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Abstract—Synthetic aperture radar (SAR) is known to be able
to provide high-resolution estimates of surface wind speed. These
estimates usually rely on a geophysical model function (GMF)
that has difficulties accounting for nonwind processes, such as
rain events. Convolutional neural network, on the other hand,
have the capacity to use contextual information and have demon-
strated their ability to delimit rainfall areas. By carefully building a
large dataset of SAR observations from the Copernicus Sentinel-1
mission, collocated with both GMF and atmospheric model wind
speeds as well as rainfall estimates, we were able to train a wind
speed estimator with reduced errors under rain. Collocations with
in-situ wind speed measurements from buoys show a root mean
square error that is reduced by 27% (respectively, 45%) under
rainfall estimated at more than 1 mm/h (respectively, 3 mm/h).
These results demonstrate the capacity of deep learning models to
correct rain-related errors in SAR products.

Index Terms—Deep learning, oceanography, synthetic aperture
radar (SAR), wind.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a powerful tool for
studying the ocean surface. C-band SAR are sensitive to

variations in sea surface roughness (SSR), and have been used to
detect various meteorological and ocean processes, referred to as
metocean, such as atmospheric or ocean fronts [1], icebergs [2],
oil surfactants from pollution [3] or generated by plankton [4],
and some species of seaweed [5]. They are particularly useful
for studying waves [6] and extreme events like cyclones [7],
[8]. There has been particular attention given to estimating wind
speed using these sensors.

As the number of satellite missions with C-SAR sensors
increases and archives of these data accumulate, it is becoming
easier to build large SAR datasets. This article focuses on
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the Sentinel-1 mission from the Copernicus program, which
consists of two satellites, Sentinel-1 A (launched in 2014) and
Sentinel-1B (launched in 2016, which has been out of operation
since December 2021). Sentinel-1 C is planned to be launched
in 2023. Ground range detected higher resolution interfero-
metric wide-swath observations have a range of 250 km, an
azimuth of about 200 km, and a resolution of 10 m/px. These
observations are mainly routinely acquired over coastal areas.
Systematic processes are used to produce geophysical prod-
ucts from these observations, including wind speed estimates.
Several geophysical model functions (GMFs) have been devel-
oped for this purpose, including CMOD3 [9], CMOD4 [10],
CMOD5 [11], CMOD5.N [12], CMOD6 [13], CMOD7 [14],
and C_SARMOD2 [15]. These GMFs use the vertical–vertical
polarization, which is Sentinel-1’s default copolarization in
coastal areas. However, the copolarization channel saturates
at high wind speed [16]. Therefore, the cross-polarization has
also been used to estimate the wind speed [7]. In particular,
H14E [17] was found to provide accurate wind speed measure-
ments even in extreme events, such as category 5 hurricanes [18].
The cross-polarization has the advantage of lower incidence
and wind direction dependency [19]. GMFs have also been
developed for horizontal–horizontal polarization [20]. Bayesian
nonparametric wind speed estimation has also been proposed,
offering the advantage of not relying on wind direction priors that
are sensitive to meteorological processes with rapid temporal
and spatial evolution [21].

However, these GMFs are sensitive to contamination from
nonwind processes. In particular, rainfall can either increase or
decrease SSR [22], making it difficult to correct for its effects.

Deep learning models, particularly convolutional neural net-
works, have demonstrated their ability to detect rain signatures
in SAR observations [23]. These models are known to be able
to tackle denoising [24] and inpainting [25] tasks because they
use contextual information to estimate the original signal. This
article is dedicated to estimating wind speed in rainy areas using
a model that does not require an explicit rainfall prior and only
uses the parameters available to GMFs.

In the first section, we present the SAR data used to train the
model and the ancillary information available. The rest of this
article is organized as follows. The second section describes
the methodology used to build the dataset, with special
attention given to ensuring a balanced representation of rainfall

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4158-4933
https://orcid.org/0000-0003-1647-8239
https://orcid.org/0000-0002-1384-0944
https://orcid.org/0000-0001-8275-433X
https://orcid.org/0000-0002-6462-423X
mailto:acolin@groupcls.com
mailto:pierre.tandeo@imt-atlantique.fr
mailto:ronan.fablet@imt-atlantique.fr
mailto:cpeureux@groupcls.com
mailto:rhusson@penalty -@M groupcls.com
mailto:rhusson@penalty -@M groupcls.com


COLIN et al.: REDUCTION OF RAIN-INDUCED ERRORS FOR WIND SPEED ESTIMATION ON SAR OBSERVATIONS 8587

observations. Section III presents the methodology for building
the rain-invariant wind speed estimator. The Section IV presents
the results on the training set and confirms them with in-situ
measurements from buoys, demonstrating the model’s ability
to correct for rain overestimates. Finally, Section V concludes
this article.

