzalez-Audicana, O. Fors, and J. Nunez, “Introduction
of sensor spectral response into image fusion methods. Application to
wavelet-based methods,” IEEE Trans. Geosci. Remote Sens., vol. 43,
no. 10, pp. 2376–2385, Oct. 2005, doi: 10.1109/TGRS.2005.856106.

[22] G. Vivone, R. Restaino, and J. Chanussot, “Full scale regression-
based injection coefficients for panchromatic sharpening,” IEEE
Trans. Image Process., vol. 27, no. 7, pp. 3418–3431, Jul. 2018,
doi: 10.1109/TIP.2018.2819501.

[23] C. Ballester, V. Caselles, L. Igual, J. Verdera, and B. Rougé, “A variational
model for P+XS image fusion,” Int. J. Comput. Vis., vol. 69, no. 1,
pp. 43–58, Apr. 2006, doi: 10.1007/S11263-006-6852-X.

[24] Q. Wei, N. Dobigeon, J. Y. Tourneret, J. Bioucas-DIas, and S. Godsill, “R-
FUSE: Robust fast fusion of multiband images based on solving a Sylvester
equation,” IEEE Signal Process. Lett., vol. 23, no. 11, pp. 1632–1636,
Nov. 2016, doi: 10.1109/LSP.2016.2608858.

[25] Z. Y. Zhang, T. Z. Huang, L. J. Deng, J. Huang, X. le Zhao, and C.
C. Zheng, “A framelet-based iterative pan-sharpening approach,” Remote
Sens., vol. 10, no. 4, Apr. 2018, Art. no. 622, doi: 10.3390/RS10040622.

[26] L. J. Deng, M. Feng, and X. C. Tai, “The fusion of panchromatic and
multispectral remote sensing images via tensor-based sparse modeling
and hyper-Laplacian prior,” Inf. Fusion, vol. 52, pp. 76–89, Dec. 2019,
doi: 10.1016/J.INFFUS.2018.11.014.

[27] N. Meng, T. Zeng, and E. Y. Lam, “Spatial and angular reconstruction of
light field based on deep generative networks,” in Proc. IEEE Int. Conf.
Image Process., 2019, pp. 4659–4663, doi: 10.1109/ICIP.2019.8803480.

[28] Y. Zhu, C. H. Yeung, and E. Y. Lam, “Digital holographic imaging and
classification of microplastics using deep transfer learning,” Appl. Opt.,
vol. 60, no. 4, Feb. 2021, Art. no. A38, doi: 10.1364/AO.403366.

[29] N. Meng, H. K.-H. So, X. Sun, and E. Y. Lam, “High-dimensional dense
residual convolutional neural network for light field reconstruction,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 43, no. 3, pp. 873–886, Mar. 2021,
doi: 10.1109/TPAMI.2019.2945027.

[30] Y. Cai, H. Huang, K. Wang, C. Zhang, L. Fan, and F. Guo, “Selecting
optimal combination of data channels for semantic segmentation in city
information modelling (CIM),” Remote Sens., vol. 13, no. 7, Apr. 2021,
Art. no. 1367, doi: 10.3390/RS13071367.

[31] Y. Cai, L. Fan, and C. Zhang, “Semantic segmentation of multispec-
tral images via linear compression of bands: An experiment using
RIT-18,” Remote Sens., vol. 14, no. 11, Jun. 2022, Art. no. 2673,
doi: 10.3390/RS14112673.

[32] Y. Cai, J. Aryal, Y. Fang, H. Huang, and L. Fan, “OSTA: One-shot
task-adaptive channel selection for semantic segmentation of multichannel
images,” 2023, arXiv:2305.04766.

[33] G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, “Pansharpening by
convolutional neural networks,” Remote Sens., vol. 8, no. 7, Jul. 2016,
Art. no. 594, doi: 10.3390/rs8070594.

[34] J. Yang, X. Fu, Y. Hu, Y. Huang, X. Ding, and J. Paisley, “PanNet: A
deep network architecture for pan-sharpening,” in Proc. IEEE Int. Conf.
Comput. Vis ., 2017, pp. 1753–1761, doi: 10.1109/ICCV.2017.193.

