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Abstract—Recently, deep learning methods, particularly the con-
volutional neural networks, have been extensively employed for
extracting spectral–spatial features in hyperspectral image (HSI)
classification tasks, yielding promising results. Conventional meth-
ods often use small image patches as input and combine spectral and
spatial features with fixed strategies. However, the equal treatment
of all pixels within heterogeneous patches can negatively impact fea-
ture extraction performance. In this article, we propose a semisu-
pervised dual-branch spectral–spatial adversarial representation
learning (SSARL) method for HSI classification. SSARL adaptively
assigns attention weights to different pixels and adds a spectral
constraint to spatial features. Our approach consists of three main
components: 1) a dual-branch framework designed to indepen-
dently extract spectral and spatial information from pixel and
patch samples; 2) a class consistency loss that adaptively combines
spectral and spatial classification results, mitigating the adverse
effects of heterogeneous patches and enabling appropriate feature
selection for various situations; and 3) the deep learning model on
the labeled sample size by adding the adversarial representation
module and conditional entropy to two branches, reducing the deep
learning model’s reliance on labeled sample size. Experimental
results demonstrate that SSARL outperforms competitive methods
on small-sized (0.3%–5%) labeled samples and exhibits superior
performance for boundary test pixels.

Index Terms—Adversarial network, class consistency loss, dual
branch, generative adversarial network (GAN), hyperspectral
image (HSI) classification, semisupervised, spectral–spatial
feature.

I. INTRODUCTION

HYPERSPECTRAL imaging is a type of remote sensing
technology that captures abundant spectral and spatial

information. Unlike conventional RGB images, hyperspectral
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images (HSIs) are 3-D form of images, which enable a wide
range of applications [1], [2], including modern agriculture [3],
aviation industry [4], security [5], and biomedicine [6]. HSI clas-
sification, an essential process in remote sensing, discriminates
ground objects with unique spectral characteristics. Although
HSIs contain a large number of spectral bands that provide rich
information, they also introduce redundancy and noise [7], [8].
Consequently, researchers have focused on effective feature ex-
traction methods. Traditional supervised methods [9] typically
transform high-dimensional data into low-dimensional features
and design manual features based on prior knowledge [10]. How-
ever, features obtained through traditional methods rely heavily
on expert experience, which often results in low classification
accuracy for practical applications.

Recently, deep-learning-based methods have demonstrated
improved performance in HSI classification due to their pow-
erful feature extraction capabilities. They automatically extract
deep and discriminative features, overcoming the limitations
of traditional methods. Examples include stacked autoencoders
(SAEs) [11], deep belief networks (DBNs) [12], [13], [14],
convolutional neural networks (CNNs) [15], and generative
adversarial networks (GANs) [16], [17], [18], [19]. The afore-
mentioned methods primarily extract spectral features from
individual hyperspectral pixels. In addition, numerous studies
have shown that incorporating spatial information into classi-
fiers can effectively enhance performance [20]. Spatial features
address two key challenges: 1) high-dimensional spectral fea-
tures not only contain abundant information but also introduce
redundancy and noise—by operating on all the pixels within
an image patch and extracting features, noise and errors can
be effectively reduced; and 2) the same land cover types often
exhibit distinct spatial structures, while within-class spectral
differences can lead to variations in spectral–spatial features
exploiting the correlation between neighboring pixels within a
patch, thus mitigating the impact of spectral changes [21]. The
core concept of spatial features involves fusing features from all
the pixels within an image patch and treating them as central
pixel features. Utilizing patch samples and designing spatially
structured models are approaches to obtain spatial features at
present. Yang et al. [22] designed a two-channel CNN structure,
with one channel for spectral feature extraction and another for
spatial feature extraction. Two types of features are concatenated
and sent to a fully connected layer. Li et al. [23] used the
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3-D CNN to directly extract spectral–spatial features from HSI
patch samples. Similarly, the discriminator of the 3-D GAN [24]
can classify samples and determine their authenticity based on
extracted spectral–spatial features. Fang et al. [25] proposed a
new multiclass GAN that combines spectral and spatial features.
To reduce model complexity and enhance spatial feature abstrac-
tion, HybridSN proposed by Roy et al. [26] consists of 3-D CNN
and 2-D CNN layers. An image patch sample passes through
three 3-D CNN layers and one 2-D CNN layer successively to
obtain a spectral–spatial joint feature. Moreover, models based
on attention mechanisms [27], [28], [29] can extract global
features of images. SSFTT [30] first inputs 3-D image patches
to a CNN, and the output feature maps are divided into semantic
patches. These patches are then input to a transformer-based en-
coder. Deep learning HSI classifiers that utilize spectral–spatial
features and patch samples have achieved impressive results.
However, deep-learning-based methods typically require a large
number of labeled training samples to optimize the abundant
parameters of deep models and avoid overfitting. In addition,
spatial features also have inherent shortcomings, which will be
analyzed in detail in the following.

