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Short Time Cloud-Free Image Reconstruction Based
on Time Series Images

Guanhua Zhou , Chen Tian , Chunyue Niu , Guifei Jing, Haoyu Miao, and Zhifeng Li

Abstract—A cost-effective method for cloud removal and re-
construction of remote sensing images has been a long-standing
research challenge in remote sensing data processing. In this ar-
ticle, we address this challenge by presenting a fast and simple
method for cloud detection and cloud-free image reconstruction
using Landsat-8 OLI and Sentinel-2 MSI series data. The proposed
method utilizes the spectral difference between cloud pixels and
transparent pixels to develop a fast and simple cloud detection
algorithm for multispectral remote sensing sensors. Subsequently,
the cloud-free data of the complementary image and the target
image undergo histogram matching, and the cloud-free pixels of the
complementary image are seamlessly integrated into the original
image, leading to the generation of a cloud-free image reconstruc-
tion algorithm. Comparative analysis between the results obtained
from our proposed method and the corresponding artificial results
reveals an accuracy rate exceeding 90% and a high consistency
in the reconstructed spatial spectrum. By addressing the need for
cost-effective cloud removal and image reconstruction, our method
contributes to the advancement of remote sensing data processing
and applications.

Index Terms—Cloud detection, cloud removal, data fusion,
image reconstruction, time series analysis.

I. INTRODUCTION

IN recent years, remote sensing technology plays an in-
creasingly important role in dynamic monitoring, environ-

mental surveillance, meteorological analysis, and so on [1],
[2]. Unfortunately, many images suffer from cloud occlusion
problems because the sensors are severely affected by changes
in atmospheric density and cloud cover. In addition, global cloud
data from the International Satellite Cloud Climatology Program
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(ISCCP) show that more than 66% of the Earth’s surface is
covered by clouds [3], [4], [5], [6].

The presence of clouds prevents optical satellites from ob-
taining useful information about the Earth’s surface and affects
image availability to varying degrees. Furthermore, shadows
cast by clouds on the ground can contaminate the image. Lack
of image information due to clouds and their shadows results
in space-time gaps in satellite Earth observation data [5], and
may result in deviations in subsequent image processing and
application [6]. Some classical aerosol retrieval algorithms,
such as MODIS dark target, deep blue, and multiangle imaging
spectrometer aerosol retrieval algorithms, need to remove the
influence of clouds before retrieval [5], [7], [8], [9], [10], [11].
Although cloud removal is a long-standing research topic in
the community of remote sensing, it is still a matter worthy of
continuous improvement [12], [13]. However, cloud removal
techniques still face challenging problems such as complexity
and universality that demand further research, despite the ongo-
ing efforts to improve them. This article aims to address these
problems by proposing a method of cloud detection and cloud-
free image reconstruction using Landsat-8 OLI and Sentinel-2
MSI series data, which realizes high-precision and fast cloud
removal.

Cloud detection is a crucial step in the process of cloud
removal. The percentage of clouds, which can be determined
through cloud detection, is often used as an indicator of image
quality and data availability [14]. It helps to extract useful
data, improve storage and transmission efficiency of image data,
and provide an important product in the preprocessing phase,
allowing to maximize the use of remaining cloud-free areas
and improve image suitability, particularly in cloudy and rainy
areas [5]. However, only a few satellite products have associated
cloud mask products, such as Landsat, MODIS, and Sentinel-2
[15]. Therefore, fast and simple cloud detection algorithms are
essential.

Over the past decades, a variety of cloud detection methods
have been developed [2], [16], [17], [18]. These methods gen-
erally rely on the comparison between cloud and background
surface within a given target area. This comparison can be based
on the difference of a single spectrum, spectral combinations,
temporal and spatial characteristics of clouds, or a combination
of spectral, spatial, and texture features of the cloud [1], [19],
[20], [21], [22].