[35] X. Liu, Y. Wang, and Q. Liu, “Remote sensing image fusion based on two-
stream fusion network,” in Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Berlin, Germany: Springer Verlag, 2018, pp. 428–439,
doi: 10.1007/978-3-319-73603-7_35.

[36] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-
resolution using deep convolutional networks,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 38, no. 2, pp. 295–307, Feb. 2016,
doi: 10.1109/TPAMI.2015.2439281.

[37] Y. Wei, Q. Yuan, H. Shen, and L. Zhang, “Boosting the accuracy of multi-
spectral image pansharpening by learning a deep residual network,” IEEE
Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1795–1799, Oct. 2017,
doi: 10.1109/LGRS.2017.2736020.

[38] Q. Yuan, Y. Wei, X. Meng, H. Shen, and L. Zhang, “A multiscale and
multidepth convolutional neural network for remote sensing imagery pan-
sharpening,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11,
no. 3, pp. 978–989, Mar. 2018, doi: 10.1109/JSTARS.2018.2794888.

[39] Z. Shao and J. Cai, “Remote sensing image fusion with deep convo-
lutional neural network,” IEEE J. Sel. Topics Appl. Earth Observ. Re-
mote Sens., vol. 11, no. 5, pp. 1656–1669, May 2018, doi: 10.1109/JS-
TARS.2018.2805923.

[40] L. J. Deng et al., “Machine learning in pansharpening: A benchmark, from
shallow to deep networks,” IEEE Geosci. Remote Sens. Mag., vol. 10, no. 3,
pp. 279–315, Sep. 2022, doi: 10.1109/MGRS.2022.3187652.

[41] D. Lei, Y. Huang, L. Zhang, and W. Li, “Multibranch feature ex-
traction and feature multiplexing network for pansharpening,” IEEE
Trans. Geosci. Remote Sens., vol. 60, May 2022, Art. no. 5402613,
doi: 10.1109/TGRS.2021.3074624.

[42] L. He, J. Zhu, J. Li, A. Plaza, J. Chanussot, and Z. Yu, “CNN-
based hyperspectral pansharpening with arbitrary resolution,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Dec. 2022, Art. no. 5518821,
doi: 10.1109/TGRS.2021.3132997.

[43] Y. Chi, J. Li, and H. Fan, “Pyramid-attention based multi-
scale feature fusion network for multispectral pan-sharpening,”
Appl. Intell., vol. 52, no. 5, pp. 5353–5365, Mar. 2022,
doi: 10.1007/S10489-021-02732-5/FIGURES/10.

[44] W. Tu, Y. Yang, S. Huang, W. Wan, L. Gan, and H. Lu, “MMDN:
Multi-scale and multi-distillation dilated network for pansharpening,”
IEEE Trans. Geosci. Remote Sens., vol. 60, May 2022, Art. no. 5410514,
doi: 10.1109/TGRS.2022.3179449.

[45] K. Zhang, A. Wang, F. Zhang, W. Wan, J. Sun, and L. Bruzzone,
“Spatial-spectral dual back-projection network for pansharpening,” IEEE
Trans. Geosci. Remote Sens., vol. 61, Apr. 2023, Art. no. 5402216,
doi: 10.1109/TGRS.2023.3266799.