For HSI spectral–spatial classification with a small num-
ber of labeled samples, semisupervised learning is considered
a promising approach. Semisupervised learning aims to ex-
tract information from a large number of unlabeled samples.
Sun et al. [31] proposed a semisupervised algorithm that com-
bines clustering and manifold techniques. Seydgar et al. [32]
designed a semisupervised framework capable of generating
reliable fake labels, which are effective for various deep learn-
ing models. The semisupervised method based on the folded
spectrum GAN [33] folds the original spectral vector into a 2-D
square as the input of the GAN. Similarly, HSGAN [34] extracts
spectral features using a custom 1-D GAN and employs a novel
CNN framework for classification. A specialized voting strategy
is utilized to enhance performance. DAE-GCN [35] introduces a
spectral–spatial graph to train a graph convolutional network us-
ing a semisupervised strategy. Tang et al. [36] proposed a method
for extracting multiscale spatial–spectral features based on a
ladder structure. The complexity of hyperspectral data distri-
bution, however, still limits the performance of semisupervised
models.

In addition to the issues mentioned above, the use of image
patch samples and spatial–spectral features presents challenges
related to vague boundaries and misclassification. First, some
methods assume that all the pixels within an image patch con-
tribute equally to the classification of the central pixel. However,
realistic image patches can be divided into homogeneous and
heterogeneous patches: those consisting of the same class of
pixels and those containing multiple classes of pixels. Spatial
features extracted from homogeneous patches can enhance the
classification performance by introducing spatial relationship
and suppressing noise. In contrast, spatial features extracted
from heterogeneous patches can be viewed as the fusion of
pixels from different classes. Consequently, the extracted spatial
features from heterogeneous patches may not accurately repre-
sent central pixels, limiting their classification performance [37].
The influence of spatial features can be mitigated by properly

emphasizing spectral features, which focus on the spectral vector
itself. Second, the existing research on spectral–spatial features
primarily relies on fixed strategies for fusing the two types of fea-
tures [21], such as concatenating feature vectors [38], [39], [40].
Considering the characteristics of heterogeneous patches, these
fixed strategies may result in reduced performance; especially,
patches at boundaries are typically heterogeneous. Adapting the
combination of two features could alleviate this issue, such as
adding spectral constraints to guide the assignment of attention
weight. Therefore, effectively utilizing both types of samples
and features remains a critical challenge.

In order to extract deep adaptive spectral–spatial features from
various image patches and address sample scarcity and imbal-
ance, we proposed a semisupervised spectral–spatial-dependent
learning framework that combines the GAN and the global
joint attention mechanism, named dual-branch spectral–spatial
adversarial representation learning (SSARL). An adversarial
representation module is incorporated to handle limited labeled
samples, while the dual-branch structure and class consistency
loss offer a novel strategy for adaptively combining spectral and
spatial features. The characteristics of pixel and patch samples
are also considered. The contributions of this article are summa-
rized as follows.

1) We propose a learnable dual-branch framework that ex-
tracts all the useful spectral and spatial features by pro-
cessing pixel and patch samples independently in parallel.

2) We introduce a loss function called class consistency
loss, which replaces the existing feature fusion strategies.
This function adds spectral constraints and adjusts the
attention weights of spectral and spatial branches adap-
tively, allowing the learned framework to perform well on
heterogeneous patches.

3) We apply an adversarial representation module for spectral
and spatial feature extraction. Through the adversarial
process, robust features are learned from limited labeled
samples.

The rest of this article is organized as follows. Section II
presents the details of the proposed SSARL. Section III show-
cases the results and analysis of our experiments. Finally,
Section IV concludes this article.

II. METHODOLOGY

In this section, first, we briefly introduce the proposed
SSARL. Second, the adversarial representation module is il-
lustrated. Then, the proposed class consistency loss is given.
Finally, the details of complete spectral and spatial branches are
introduced.

A. Overview of the Proposed Model

An HSI dataset can be represented as H ∈ Rh×w×b, where h,
w, and b represent the height of spatial size, the width of spatial
size, and the number of spectral bands, respectively. The dataset
contains N labeled pixel samples. xspe ∈ R1×1×d represents the
spectral sample; yspe ∈ R1×1×c represents the corresponding
one-hot label, where c denotes the number of classes. xspa

represents the patch sample with a size of m×m× d, where
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Fig. 1. Structure of SSARL.

m represents the height and width. yspa indicates the one-hot
label of corresponding central pixel in the patch. The collection
of the labeled pixel samples and labels is represented as Lspe,
and the unlabeled collection is Uspe. Sample pairs (xspe, xspa, y)
and (xspe, xspa) are inputs to the model. The SSARL framework
is illustrated in Fig. 1. The proposed model contains a spectral
branch (the upper half of Fig. 1) and a spatial branch (the lower
half of Fig. 1). Each branch consists of an encoder (E) based on
the CNN and a classifier (C), including a fully connected layer
and Softmax. Instead of learning hierarchical spatial–spectral
features or concatenating spectral and spatial features [21],
the spectral branch extracts the spectral feature from labeled
and unlabeled pixel samples, and the spatial branch extracts
the spatial feature from labeled and unlabeled patch samples.
To extract robust features from limited labeled samples, we
apply adversarial representation modules (the middle part of
Fig. 1) based on the GAN to two branches. The proposed class
consistency loss unifies the results obtained by two classifiers
and discriminators.