II. DATASET

The SAR measurements used in this chapter come from
19 978 IW observations acquired globally between 3 March,
2018, and the 23 February, 2022, inclusive. Each of these obser-
vations covers approximately 44 000 km2 and has a resolution
of 100 m/px, downscaled from the GRDH products available at
10 m/px. The radiometric information used as input is the SSR
defined in [26] as the normalized radar cross section σ0 divided
by the σ0 of a wind of 10 m/s and a direction of 45◦ relative to
the antenna look angle. The σ0 of this neutral wind is given by
the GMF CMOD5.N.

Obtaining global information on rain that can be used in
conjunction with SAR observations can be difficult. A previ-
ous study conducted using a global Sentinel-1 dataset found
only 2304 partial collocations with the satellite-based radar
GPM/DPR [27] out of 182153 IW. “Partial collocations” refers
to instances where at least 20 × 20 km of a swath is observed
by the spaceborne weather radar 20 min before or after the SAR
observation. Coastal ground-based radars like NEXRAD [28]
could provide rainfall estimates, but they are affected by to-
pography and may not capture all wind regimes. Therefore,
SAR-based rain estimation is preferred to maximize the number
of available observations and simplify the collocation process.
We used a recent SAR rainfall estimator [23] that emulates
NEXRAD’s reflectivity and proposes three rainfall thresholds
that roughly correspond to 1, 3, and 10 mm/h.

Ancillary information, such as incidence angle and satellite
heading, is retrieved from Sentinel-1 Level-2 products. It also in-
cludes collocations with atmospheric models from the European
Center for Medium-Range Weather Forecasts, which provide
modeled wind speed and direction, as well as the surface wind
speed computed by the GMF. The atmospheric models have a
spatial resolution of 0.25◦ × 0.25◦ and a temporal resolution
of 3 h [29], while the GMF is computed at a spatial resolu-
tion of 1 km/px and corresponds to the observation itself. The
GMF used in Level-2 product is IFR2 [30] until July 2019 and
CMOD5.N [12] afterward. The ancillary information contained
in the Level-2 products is available at a spatial resolution of
1 km/px. However, it is interpolated to 100 m/px to match the
grid of the radiometric channels.

III. METHODOLOGY

This section presents the methodology for building the rain-
invariant wind speed estimator. We first describe the deep learn-
ing architecture of the model, then we discuss the creation of the
dataset, which is biased to have a large number of rain examples.
The final section describes the evaluation procedure.

Fig. 1. Architecture of the UNet model used for estimating the wind speed.

A. Deep Learning Model

The architecture used in this chapter is the UNet architec-
ture [31] shown in Fig. 1. UNet is an autoencoder architecture
with the advantage of being fully convolutional, meaning it
has translation equivariance properties (translations of the input
result in translations of the output). In addition, skip connec-
tions between the encoder and the decoder facilitate training,
especially by reducing the vanishing gradient issue [32]). In-
troduced in 2015, UNet has been used in various domains
and has demonstrated its importance for segmentation of SAR
observations [23], [33], [34].

The output of the model always contains a single convolution
kernel, activated by the rectified linear unit (ReLU) function to
ensure that the prediction is in the interval [0, +∞]. All convo-
lution kernels in the hidden layers are also activated by ReLU
functions. The model is set to take input of 256 × 256 pixels
during training, but since the weights only describe convolution
kernels, it is possible to use the model for inference on images
of any shape as long as the input resolution remains at 100 m/px.
Variants of the model are trained with different numbers of input
channels. The architecture is modified by changing the size of the
first convolution kernel, which is defined as a kernel of size (3, 3,
c, 32), where c is the number of input channels.

B. Dataset Balancing Procedure

In this section, we describe the process for building a balanced
dataset. Our goals are as follows.

1) Ensure that the wind distribution of each dataset is close
to the real-world distribution.

2) Prevent information leak between the training, validation,
and test subsets.