https://dx.doi.org/10.1016/j.inffus.2018.05.006
https://dx.doi.org/10.1109/IGARSS.2017.8128408
https://dx.doi.org/10.1111/j.1477-9730.2006.00353.x
https://dx.doi.org/10.1016/j.inffus.2012.05.003
https://dx.doi.org/10.1109/LGRS.2009.2029248
https://dx.doi.org/10.1117/12.2241501
https://dx.doi.org/10.1117/12.2241645
https://dx.doi.org/10.1109/LGRS.2004.834804
https://dx.doi.org/10.1109/TGRS.2008.916211
https://dx.doi.org/10.1109/TGRS.2007.901007
https://dx.doi.org/10.1109/TGRS.2010.2051674
https://dx.doi.org/10.1109/TGRS.2019.2906073
https://dx.doi.org/10.1109/JSTARS.2020.3032472
https://dx.doi.org/10.1109/LGRS.2010.2067192
https://dx.doi.org/10.1080/014311600750037499
https://dx.doi.org/10.1109/TGRS.2005.856106
https://dx.doi.org/10.1109/TIP.2018.2819501
https://dx.doi.org/10.1007/S11263-006-6852-X
https://dx.doi.org/10.1109/LSP.2016.2608858
https://dx.doi.org/10.3390/RS10040622
https://dx.doi.org/10.1016/J.INFFUS.2018.11.014
https://dx.doi.org/10.1109/ICIP.2019.8803480
https://dx.doi.org/10.1364/AO.403366
https://dx.doi.org/10.1109/TPAMI.2019.2945027
https://dx.doi.org/10.3390/RS13071367
https://dx.doi.org/10.3390/RS14112673
https://dx.doi.org/10.3390/rs8070594
https://dx.doi.org/10.1109/ICCV.2017.193
https://dx.doi.org/10.1007/978-3-319-73603-7_35
https://dx.doi.org/10.1109/TPAMI.2015.2439281
https://dx.doi.org/10.1109/LGRS.2017.2736020
https://dx.doi.org/10.1109/JSTARS.2018.2794888
https://dx.doi.org/10.1109/JSTARS.2018.2805923
https://dx.doi.org/10.1109/JSTARS.2018.2805923
https://dx.doi.org/10.1109/MGRS.2022.3187652
https://dx.doi.org/10.1109/TGRS.2021.3074624
https://dx.doi.org/10.1109/TGRS.2021.3132997
https://dx.doi.org/10.1007/S10489-021-02732-5/FIGURES/10
https://dx.doi.org/10.1109/TGRS.2022.3179449
https://dx.doi.org/10.1109/TGRS.2023.3266799


6338 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[46] L. Jian, S. Wu, L. Chen, G. Vivone, R. Rayhana, and D. Zhang, “Multi-
scale and multi-stream fusion network for pansharpening,” Remote Sens.,
vol. 15, no. 6, Mar. 2023, Art. no. 1666, doi: 10.3390/RS15061666.

[47] M. Gong, H. Zhang, H. Xu, X. Tian, and J. Ma, “Multi-patch
progressive pansharpening with knowledge distillation,” IEEE Trans.
Geosci. Remote Sens., vol. 61, Mar. 2023, Art. no. 5401115,
doi: 10.1109/TGRS.2023.3254053.

[48] S. Peng, Q. Gao, D. Zhu, Y. Lu, and D. Sun, “PSCF-Net: Deeply coupled
feedback network for pansharpening,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, Mar. 2023, Art. no. 5401812, doi: 10.1109/TGRS.2023.3261386.

[49] T.-J. Zhang, L.-J. Deng, T.-Z. Huang, J. Chanussot, and G. Vivone,
“A triple-double convolutional neural network for panchromatic sharp-
ening,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–14, Mar. 2022,
doi: 10.1109/TNNLS.2022.3155655.

[50] Y. Wu, Y. Li, S. Feng, and M. Huang, “Pansharpening using unsuper-
vised generative adversarial networks with recursive mixed-scale feature
fusion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 3742–3759, Mar. 2023, doi: 10.1109/JSTARS.2023.3259014.

[51] Q. Xu, Y. Li, J. Nie, Q. Liu, and M. Guo, “UPanGAN: Unsupervised
pansharpening based on the spectral and spatial loss constrained gener-
ative adversarial network,” Inf. Fusion, vol. 91, pp. 31–46, Mar. 2023,
doi: 10.1016/J.INFFUS.2022.10.001.

[52] H. Zhou, Q. Liu, D. Weng, and Y. Wang, “Unsupervised cycle-
consistent generative adversarial networks for pan sharpening,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Mar. 2022, Art. no. 5408814,
doi: 10.1109/TGRS.2022.3166528.

[53] T. Benzenati, Y. Kessentini, and A. Kallel, “Pansharpening approach via
two-stream detail injection based on relativistic generative adversarial
networks,” Expert Syst. Appl., vol. 188, Feb. 2022, Art. no. 115996,
doi: 10.1016/J.ESWA.2021.115996.

[54] H. Zhang, H. Wang, X. Tian, and J. Ma, “P2Sharpen: A progressive
pansharpening network with deep spectral transformation,” Inf. Fusion,
vol. 91, pp. 103–122, Mar. 2023, doi: 10.1016/J.INFFUS.2022.10.010.