The dual-branch structure makes full use of spectral and
spatial features from pixel and patch samples. Inspired by the
GAN, we insert an adversarial representation module. This
module contains a generator (G) and a discriminator (D).
Through the adversarial process, the module uses limited la-
beled samples to enlarge the sample space and increases sample
diversity, thus preventing overfitting. Finally, the proposed class

consistency loss adds additional constraints to two discrimina-
tors and classifiers. The proposed loss function can make use of
features adaptively rather than adopting fixed spectral–spatial
combination strategies. Meanwhile, dual-branch structure and
class consistency loss can reduce the negative impact of spatial
features extracted from heterogeneous patches (e.g., a boundary
patch is composed of multiclass pixels, and the representation
ability of spatial feature is weakened, so more attention should be
paid to spectral feature from central pixel). The aforementioned
parts will be illustrated in the following sections.

B. Adversarial Representation Module

GANs have been widely used for data augmentation for natu-
ral image processing in computer vision [41]. They can maintain
an identical distribution as original samples and increase the
diversity [42], [43], [44], [45]. The adversarial representation
module utilizes the adversarial process to enhance the extracted
semantic features. Instead of reconstructing samples at pixel
level through the root-mean-square error (e.g., SAE), the adver-
sarial representation module can be seen as a sample construc-
tion through variable constraint based on the CNN and the GAN.
The proposed adversarial representation module can be applied
to pixel-spectral feature and patch-spatial feature extraction.
During the adversarial process, multiple mappings from correct
features to potential samples are learned. The encoder is also
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Fig. 2. Class consistency loss. Classification results of two branches are the
same, but there are still differences in the possibility of other classes. Class
consistency loss calculates the distance between two results.

guided to map sample space to semantic feature space at the
class level.

To satisfy Lipschitz continuity, we adopt spectral normaliza-
tion (SN) [46] for the discriminator. The Lipschitz continuity is
defined as the gradient’s rate being less than K, formulated as
follows:

‖D(x1)−D(x2)‖2
‖x1 − x2‖2

≤ K ∀x1, x2 (1)

where D is the function of discriminator, and x1 and x2 are two
variables close enough. ‖‖2 represents the Euclidean norm. SN
can be formulated as follows:

‖A‖2 = sup
x �=0

‖Ax‖2
‖x‖2

= σ(A) (2)

where sup represents the upper bound. When x is consid-
ered within minimum neighborhood, the nonlinear discrimina-
tor function D can be regarded as a linear function D(x) =
Wθx+ bθ, where θ is the parameter of D. Under this condition,
Zhang et al. [47] proved that applying SN on multilayer can
meet Lipschitz continuity. SN normalizes the parameter matrix
by dividing it by the maximum singular value of the parameter
matrix on every layer. For a fully connected network layer, SN
directly calculates the maximum singular value of the second-
order matrix. For a convolution layer, the parameter matrix
[KH ,KW , Cin, Cout] is reshaped into a second-order matrix
[KH ×KW × Cin, Cout], and the maximum singular value is
calculated by the iterative method.

C. Class Consistency Loss

CycleGAN [48] proposed a consistency loss to guide the
mapping between the source domain and the target domain. For
the HSI, the input pair samples (xspe, xspa) belong to the same
class, though they have different forms. Therefore, the outputs
of two branches should ideally be coincident. However, spectral
and spatial features have their own pros and cons, which may
lead to different classification results. In order to combine the
advantages of both the features in different situations, we pro-
posed a result-driven loss function to assign different attention
weights to two features, named class consistency loss, as shown
in Fig. 2. The class consistency loss is the distance between two
results from two branches. The root-mean-square error is used
to measure this distance. The class consistency loss is defined
as follows:

Lss = Exspe,xspa [‖Fspe(xspe)− Fspa(xspa)‖2] (3)

where Fspe and Fspa represent the models of the spectral branch
and the spatial branch, respectively. The class consistency loss
is added as a constraint when training. The calculated loss value
uses stochastic gradient descent to update parameters. If the two
prediction results are the same (whether it is right or wrong), the
class consistency loss is close to 0 and fine-tunes the network.
If the prediction results are different, only one result can be
selected randomly as the final result; thus, the final prediction
results could be worse. In this case, the consistency loss guides
to adjust the parameters. In the classification stage, the role of
class consistency loss is to use networks to achieve adaptive
voting on the two prediction results obtained from spectral and
spatial classifiers. As for the discriminator, which is equivalent
to a multiclass classifier, the class consistency loss plays the
same role. In the generation stage, the class consistency loss
also restricts the samples generated by the two generators to be
the same class because the spectral and spatial feature generators
used come from the same class. For feature extraction, spectral–
spatial features with bias and different contributions of pixels
in one patch are learned. We aim to learn the spectral–spatial
attention weights and distinguish contributions from different
pixels, thereby improving the classification accuracy of bound-
ary samples.