3) Ensure that the groundtruth wind speed, obtained from an
atmospheric model, accurately represents the real-world
wind speed.

4) Include enough rain samples to allow the model to learn
from them.
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Fig. 2. Distribution of ERA5 wind speed collocated with surface rain rate
from GPM/DPR for rainfall higher than (a) 3 and (b) 30 mm/h. They amount
for 0.55% and 0.02% of the collocations, respectively. The orange curve in the
figure shows the wind distribution regardless of the rainfall.

a) Rain and rainless patches selection: As discussed ear-
lier, rainfall estimation is provided by a deep learning model at a
resolution of 100 m/px, on the same grid as the SAR observation.
Therefore, it is possible to separate the observations into two
areas, A+ and A−, based on the 3 mm/h threshold from the
rainfall estimation

A+ = {x : Rainfall(x) >= 3mm/h} (1)

A− = {x : Rainfall(x) < 3mm/h}. (2)

However, most SAR observations do not contain rain signatures.
Collocations with GPM’s dual polarization radar, a satellite-
based weather radar, indicated that the probability of rain rates
higher than 3 mm/h was 0.5%. Thus, by dividing the SAR
observations into tiles of 256× 256 pixels, we call “rain patches”
the tiles with more than 5% of their surface predicted to have rain
rates higher than 3 mm/h, and “rainless patches” those without
rain signatures. We denote n+ as the number of rain patches and
n− as the number of rainless patches. To ensure that the model
will learn regardless of the rain situation, we set n+ = n−.

Fig. 2 shows collocations between the reanalysis from ERA5
and the satellite-based weather radar GPM/DPR. It shows the
wind speed distribution for rainfall higher than (a) 3 mm/h
and (b) 30 mm/h, and the overall distribution (orange curve).
Stronger rainfall is associated with a lower probability of strong
wind speeds. However, the impact is mostly marginal at moder-
ate rain rates.

b) Restriction to a priori Accurate Model Wind Speeds:
Atmospheric models have been known to have coarse resolution
(0.25 × 0.25 degrees spatially, 3 h temporally) and to be unable
to accurately depict fine-scale wind fields. However, they are
computed globally and independently of the SAR observations.
On the other hand, SAR-based wind fields from the GMFs are
known to be accurate on rainless patches, but are diversely
affected by rainfall. At low and moderate wind speeds, imping-
ing droplets lead to an overestimation of the wind speed. Under

Fig. 3. Wind speed distributions for rain (blue) and rainless (red) patches.
Orange curve correspond to the real world wind distribution.

high wind speed conditions, dominant attenuation results in an
underestimation of the wind speed. Because of the difficulty
of collocating a sufficient quantity of high wind speed and
rainfall events, this study mainly aims to correct the wind speed
overestimation. We calculate ΔA− as the discrepancy between
the GMF and the atmospheric model on rain-free pixels

ΔA− = mse|A−(Atm,GMF) (3)

In our experiments, the threshold was set at ΔA− < 1 m/s. All
patches containing a higher discrepancy between the two wind
speed sources were discarded. By ensuring agreement between
the atmospheric model and the SAR-based GMF on rainless
patches, we assume that the atmospheric model is close to the
real wind speed and use it as a target for optimizing the deep
learning model.

c) Balancing to the real-world wind distribution: It should
be noted that this condition ensures accurate modeled wind
speeds and rain distribution, especially because the rainfall
estimator is known to overestimate rainfall at high wind speeds.

We denote the following.
1) P+ as the wind speed distribution on n+.
2) P− as the wind speed distribution on n−.
3) P as the wind speed distribution on n− ∪ n+.
Balancing the dataset to the real-world wind distribution

translates to the following condition:

∀x, P (x) =
n+P

+(x) + n−P−(x)
n+ + n−

. (4)

As we choose to keep all rain patches and to set n+ = n−, (4)
leads to the following:

∀x, P−(x) =
1

2
(P+(x)− P (x)). (5)

For some wind speeds x, P+(x) is higher than twice P (x). In
these cases, we relax the condition from (5) in order to avoid
removing rain patches. Fig. 3 shows the wind speed distribution
for rain and rainless patches. The mean squared error between
P and 1

2 (P
+ + P−) reach 8.8%.

The dataset can be further balanced to ensure that, for
each wind speed, the number of rain and rainless patches is
equal. However, this leads to removal of 84% of the data.
Appendix 1 compares the performance of this second dataset.
As it did not provide improvements, this dataset is left out of the
main document.