One of the effective cloud detection methods is the thresh-
old method. This algorithm is determined by the spectral di-
versity and the variation of the underlying surface [6]. Most
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existing algorithms are rule-based, meaning some spectra, like
near-infrared intensity thresholds, play a crucial role in cloud
detection. Such an approach is susceptible to variations in me-
teorological conditions and absolute surface reflectance. The
threshold-based detection method is widely used for its simplic-
ity and efficiency [23]. The ISCCP [24] proposes that visible
and infrared radiances are affected by two kinds of conditions,
cloudy and clear, and the ranges of radiances associated with
these two conditions do not overlap. Cloud pixels can be iden-
tified by comparing bands of 0.6 and 1.1 µm with a clear-cloud
threshold value. This conservative algorithm minimizes false
cloud detection while omitting some thin clouds. Unlike meth-
ods of detecting clouds by a single pixel, the NOAA CLAVR
algorithm [22] takes a pixel matrix of 2 × 2 as the identification
unit. Only if all four pixels in the pixel matrix pass the cloud
detection test can they be regarded as the cloud. Otherwise, the
pixel matrix can be identified as a clear sky if it meets different
underlying surface criteria. The APOLLO algorithm [25] uses
data from five AVHRR channels to define a threshold in each
channel accordingly to detect cloud pixels. When the reflectance
threshold is too high, or the point designated by temperature is
too low, the pixel is identified as the cloud. And the pixel is
identified as the clear sky if the reflectance ratio of channels 2
and 1 falls within the range of 0.7 to 1.1. The pixel is clear if
the temperature difference between channels 4 and 5 exceeds
a certain threshold; otherwise, the pixel would be a mixture of
clear sky and cloud.

In addition, other commonly used cloud detection methods
include those used by the Landsat satellite, such as the Landsat
7 automated cloud cover assessment [26], [27], the landscape
fire and resource management planning tools CCA, the Landsat
ecosystem disturbance adaptive processing system cloud algo-
rithm [28], and the function of mask algorithm [6], all of which
utilize multiple spectral threshold-based tests. The Sentinel-2
satellite, known for its fast return cycle and high resolution, also
has cloud detection methods such as Sen2Cor developed by the
European Space Agency (ESA), which performs atmospheric
correction and cloud detection, however, it still encounters prob-
lems of over/under-estimation of clouds above water. The MAJA
(Maccs-Actor Joint Algorithm) designed for Sentinel-2 is based
on time series analysis [29], but it requires a significant amount
of imagery and computational resources.

However, threshold-based methods have limitations, such as
being susceptible to variations in meteorological conditions and
absolute surface reflectance, and their performance can vary
depending on the season or sun elevation [30]. Additionally, the
transfer of threshold-based algorithms from one sensor to an-
other can be difficult, as distinct criteria are often involved [31].

In contrast, the proposed method in this article addresses
these limitations by using a combination of Landsat-8 OLI and
Sentinel-2 MSI series data, which allows for high-precision and
fast cloud removal. Furthermore, it utilizes a cloud detection
algorithm that is based on the spectral difference between cloud
pixels and transparent pixels, which improves its accuracy and
efficiency compared to traditional threshold-based methods.
This algorithm is specifically designed to be used with mul-
tispectral remote sensing sensors, such as Landsat-8 OLI and

Sentinel-2 MSI, which makes it more versatile and applicable
to a wider range of data. The results of this method show that it
not only achieves similar or even better accuracy than existing
threshold-based methods, but also has the advantage of being
faster and more versatile.

Cloud detection is an essential step in obtaining accurate and
complete ground imagery by removing cloud cover. However,
it is not the sole factor in achieving high-quality, cloud-free
imagery. Data fusion techniques play a crucial role in effectively
deducing the ground image under cloudy conditions. These
techniques enable the integration of multiple remote sensing
images to compensate for the information gaps caused by cloud
pollution, thereby enhancing the overall quality and accuracy of
the reconstructed image [32]. Despite recent advancements in
satellite imaging technology, obtaining high-quality, cloud-free
imagery for a specific time and area remains a challenge. To
address this challenge, this article proposes a method that com-
bines cloud detection and data fusion techniques to effectively
deduce the ground image under cloudy conditions, ultimately
resulting in improved quality and accuracy of the reconstructed
imagery.