D. Spectral Pixel and Spatial Patch Branches

Based on the adversarial representation module and class
consistency loss, the spectral and spatial branches are designed
to exploit spectral and spatial information. The input of the
spectral branch is Lspe, Uspe ∈ R, and the input of the spatial
branch is Lspa and Uspa. The encoder maps samples xspe(xspa)
to features fspe(fspa). Instead of random noise, the features
extracted by the spectral (spatial) encoder are used as the input
of the spectral (spatial) generator. The fake samples are denoted
as ˆxspe ∼ Gspe(fspe) and ˆxspa ∼ Gspa(fspa). Then, the following
three parts are input to the spectral discriminator: (xspe, yspe) ∼
Lspe,xspe ∼ Uspe, and ˆxspe ∼ Gspe(fspe). Similarly, the following
parts are input to the spatial discriminator: (xspa, yspa) ∼ Lspa,
xspa ∼ Uspa, and ˆxspa ∼ Gspa(fspa). After training, the test sam-
ples flow through the trained encoders and classifiers. The
configuration of the spectral branch is shown in Fig. 3. 1-D con-
volution and 1-D transposed convolution are widely used. The
size of convolutional kernel is k and stride is s. p and Op stand
for padding. O represents the number of kernel. SN represents
the spectral regularization. The spatial branch modifies the 1-D
modules into 2-D modules.

The proposed model employs a semisupervised method. To
utilize the unlabeled samples, we add conditional entropy to the
objective function. The specific label of a real unlabeled sample
is unknown, but it should belong to a certain class; therefore,
conditional entropy is added as a prior condition to enhance
the performance of the classifier. The equation for conditional
entropy is shown as

LossCE = λEx∼U

C∑

c=1

Pc(yc|x) log pc(yc|x) (4)

where λ represents the hyperparameter.
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Fig. 3. Configuration of the generator, encoder, discriminator, and classifier in the spectral branch. The arrows indicate the direction of sample processing.

Given real labeled sample pairs, the purpose of the spectral
(spatial) discriminator is to classify them correctly. For real
unlabeled samples, the purpose of the discriminator is to assign
the proper classes. It will classify the real samples intoC classes.
The posterior probability is represented as follows:

p(c|xspe; θ) =
efc

∑C
c′=1 e

fc′
∀c ∈ {1, . . ., C} (5)

where θ represents the parameters of discriminator, and f =
Dθ(xspe) represents the output feature of the discriminator.
Essentially, the discriminator is a modified classifier.

The role of the discriminator also includes discriminating the
authenticity of sample. The formula to calculate the samples
belongs to the real set is

p(real|xspe;Dθ) =

∑C
c′=1 e

fc

1 +
∑C

c′=1 e
fc′

. (6)

We can assume the generated samples as class C + 1, and it
can be represented as 1 in denominator. Then, the samples that
belong to fake set can be shown as

p(fake|xspe;Dθ) = 1− p(real|xspe;Dθ). (7)

The objective function for the discriminator and the classifier in
the branch consists of the class cross entropy of labeled samples
and the conditional entropy of unlabeled samples. It can be
predicted that the performance of the network may be worse
when initially updating the network parameters with unlabeled
samples. Formula 6 can be translated to the following equation
when optimizing:

minEx∼Uspe [− log p(real|x;Dθ)] (8)

where xspe represents the random variable conforming the dis-
tribution of Uspe, and E represents the expectation. Then, we

calculate the negative gradient using the following equation:

− ∂

∂fc
[− log p(real|xspe;Dθ)] =

1

1 +
∑C

c′=1 e
fc′

efc
∑C

c′=1 e
fc′

= p(fake|xspe;Dθ)p(c|xspe; θ).
(9)

During the updating of network parameters, the predicted re-
sult p(c|xspe; θ) is strengthened. The neurons related to class
ĉ = argmax[p(c|xspe; θ)] are stimulated to update parameters.
The objective functions for the classifier, generator, and discrim-
inator in the spectral pixel branch are expressed as follows:

maxLCspe = Ex,y∼Lspe log pCspe(yc|x, y)

+ λEx∼Uspe

C∑

c=1

pCspe(yc|x) log pCspe(yc|x)

− Ex∼R[‖Cspe(xspe)− Cspa(xspa)‖2] (10)

maxLGspe = βEx∼Gspe(fspe)[−log(p(real|x;Dspe))]

+ Ex∼G(f)[‖Dspe(xspe)−Dspa(xspa)‖2] (11)

maxLDspe = Ex,y∼Lspe log pDspe(yc|x, y)

+ λEx∼Uspe

C∑

c=1

pDspe(yc|x) log pDspe(yc|x)

− β(Ex∼Uspe [−log(p(real|x;Dspe))]

+ Ex∼Gspe(fspe)[−log(p(fake|x;Dspe))])

− Ex∼R[‖Dspe(xspe)−Dspa(xspa)‖2]. (12)

In formula (10), the first two terms represent the cross entropy
for classifying labeled samples and the conditional entropy
for unlabeled samples. In formula (11), the objective function
of the generator is responsible for making the discriminator
misjudgment. For the objective function of the discriminator
in formula (12), the first term aims to classify the labeled
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Fig. 4. (a) IP, (b) PU, (c) SA, and (d) WHU datasets.

samples correctly. The second term assigns the dominant class
of unlabeled samples using conditional entropy. The third and
fourth terms judge whether the samples are real or fake. The
final terms of the three formulas represent the class consistency
loss between spatial and spectral branches. Here, β represents
the adversarial weight.