[55] W. Zhu, J. Li, Z. An, and Z. Hua, “Mutiscale hybrid atten-
tion transformer for remote sensing image pansharpening,” IEEE
Trans. Geosci. Remote Sens., vol. 61, Jan. 2023, Art. no. 5400416,
doi: 10.1109/TGRS.2023.3239013.

[56] Z. Xiong, N. Liu, N. Wang, Z. Sun, and W. Li, “Unsupervised pan-
sharpening method using residual network with spatial texture attention,”
IEEE Trans. Geosci. Remote Sens., vol. 61, Apr. 2023, Art. no. 5402112,
doi: 10.1109/TGRS.2023.3267056.

[57] X. Su, J. Li, and Z. Hua, “Transformer-based regression network for pan-
sharpening remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, Feb. 2022, Art. no. 5407423, doi: 10.1109/TGRS.2022.3152425.

[58] J. Qu, S. Hou, W. Dong, S. Xiao, Q. Du, and Y. Li, “A dual-
branch detail extraction network for hyperspectral pansharpening,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Nov. 2022, Art. no. 5518413,
doi: 10.1109/TGRS.2021.3130420.

[59] W. Zhang, J. Li, and Z. Hua, “Attention-based multistage fusion
network for remote sensing image pansharpening,” IEEE Trans.
Geosci. Remote Sens., vol. 60, Oct. 2022, Art. no. 5405416,
doi: 10.1109/TGRS.2021.3113984.

[60] L.-J. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail injection-
based deep convolutional neural networks for pansharpening,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 8, pp. 6995–7010, Aug. 2021,
doi: 10.1109/TGRS.2020.3031366.

[61] L. Chen, Z. Lai, G. Vivone, G. Jeon, J. Chanussot, and X. Yang, “ArbRPN:
A bidirectional recurrent pansharpening network for multispectral images
with arbitrary numbers of bands,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, Nov. 2022, Art. no. 5406418, doi: 10.1109/TGRS.2021.3131228.

[62] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778, doi: 10.1109/CVPR.2016.90.

[63] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 1800–1807, doi: 10.1109/CVPR.2017.195.

[64] L. Wald, T. Ranchin, and M. Mangolini, “Fusion of satellite images of
different spatial resolutions: Assessing the quality of resulting images,”
Photogramm. Eng. Remote Sens., vol. 63, no. 6, pp. 691–699, 1997.

[65] P. Guo, P. Zhuang, and Y. Guo, “Bayesian pan-sharpening with multiorder
gradient-based deep network constraints,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 13, pp. 950–962, Mar. 2020, doi: 10.1109/JS-
TARS.2020.2975000.

[66] X. Fu, W. Wang, Y. Huang, X. Ding, and J. Paisley, “Deep multiscale
detail networks for multiband spectral image sharpening,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 5, pp. 2090–2104, May 2021,
doi: 10.1109/TNNLS.2020.2996498.

[67] R. H. Yuhas, A. F. H. Goetz, J. W. Boardman, A. F. H. Goetz, and J.
W. Boardman, “Discrimination among semi-arid landscape endmembers
using the spectral angle mapper (SAM) algorithm,” in Proc. Summaries
3rd Annu. JPL Airborne Geosci. Workshop, Volume 1: AVIRIS Workshop,
1992, pp. 147–149.

[68] L. Wald, “Data fusion: Definitions and architectures—Fusion of images
of different spatial resolutions,” 2002. Accessed: Dec. 07, 2022. [Online].
Available: https://hal-mines-paristech.archives-ouvertes.fr/hal-00464703

[69] J. Zhou, D. L. Civco, and J. A. Silander, “A wavelet transform method to
merge Landsat TM and SPOT panchromatic data,” Int. J. Remote Sens.,
vol. 19, no. 4, pp. 743–757, Jan. 1998, doi: 10.1080/014311698215973.

[70] A. Garzelli and F. Nencini, “Hypercomplex quality assessment of
multi/hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 6,
no. 4, pp. 662–665, Oct. 2009, doi: 10.1109/LGRS.2009.2022650.

[71] G. Vivone et al., “A critical comparison among pansharpening algo-
rithms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2565–2586,
May 2015, doi: 10.1109/TGRS.2014.2361734.

[72] C. A. Laben and B. Brower, “Process for enhancing the spatial resolution
of multispectral imagery using pan-sharpening,” U.S. Patent 6,011,875,
Jan. 2000.