Numerous efforts have been made on cloud removal to re-
duce the impact of clouds. Reconstructing cloudless imagery
is actually a process of information reconstruction, which can
be classified into noncomplementary, multispectral complemen-
tary, and time-based complementary [33], [34].

In the noncomplementary method, the information of cloud-
contaminated areas in remote sensing images is reconstructed
from the remaining portion of the image without the aid of other
complementary data. This approach relies on the assumption that
regions without clouds have similar contextual information to
their adjacent cloudy areas [35]. Honold et al. [20] suggested that
the spatial relationships between local and nonlocal regions can
be incorporated into cloud removal. Practicable spatial-based
cloud detection algorithms include interpolation-based methods,
total variational methods [36], spreading or diffusion-based
methods, and exemplar-based methods [16]. However, when the
absence of information is substantial, the results of this method
may be inadequate for data analysis or further application [16],
[37], [38].

The multispectral data is used to reconstruct the missing
information in the multispectral complementarity method, by
modeling the relationship between the contaminated band and
the auxiliary band with complete and clear data. The correlation
between various spectral bands makes it possible to recover the
lost information, by utilizing the auxiliary bands as a reference
[39]. This approach is particularly useful in cases where the
quantitative products of remote sensing images are affected
by cloud contamination, as the multispectral complementarity
method allows for the reconstruction of such data.

Compared with noncomplementary and multispectral com-
plementarity methods, multitemporal complementarity methods
are more effective in coping with thick clouds. Satellite remote
sensing systems with fixed recurrence can acquire images of
the same area on a regular basis [23], enabling the collection of
multitemporal data by revisiting the same location at different
times. The cloud coverage in these images typically does not
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Fig. 1. Flowchart of the proposed approach in this study.

overlap completely, providing a data source for reconstruct-
ing information via multitemporal image processing [40]. This
method assumes that ground type and geometric position re-
main relatively unchanged in the short term, allowing for the
reconstruction of missing data through a neighborhood similar
pixel interpolator [23]. Image mosaics are also utilized to obtain
cloud-free images by splicing cloud-free regions from multitem-
poral images [32], [40], [41], [42]. Chen et al. [43] developed
a neighborhood similar pixel interpolation (NSPI) method to
address the gap caused by the closure problem of Landsat ETM+
scan line corrector and further improved it (MNSPI) to remove
thick clouds [44]. Other multitemporal complementary methods
designed to recover missing pixels caused by sensor failures,
such as the local linear histogram matching (LLHM) method
[45] and weighted linear regression (WLR) method [46], can
also be used for cloud removal. However, despite their effective-
ness in thick cloud removal, temporal-based methods are also
susceptible to spectral reflectance change [6]. Additionally, these
methods may not maintain the spatial continuity of objects in the
restored image and may be limited in their ability to reconstruct
large-scale thick clouds or address issues arising from signifi-
cant spectral differences among multitemporal images, such as
those caused by longer time intervals or differing atmospheric
conditions.

In addition, these methods may not maintain the spatial conti-
nuity of objects in the restored image. Despite these limitations,
multitemporal complementarity-based methods have proven to
be an effective approach for thick cloud removal and have been
widely used in various applications. However, further research
is needed to improve the robustness and applicability of these
methods in the presence of significant spectral differences and
to ensure the preservation of spatial continuity in the restored
image.

Recently, with the powerful feature extraction and expression
capabilities of deep learning [47], it has been applied in various
fields. In the field of remote sensing data quality improvement,

several solutions have been proposed through a data-driven
learning framework [48], such as SAR image despeckling [49],
hyperspectral image denoising [50], and pan sharpening [51],
[52], [53]. These methods have shown to achieve state-of-the-art
reconstruction results.