If the basic classification performance of the classifier is good
and predicts correctly, the training process will develop in the
right direction. However, the number of labeled training samples
is limited, and the model may not be sufficiently learned. There-
fore, it is possible that the initial performance of the classifier
is poor, leading to many incorrect predictions, and the error
is magnified through the update process of Formula (9) and
conditional entropy. To address this issue, initial λ is set to a
small value and gradually increases as the training progresses.

The spatial and spectral branches propagate forward at the
same time and backpropagate after calculating their respective
loss values with the objective function. Within each branch,
E,G,D, and C are optimized alternately. Considering E and
G as a whole for updating parameters, we optimize the network
parameters of D when the network parameters of E,G, and C
are fixed. Conversely, when D is fixed, the rest parameters are
updated. We use the Adam optimizer. Through this end-to-end
network structure and alternating optimization, classifier C is
finally used to classify test samples.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the datasets, configuration, and hyperparame-
ters are introduced first. Second, we analyze the influence of the
proposed dual-branch structure, adversarial learning, and class
consistency loss and analyze the sensitivity of the model to the
number of labeled samples. Third, we compare the performance
of the proposed model with that of competitive methods. Finally,
we discuss the comparison results.

A. Dataset Description

Four public datasets are employed in the experiments: Indian
Pines (IP), Pavia University (PU), Salinas (SA), and WHU-Hi-
LongKou (WHU) [49]. Fig. 4 shows the false-color images.

1) Indian Pines: The IP dataset was gathered by the AVIRIS
sensor in the northeast of Indiana. The IP scene consists of
two-thirds agriculture and one-third forest or other natural

Fig. 5. Illustration of boundary samples and patches, boundary samples (left)
and within-class samples (right).

perennial vegetation. Some of the crops present, such as
corn and soybeans, were in early stages of growth with
less than 5% coverage. The scene is 145 × 145 in size
and has a spatial resolution of 20 m/pixel. Twenty spectral
bands are removed due to water absorption, leaving 200
bands with a spectral range of 400–2500 nm. The IP
dataset contains 16 classes with 10 249 labeled pixels and
background information.

2) Pavia University: The PU dataset was gathered in the Uni-
versity of Pavia in northern Italy by the Reflective Optics
System Imaging Spectrometer in 2002. The number of
spectral bands is 115, including 12 noisy bands. It has a
spatial size of 610 × 340 and a resolution of 1.3 m/pixel.
After removing 12 noisy bands, 103 bands range from 430
to 860 nm. PU consists of nine classes with 42 776 labeled
pixels for classification.

3) Salinas: The SA dataset was gathered by the AVIRIS
sensor over the Salinas Valley, CA, USA, and was charac-
terized by high spatial resolution (3.7 m/pixel). This image
is available only in the form of at-sensor radiance data.
The ground area of SA includes vegetables, bare soils,
and vineyard fields. SA consists of 224 spectral bands; 20
water absorption bands are removed. The dataset has a size
of 512 × 217 × 224 and a spatial resolution of 3.7 m/pixel
with 16 land-cover classes.

4) WHU-Hi-LongKou: The WHU dataset was acquired from
13:49 to 14:37 on July 17, 2018, in Longkou Town, Hubei
province, China, with an 8-mm focal length Headwall
Nano-Hyperspec imaging sensor equipped on a DJI Ma-
trice 600 Pro (DJI M600 Pro) UAV platform. The study
area contains nine classes, including six crop species and
three ground objects. The imagery has a size of 550 × 400
pixels. The spectral dimension comprises 270 bands rang-
ing from 400 to 1000 nm, and the spatial resolution of
the UAV-borne hyperspectral imagery is approximately
0.463 m.

Table I shows the number of each class of four datasets. For
IP, we randomly select 5% of the labeled samples as labeled
training set. For PU, SA, and WHU, the proportions of selected
labeled samples are 3%, 1%, and 0.3% of whole samples. The
random selection follows the class balance. All input data are
normalized between −1 and 1 in advance.

Particularly, we define boundary samples as pixels that differ
from any of the eight surrounding pixels, as shown Fig. 5.

B. Experimental Setting

The whole experiments are conducted on a computer
equipped with an NVIDIA GeForce GTX 1080Ti with 12-GB
RAM. The software environment is Ubuntu 14.04 ultimate
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TABLE I
LAND-COVER CLASS INFORMATION AND THE NUMBER OF ANNOTATED SAMPLES OF IP, PU, SA, AND WHU

TABLE II
FLOATING POINT OPERATIONS AND PARAMETERS OF SSARL

64 bit. The deep learning frameworks used are TensorFlow and
Pytorch.