[73] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, “Context-driven fusion
of high spatial and spectral resolution images based on oversampled
multiresolution analysis,” IEEE Trans. Geosci. Remote Sens., vol. 40,
no. 10, pp. 2300–2312, Oct. 2002, doi: 10.1109/TGRS.2002.803623.

[74] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M.
Bruce, “Comparison of pansharpening algorithms: Outcome of the 2006
GRS-S data-fusion contest,” IEEE Trans. Geosci. Remote Sens., vol. 45,
no. 10, pp. 3012–3021, Oct. 2007, doi: 10.1109/TGRS.2007.904923.

[75] J. L. Xiao, T. Z. Huang, L. J. Deng, Z. C. Wu, and G. Vivone, “A new
context-aware details injection fidelity with adaptive coefficients estima-
tion for variational pansharpening,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, Feb. 2022, Art. no. 5408015, doi: 10.1109/TGRS.2022.3154480.

[76] Z. C. Wu, T. Z. Huang, L. J. Deng, J. Huang, J. Chanussot, and G.
Vivone, “LRTCFPan: Low-rank tensor completion based framework for
pansharpening,” IEEE Trans. Image Process., vol. 32, pp. 1640–1655,
Feb. 2023, doi: 10.1109/TIP.2023.3247165.

Yuan Fang received the B.E. degree in civil engi-
neering, in 2021, from the University of Liverpool,
Liverpool, U.K., where she is currently working to-
ward the Ph.D. degree in civil engineering.

Her research interests include deep learning and
data fusion of satellite images.

Yuanzhi Cai (Graduate Student Member, IEEE) re-
ceived the B.E. degree in civil engineering, in 2020,
from the University of Liverpool, Liverpool, U.K.,
where he is currently working toward the Ph.D. degree
in civil engineering.

His research interests include the classification and
segmentation of remote sensing data.

Lei Fan (Member, IEEE) received the Ph.D. degree
in civil engineering from the University of Southamp-
ton, Southampton, U.K., in 2014.

He is currently an Assistant Professor with the
Department of Civil Engineering, Xi’an Jiaotong Liv-
erpool University, Suzhou, China. His research inter-
ests include lidar and photogrammetry techniques,
point cloud, machine learning, deformation moni-
toring, semantic segmentations, monitoring of civil
engineering structures, and geohazards.

https://dx.doi.org/10.3390/RS15061666
https://dx.doi.org/10.1109/TGRS.2023.3254053
https://dx.doi.org/10.1109/TGRS.2023.3261386
https://dx.doi.org/10.1109/TNNLS.2022.3155655
https://dx.doi.org/10.1109/JSTARS.2023.3259014
https://dx.doi.org/10.1016/J.INFFUS.2022.10.001
https://dx.doi.org/10.1109/TGRS.2022.3166528
https://dx.doi.org/10.1016/J.ESWA.2021.115996
https://dx.doi.org/10.1016/J.INFFUS.2022.10.010
https://dx.doi.org/10.1109/TGRS.2023.3239013
https://dx.doi.org/10.1109/TGRS.2023.3267056
https://dx.doi.org/10.1109/TGRS.2022.3152425
https://dx.doi.org/10.1109/TGRS.2021.3130420
https://dx.doi.org/10.1109/TGRS.2021.3113984
https://dx.doi.org/10.1109/TGRS.2020.3031366
https://dx.doi.org/10.1109/TGRS.2021.3131228
https://dx.doi.org/10.1109/CVPR.2016.90
https://dx.doi.org/10.1109/CVPR.2017.195
https://dx.doi.org/10.1109/JSTARS.2020.2975000
https://dx.doi.org/10.1109/JSTARS.2020.2975000
https://dx.doi.org/10.1109/TNNLS.2020.2996498
https://hal-mines-paristech.archives-ouvertes.fr/hal-00464703
https://dx.doi.org/10.1080/014311698215973
https://dx.doi.org/10.1109/LGRS.2009.2022650
https://dx.doi.org/10.1109/TGRS.2014.2361734
https://dx.doi.org/10.1109/TGRS.2002.803623
https://dx.doi.org/10.1109/TGRS.2007.904923
https://dx.doi.org/10.1109/TGRS.2022.3154480
https://dx.doi.org/10.1109/TIP.2023.3247165


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