1) Training, Validation, and Test Set Division: After extract-
ing the patches following the distributions P+ and P−, they



COLIN et al.: REDUCTION OF RAIN-INDUCED ERRORS FOR WIND SPEED ESTIMATION ON SAR OBSERVATIONS 8589

Algorithm 1: Stochastic Brute Forcing.

are split into training, validation, and test sets. Each subset pre-
serves the same distributions. Furthermore, to avoid information
leakage, if a patch from one IW is in a subset, every patch from
the same IW belongs to the same subset. The stochastic brute
forcing method described in Algorithm 1 draws random IWs
and computes the distribution of the validation and test subsets,
compares them with the overall distributions, and returns the
solution that minimizes the difference. In this algorithm, P̄e

indicates the wind speed distribution multiplied by the number of
patches in e and divided by the total number of patches. It ensures
that the validation and test subsets each contain approximately
10% of all the patches.

The initial 19 978 IW observations account for 105 164 rain
patches and 2 094 370 rainless patches. At the end of the process,
the distribution in the subsets is as follows.

1) 168 349 patches from 14 169 IWs in the training set.
2) 20 944 patches from 1 763 IWs in the test set.
3) 21 010 patches from 1 763 IWs in the validation set.
Before training the model, we compute the mean and standard

deviation of each channel on the training set and use them to
normalize the inputs during training, validation, and inference.
The output; however, is not normalized. We train the model for
100 000 weight updates (i.e., steps of the stochastic gradient
descent) to minimize the mean square error (mse) between the
prediction and the wind speed from the atmospheric model,
with a batch size of 16 and a learning rate of 10−5 using the
Adam optimizer.

C. Evaluation Procedure

To evaluate the impact of each input channel, we train various
variants of the model as follows.

1) I uses only the VV channel.
2) II uses the VV channel, the incidence angle and the a priori

wind direction.

3) III uses both the VV and the VH channel, the incidence
angle and the a priori wind direction.

4) IV uses both the VV and the VH channel, the incidence
angle, the a priori wind direction and the wind speed prior.

5) V uses only the wind speed prior.
All channels are interpolated to 100 m/px and concatenated

on the same grid.
Incidence angles and wind directions from european cen-

tre for medium-range weather forecasts (ECMWF) atmo-
spheric model are obtained from the Level-2 products and
notably used for the computation of the GMF. Therefore, ar-
chitecture II contains the same inputs as the GMF though inter-
polated at a finer resolution.

Each architecture is trained five times to reduce the impact
of random initialization on the evaluation results. The results
are presented as the mean and standard deviation over these five
independent trainings.

We compare the results using the root mean square error
(RMSE) and the Pearson correlation coefficient (PCC). The PCC
is formulated as follows:

PCCY,Ŷ =
E
[
(Y − μY )

(
Ŷ − μŶ

)]
σY σŶ

. (6)

The results are computed against both the groundtruths from the
atmospheric model, which provides a large test set, and against
collocations with buoys, which have good temporal resolution
and are in-situ measurements.

IV. RESULTS

A. Benchmarking Experiments

The performance of the models compared with ECMWF are
calculated on the test subset for each input variant and the
baseline GMF. The results of this analysis can be found in
Table I. It appears that the most important input is the GMF
itself, as both IV and V have better results than the other variants.
I, II, and III are unable to achieve better results than the GMF,
except under strong rainfall, even though II and III have access
to all the channels used by the GMF.

Examples of rain-induced wind speed overestimation are
shown in Fig. 4. Fig. 4(a) shows the SSR on a logarithmic scale,
with bright patterns appearing in the observation and segmented
as rainfall in Fig. 4(c). These patterns correlate with high wind
speeds estimated by the GMF in Fig. 4(b). The deep learning
method in Fig. 4(d) ignores this spike in the SSR, but it also
seems to underestimate the wind speed in the bottom-left quarter
of the observation. Both of these behaviors are especially visible
in the transect shown in Fig. 4(f).