The samples are processed by a Gaussian smoothing kernel
before being input to the model. In the spatial branch, the spectral
dimension of HSI patches is reduced to 10 by PCA, and the size
of patches is set to 8 × 8 for IP, PU, and SA, and 9 × 9 for WHU.

During training, we use the batch size of 32. An annealing
algorithm is considered for setting the learning rate, with a range
of [0.0, 0.002]. The conditional entropy weight λ determines
the effect of unlabeled samples. We consider the λ values in the
range [0.5,1]. For every 100 training steps, λ increases by 0.05.
The adversarial weightβ with the value range of [0.5,1] increases
by 0.05 every 100 training steps. The number of training steps is
1000. The network parameters are presented in Section II. The
above parameters are adjusted using a standard random grid
search cross-validation framework. F1-score, overall accuracy
(OA), average accuracy (AA), and kappa coefficient (Kappa)
are used to quantitatively evaluate models. The results are ob-
tained after ten independent runs, with the training and test
sets randomly divided each time. The FLOPs and parameters of
SSARL (Input 8× 8× 10) are shown in Table II. D represents
the discriminator and EGC represents the thread process.

C. Ablation Study

To demonstrate the effectiveness of the semisupervised strat-
egy, spectral adversarial learning branch, and class consistency
loss, we compare CNN, CNN-CE, CNN-CE-SS, and proposed
method. CNN represents the method with the same structure and
configuration as the encoder and the classifier in the proposed
spatial branch but uses a standard cross-entropy loss function.
Therefore, CNN does not utilize unlabeled samples. CNN-CE
represents a semisupervised model that adds conditional entropy
for training. CNN-CE-SS represents a model that adds spectral

and spatial branches based on CNN-CE without class consis-
tency loss, and the structure and configuration are the same as
those of the proposed method.

The results of OA, AA, and Kappa are shown in Table III. The
overall classification results presented in the table (from left to
right) increase with the increase of innovations. Compared with
CNN, the OA has improved by 0.5%, 1.0%, 0.8%, and 0.6% after
utilizing unlabeled samples, which proves that the information
is mined from a large number of unlabeled samples. Compared
with CNN-CE, CNN-CE-SS shows a significant improvement
of OA in IP and WHU, a slight improvement in PU, but a
decline in SA due to the introduction of spectral features. It
can be inferred that adversarial representation learning modules
mitigated the sample imbalance by generating fake samples in IP.
The decline demonstrates the possible shortcomings of spatial
features without applying combination methods. Compared with
CNN-CE-SS, the proposed method has improved OA by 0.34%,
0.01%, 0.21%, and 0.50%. The OA of SA and PU does not
vary significantly, but proposed method performs better on AA
and Kappa. It proves that the class consistency loss inhibits the
influence of heterogeneous patches and extracts valuable joint
features by adding spectral constraint adaptively. On the premise
that SSARL achieves better performance, Table III presents two
outliers. First, CNN has achieved better performance on AA in
IP. The second issue is that CNN-CE-SS performed worse than
CNN-CE in SA. IP and SA are obtained from the same series of
hyperspectral sensors. It can be inferred that caution is needed
in the use of spatial–spectral features in SA and the imbalanced
unlabeled samples in IP.

D. Sensitive Analysis of the Number of Labeled Samples

The number of labeled training samples greatly affects the
classification performance of deep learning methods. Therefore,
we analyze the performance of the proposed method and other
methods using different numbers of labeled samples. Figs. 6–8
show the OA of seven methods RBF-SVM, SAE, DBN, PPF-
CNN [22], 3-D CNN, MSGAN, and proposed method using
different sizes of labeled training samples in IP, PU, and SA,
respectively. Figures show that the accuracy of all the methods
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TABLE III
EFFECTIVE ANALYSIS OF ADVERSARIAL LEARNING AND CLASS CONSISTENCY LOSS

Fig. 6. OA of the seven methods on IP under different sizes of labeled training
samples.

Fig. 7. OA of the seven methods on PU under different sizes of labeled training
samples.

Fig. 8. OA of the seven methods on SA under different sizes of labeled training
samples.

on three datasets decreases with the decrease in the number
of labeled samples. First, the curve of SSARL is above other
curves, which proves that our method has the highest accuracy.
Second, the curve of SSARL is stablest, which demonstrates
that it is the least sensitive to the sizes of labeled samples and
can perform better. In SA and PU, the proposed method is
almost unaffected by the sizes of labeled samples. Therefore, our

method is a better choice when the number of labeled samples
for training is limited. It is worth noting that MSGAN performs
well, which may be attributed to the ability to expand the sample
space effectively with a small number of labeled samples from
GAN-based methods.

E. Comparison of Classification Results

In this section, we directly compare the classification perfor-
mance between SSARL and other methods, including traditional
method RBF-SVM [10], and seven deep learning methods 1-D
CNN [15], RDACN [50], 3-D CNN [51], HybridSN [26], SS-
FTT [30] introducing self-attention, semisupervised RSEN [52],
and dual-branch model DBR [53]. We also compare the pro-
posed method with four GAN-based methods: MSGAN [25],
3-D GAN [24], HSGAN [34], and ARL-GAN [47].

1) Indian Pines: The classification results of the IP dataset
are shown in Table IV. This table records the average clas-
sification accuracy and standard deviation in ten independent
runs. The last 16 rows record the classification F1-score of the
corresponding class. Compared with RBF-SVM, 1-D CNN have
extracted deep spectral feature from pixel samples. Considering
the spatial feature and image patch samples, HybridSN and 3-D
CNN utilize the spectral–spatial feature. The OA of 3-D CNN
shows a 29% improvement compared to 1-D CNN. Furthermore,
compared with 3-D CNN, which uses 3-D convolutional layers
to extract spatial–spectral features from patch samples, RSEN
and DBR utilize pixel, patch samples, and unlabeled samples
to obtain information, resulting in a 3.4% improvement in the
OA of RSEN compared to HybridSN. SSFTT extracts global
features, which results in an improvement of 5.7% OA compared
to RSEN. Classifiers usually perform worse in IP when the
number of labeled samples is limited. Through the adversarial
process, the encoder extracts robust spatial and spectral features.
The dual-branch structure and class consistency loss ensure the
performance on heterogeneous samples. Compared with SSFTT,
SSARL has improved OA, AA, and Kappa by 1.2%, 0.2%,
and 1.5%, respectively. The proposed method also achieves the
optimal classification results in 14 classes, especially in classes
1, 9, 13, and 16, which have a small sample size.

Fig. 9 shows the classification maps of different methods
in the IP dataset. First, maps based on deep learning using
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TABLE IV
QUANTITATIVE CLASSIFICATION RESULTS OF DIFFERENT METHODS IN THE IP DATASET

Fig. 9. Ground truth and classification maps in IP. (a) Ground truth. (b) RBF-SVM. (c) HybridSN. (d) RSEN. (e) 3-D CNN. (f) 1-D CNN. (g) RDACN. (h) DBR.
(i) SSFTT. (j) SSARL.

spectral–spatial features have fewer dot noises. However, due
to complex spatial information at the boundary, a large number
of misclassification points are presented. The map produced
by SSARL is closest to the ground truth map. It demon-
strates that proposed method can combine spectral and spa-
tial features adaptively, thereby classifying test samples more
accurately.

2) Pavia University: The classification results of the PU
dataset are shown in Table V. The distribution of samples in
PU is more scattered than IP, making it easier to classify. First,
SSARL performs better than the other seven models on OA,
AA, and Kappa. The performance of RBF-SVM, 1-D CNN,
3-D CNN, HybridSN, RSEN, and DBR improves progressively
due to spectral–spatial features and unlabeled samples. The
1.9% OA improvement proves that using unlabeled samples
for semisupervised training can effectively improve the classifi-
cation performance. Compared with 3-D CNN, the proposed
method has improved OA, AA, and Kappa by 4.7%, 8.5%,
and 6.0%, respectively. Compared with SSFTT, SSARL has

improved OA, AA, and Kappa by 1.1%, 1.5%, and 0.3%, re-
spectively. The proposed method has eight classes (a total of nine
classes) achieving the best classification results, with six classes
achieving entirely correct classification results. Performance in
the eighth and fifth classes has improved.

Fig. 10 shows the classification maps of different methods in
the PU dataset. It is consistent with the conclusions in the IP
dataset. SSARL has achieved better regional consistency and
boundary performance.

3) Salinas: The classification results of the SA dataset are
presented in Table VI. SA is a relatively easier dataset to classify
than IP. Therefore, all the methods achieved higher classification
results than those in the IP dataset. First, under the three evalua-
tion criteria OA, AA, and Kappa, the classification performance
of SSARL is better than that of the other seven methods. How-
ever, we found that RSEN did not perform well, which may be
due to a large number of unlabeled samples negatively impacting
classification. Therefore, our method gradually increases the loss
weight of unlabeled samples during training. Compared with the
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TABLE V
QUANTITATIVE CLASSIFICATION RESULTS OF DIFFERENT METHODS IN THE PU DATASET

Fig. 10. Ground truth and classification maps in PU. (a) Ground truth. (b) RBF-SVM. (c) HybridSN. (d) RSEN. (e) 3-D CNN. (f) 1-D CNN. (g) RDACN.
(h) DBR. (i) SSFTT. (j) SSARL.

competitor method SSFTT, SSARL has improved OA, AA, and
Kappa by 0.8%, 0.78%, and 0.99%, respectively. SSARL has
achieved the best classification accuracy on all the classes. It
has achieved 100% accuracy in 13 of them. For class 16, the
performance has been significantly improved.

Fig. 11 shows the classification maps of different methods on
the SA dataset. SSARL can distinguish samples from the 8th and
15th classes more effectively. It shows that SSARL can better
classify the boundary samples and reduce the classification error
points within the class.