B. Application to SAR Observation With Groundtruthed
In-Situ Data

However, ECMWF wind speeds are model data and not in-
situ, which can be obtained using anemometers on buoys. Using
the dataset created in [35], 4732 collocation points between
Sentinel-1 and national data buoy center (NDBC) buoys are
identified. The rain prediction model estimates that 4643 of these
points are rainless, 75 record rainfall of more than 1 mm/h, and
14 record rainfall of more than 3 mm/h. On a side note, the
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TABLE I
COMPARISON OF THE FIVE VARIANTS OF THE MODEL AND THE TWO DATASETS

Fig. 4. Observation from the 11 November, 2018, at 04:56:47. (a) SSR of
the VV channel in dB. (b) GMF estimated wind speed in m/s. (c) Deep learning
estimated wind speed in m/s. (d) Prediction of the rainfall estimator. (e) Transects
of the green. (f) Red lines with rainfall predicted higher than 10 mm/h indicated
as grey areas.

TABLE II
BIAS, RMSE, AND PCC OF MODEL IV, TRAINED WITH THE BALANCED AND

THE NEUTRAL DATASET, AS WELL AS THE GMF, EACH PROVIDED FOR THE

DIFFERENT RAIN LEVELS

height at which in-situ measurements were taken varies, with
most being between 3.8 and 4.1 m above sea level. As mentioned
in [35], the SAR inversion and deep learning prediction are
both normalized to the altitude of the corresponding in-situ
measurement. Denoting w the wind speed at 10 m estimated
from the SAR, the wind speed at elevation h is given by the
exponential law [36]

wh = w ·
(

h

10

)0.11

. (7)

Table II indicates that the performances of the deep learning
are higher than the GMF for both the RMSE and the PCC
for all rain ranges. The RMSE decreases by 0.04, 0.37, and
1.33 m/s for rainless, light rain, and moderate rain-situations,
respectively. The bias decreases by 0.26 and 1.01 m/s under
light and moderate rain, but increases by 0.02 m/s for rainless
situations. Table II also demonstrates the importance of the
dataset building scheme as a dataset composed of collocations
without the aformentioned sample selection, referred to as the
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Fig. 5. (a) Evaluation of the RMSE across the wind speed. (b) Number of
collocation with NDBC buoys in rainless areas.

“neutral dataset,” consistently has lower performances than the
balanced dataset.

Fig. 5 shows a comparison of the performances against NDBC
buoys for various wind speeds. Unfortunately, collocations are
scarce at very low and high wind speeds, which are the intervals
where both the GMF and deep learning models have higher
errors.

In the following, we observe two cases where rainfall was
detected on the buoy position at the time of observation.

1) 8 January, 2017, 01:58:19 at NDBC 46054: The observa-
tion from 8 January, 2017, 01:58:19 covers the north of the cal-
ifornian channel islands [see Fig. 6(a)]. Several meteorological
buoys are dispersed over the channel, including NDBC 46054
and NDBC 46053, which are indicated as red dots. The wind
speed over the area is mostly around 6 m/s, but a squall line
appears at the position of NDBC 46054 and spans over a dozen
kilometers. A surge in the air column reflectivity is recorded by
weather radar from the NEXRAD network. The ground station
is located at 119 km. The GMF indicates very high wind speeds,
higher than 20 m/s [see Fig. 6(d)]. The deep learning model
attenuates these values to between 6 and 8 m/s [see Fig. 6(e)].

For NDBC 46054 (Fig. 7(a)), only one measurement of wind
speed and direction per hour is available. It recorded a wind
speed of 6.3 m/s 8 min before the SAR observation. The GMF
and the deep learning model estimated wind speeds of 15.1 and
5.9 m/s, respectively. While the temporal resolution of NDBC
46054 is one measurement per hour, NDBC 46053 records
data every 10 min. Furthermore, the gust front appears to be
moving toward the right part of the observation. This can be
seen in the time series in Fig. 7(a) as a large variation in wind
direction between 02:40:00 and 03:00:00. The variation in wind
speed seems to precede the variation in direction, first increasing
then decreasing to a lower wind regime. On NDBC 46053, the
GMF and the deep learning model agree on a wind speed of
4.5 m/s, which is slightly lower than the in-situ data of 5.4 m/s.
Since the distance between NDBC 46054 and NDBC 46053
is approximately 60 km, the progression of the gust front can
be estimated to be around 90 km/h. With a width of around
5 or 6 km, the whole system would pass the buoys in 3 min.
This means that even NDBC 46053 may not have been able
to accurately estimate the wind speed due to its low temporal
resolution. However, it is worth noting that even the gust speed at

Fig. 6. (a) SSR from the 8 January, 2017, at 01:58:19 in VV channel. (b) Zoom
on an area of 35 km × 35 km centered on the buoy NDBC 45054. (d) Wind
speed given by the GMF. (e) By the deep learning model.

NDBC 46054, defined as the maximum wind speed over a given
number of seconds, does not record a speed higher than 9 m/s.

2) SAR-20191006T232853 NDBC-41009: The observation
from 6 October, 2019, 23:28:53 was recorded on the east coast
of Florida. While most of the swath covers the marshes around
Orlando and Cape Canaveral rather than the ocean, convective
precipitation can be observed in the right part of the image [see
Fig. 8(a)]. The cells are moving downward (north–north–east),
as indicated by the stronger gradient of the convective front.
Since the wind from the convection is opposing the underlying
wind regime, an area of lower wind speed appears as an area
of lower backscatter. Rainfall was detected by a weather radar
from the NEXRAD network located at 64 km [see Fig. 8(c)].
The GMF is impacted by these rain signatures and estimates a
very high local wind speed [see Fig. 8(d)]. The deep learning
model is less affected by the rain signatures, but also appears to
blur the low wind speed area [see Fig. 8(e)].

The time series from NDBC 41009 in Fig. 9 shows that
the lower backscattering was indeed caused by a drop in wind
speed rather than a change in direction, as the latter does not
significantly change during the passage of the convective cell
(possibly because the underlying wind regime is strong). It does
record a sudden drop in wind speed to 7.5 m/s 1 min after the
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Fig. 7. Time series of the NDBC buoy wind measurements around 8 January,
2017, at 01:58:19 for (a) NDBC 46054 (b) NDBC 46053 and the estimation
from the GMF, the deep learning model and the atmospheric model.

SAR observation, while the GMF and the deep learning model
estimated wind speeds of 13.7 and 8.9 m/s, respectively.

V. CONCLUSION

Previous studies have shown that high-resolution rain signa-
tures can be automatically extracted from SAR observations.
Using this SAR rainfall segmenter, we built a wind estima-
tion dataset where 50% of the patches contain rainfall exam-
ples. Samples were chosen so that a SAR-based and a SAR-
independent wind speed model agree on nonrain pixels, ensuring
that their estimates are close to the true wind speed. A UNet
architecture was trained on this dataset to estimate wind speeds
based on the SAR-independent atmospheric model. We tested

Fig. 8. (a) SSR from 6 October, 2019, at 23:28:53 in VV channel in dB. (b)
Zoom on an area of 35 km× 35 km around the buoy NDBC 41009. (c) NEXRAD
observation acquired at 23:27:33. (d) Wind speed given by the GMF. (e) By the
deep learning model.

Fig. 9. Time series of the NDBC buoy wind measurements around 6 October,
2019, at 23:28:53 for NDBC 41009 and the estimation from the GMF, the deep
learning model and the atmospherical model.
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Fig. 10. Wind speed distribution for rain (blue) and rainless (red) patches.

TABLE III
BIAS, RMSE OF MODEL IV, THE GMF, FOR EACH RAINFALL LEVEL

several input combinations and found that the most important
parameter was the wind speed prior from the GMF, which the
deep learning model had difficulty emulating.

Collocations with buoy in-situ measurements show that the
model outperforms the current GMF on rain areas, reducing the
RMSE by 27% (respectively, 45%) for rain rates higher than
1 mm/h (respectively, 3 mm/h). On rainless areas, performances
are similar with a small reduction of the RMSE by 2.7%.
However, since the buoys have a time resolution of 10 min, some
quick submesoscale processes, such as gust fronts, are difficult
to register. The limited spatial range of the buoys also makes
it challenging to observe rare phenomena. Future work should
address these concerns.

APPENDIX

A secondary dataset was created differing with the main
dataset by (4). Here, the balancing policy is defined as follows:

∀x, P (x) = P+(x) = P−(x). (8)

The distributions P+ and P− are shown in Fig. 10. The balanc-
ing is performed for every wind speed, which lead to remove
84% of the rain patches—especially at 5 and 10 m/s—since the
number of rain patches at 8 m/s is limited.

Models were optimized under the same training process as
in Section III-B1, in particular with the same number of weight
updates. Comparison with the first balancing scheme display
lower performances despite the more accurate balancing, as
indicated Table III.
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