Furthermore, we compared the performance of several latest
models based on GAN. The comparison results are presented
in Table VII. HSGAN uses spectral samples, while 3-D GAN
and ARL-GAN use a spatial image patch trained model for

classification. MSGAN is a spectral–spatial method. Compared
with HSGAN, SSARL has increased OA by 24.48%, 14.69%,
and 11.70% on three datasets. Compared with 3-D GAN,
SSARL increases OA by 3.13%, 1.64%, and 1.11% on three
datasets. Compared with MSGAN, SSARL has increased OA
by 2.65%, 0.69%, and 0.88% on three datasets. These results
demonstrate that adversarial representation model, class con-
sistency loss, and the dual-branch structure contribute to better
classification accuracy.

4) WHU-Hi-LongKou: The classification results of the
WHU dataset are presented in Table VIII. The size and data
amount of WHU is larger than those of the above datasets.
As shown in the table, SSARL outperforms other competent
methods in terms of OA, AA, and Kappa. DBR, which uses a
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Fig. 11. Ground truth and classification maps in PU. (a) Ground truth. (b) RBF-SVM. (c) HybridSN. (d) RSEN. (e) 3-D CNN. (f) 1-D CNN. (g) RDACN.
(h) DBR. (i) SSFTT. (j) SSARL.

Fig. 12. Ground truth and classification maps in WHU. (a) Ground truth. (b) RBF-SVM. (c) HybridSN. (d) RSEN. (e) 3-D CNN. (f) 1-D CNN. (g) RDACN.
(h) DBR. (i) SSFTT. (j) SSARL.
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TABLE VI
QUANTITATIVE CLASSIFICATION RESULTS OF DIFFERENT METHODS IN THE SA DATASET

Fig. 13. Ground truth and classification maps of boundary test samples in SA. (a) Ground truth. (b) RBF-SVM. (c) HybridSN. (d) RSEN. (e) 3-D CNN. (f) 1-D
CNN. (g) RDACN. (h) DBR. (i) SSFTT. (j) SSARL.

1-D and 2-D pretrained network, achieves the best performance
in four classes. Fig. 12 displays the classification maps of
different methods in the WHU dataset. It can be observed that
SSFTT and RSEN produce regular misclassification points
within class regions. The complex boundary even leads to the
misclassification of background pixels.

F. Classification of Boundary Samples

SSARL focuses on improving the accuracy of boundary
samples, which is a disadvantage of spatial feature from het-
erogeneous patches, and utilizes a different strategy of feature
utilization. Therefore, in this section, we analyze the OA of
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TABLE VII
CLASSIFICATION PERFORMANCE OF SEVERAL METHODS BASED ON GAN

TABLE VIII
QUANTITATIVE CLASSIFICATION RESULTS OF DIFFERENT METHODS IN THE WHU DATASET

TABLE IX
CLASSIFICATION PERFORMANCE ON BOUNDARY TEST SAMPLES

boundary samples individually. The test sets only consist of
boundary samples. Visualization results in SA are displayed
in Fig. 13, where gray circles point to their magnified detail.
And the quantitative classification performances are shown in
Table IX.

The class boundaries of IP and SA are flatter, while those
of PU and WHU are more irregular. The classification results
in IP and WHU are worse than SA due to their complicated
and unbalanced samples. Although the class boundaries of PU
are complex, the classification result is fine. Compared with
Section III-E, the OA of boundary test samples is lower than
that of the entire test sets, 7.9%, 3.8%, 2.3%, and 13.4% lower
on four datasets from HybridSN, and 7.3%, 2.1%, 4.1%, and
16.1% lower on four datasets from SSFTT. Therefore, it is
proved that the spatial information of heterogeneous samples at
the boundary is susceptible to be influenced by neighbor classes,
which reduces the effectiveness of spatial features. Compared
with other methods, SSARL extracts robust spectral and spatial
features from the two branches, which are utilized by adding
class consistency loss instead of concatenating them fixedly.
Therefore, SSARL can adapt to both within-class and class
boundary situations. The percentage of correct classification for

SSARL is higher than that of other best methods by 1.8%, 0.1%,
and 1.7%. On WHU, DBR achieves the best performance.

IV. CONCLUSION

In this article, we proposed a dual-branch SSARL for HSI
classification based on a generative adversarial network. This
method mainly focuses on training with limited labeled sam-
ples and utilization of spectral–spatial feature. Especially, we
considered the relationship between pixel samples and complex
heterogeneous image patch samples. We improved the ability
of extracting feature from labeled and unlabeled samples by
adding adversarial process. Two branches were, respectively, re-
sponsible for generating pixels and image patches and extracting
their features. The class consistency loss was proposed to com-
bine two branches. The experiments comprehensively proved
the effectiveness of two-branch structure and class consistency
loss. Compared with competent methods, SSARL performed
better on four datasets. Moreover, the proposed SSARL aimed
at improving the classification performance of boundary sam-
ples, which is often overlooked but has a negative impact on
the overall classification results. We believe that there are two
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limitations to the proposed method. First, the training process is
unstable. Although the proposed method can perform well, the
constraints brought up by loss functions increase the difficulty
of training. The second point is that the structure of the encoder
is slightly simple, while some scenarios may require stronger
feature representation capability.
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