Despite the success of these feature learning methods in
various remote sensing image processing tasks, they still have
limitations when it comes to thick cloud removal. Specifically,
these methods often fail to take into account the local char-
acteristics of missing regions and their adjacent areas, and are
typically limited to using a single time image. Additionally, they
often rely on the availability of cloud-free supplementary data,
which is often not the case in real-world scenarios [49]. These
limitations have led to a need for more effective cloud removal
methods, which is where the proposed method in this article
comes in [6].

In this study, we propose a novel cloud removal method that
utilizes a multitemporal complementary approach, which em-
phasizes on achieving high-quality cloud-free images containing
90% clear pixels while also considering the trade-off between
accuracy and speed. By incorporating a data-driven learning
framework, our method effectively addresses the shortcomings
of previous feature learning methods, such as the lack of con-
sideration for local particularity and the reliance on cloudless
images as supplementary data. Our approach allows for the
efficient reconstruction of large-scale cloud-covered areas while
minimizing the risk of misdetection as clouds. As a result, our
method not only provides high-quality cloud-free images but
also maintains a balance between accuracy and computational
efficiency, making it a practical solution for remote sensing
applications.

II. MATERIALS AND METHODS

The proposed method is illustrated in Fig. 1 which presents the
overall flowchart of the process. The first step involves executing
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Fig. 2. Image data distribution. The fluctuating altitude makes the cloud distribution diverse, which is beneficial for improving the robustness of the method
proposed in this article.

a cloud detection algorithm using multispectral data to generate
a cloud mask. Next, a spatial and spectral matching algorithm
is implemented to sort complementary data based on their
proximity to the target date. Subsequently, a spatio-temporal
recovery method is employed to reconstruct the information
of cloud-covered areas. Finally, a spectral histogram matching
algorithm is applied to all reconstructed pixels. With a sufficient
amount of supplementary data, it is possible to fully recover all
cloud-covered areas. The specific details of each step are further
discussed in this section.

A. Study Area and Data

The proposed cloud-free reconstruction algorithm was eval-
uated on five typical landforms in China, as illustrated in Fig. 2.
These landforms, which include coasts, plains, basins, plateaus,
and mountains, are located in Shanghai, Hainan, Sichuan, Qing-
hai, and Tibet, respectively. These locations cover various cloud
cover conditions, such as the southern foothills of the Himalayas,
where the warm and humid airflow from the Indian Ocean is
blocked, resulting in frequent cloud cover, and the mountains,
where there is a large amount of ice and snow interference.
In order to evaluate the proposed algorithm, two of the most
widely used multispectral sensors, Sentinel-2 and Landsat 8,
were selected for this study.

The proposed cloud-free reconstruction algorithm was eval-
uated using data from two widely-used multispectral sensors,
Sentinel-2 and Landsat 8, in five study areas representing dif-
ferent landforms in China. These areas include coasts, plains,
basins, plateaus, and mountains, located in Shanghai, Hainan,
Sichuan, Qinghai, and Tibet, respectively. The Sentinel-2 satel-
lite, part of the European Earth Observation Program, carries the
MSI sensor, which acquires over 500 images per day with high
spatial resolution and short revisit cycles. The NASA Landsat

8 satellite carries the OLI sensor, which provides data with a
16-day revisit interval and bands covering wavelengths from
0.435 to 2.294 µm. A total of 83 images, covering an area of
over 2900 square kilometers, were used in this study, collected
from 2016 to 2020 [12], [54].

To establish a comprehensive dataset for cloud removal re-
search, it is important to consider a wide range of common cloud
and surface types. The impact of the underlying surface on the
cloud removal process increases with the thickness of the cloud
layer.

To account for this, the selected study areas must include a
variety of artificial and natural textures such as towns, forests,
grasslands, paddy fields, bare soil, and snow-covered mountains.
The spectral characteristics of these surfaces must be taken into
consideration to ensure that the images are consistent across time
and space. For example, the reflectance of water is typically
lower than that of other surfaces such as snow or artificial
surfaces, which are more prone to being misidentified as clouds.
Despite this, the extensive data collected in this research will
enable us to distinguish between clouds and ground surfaces.
As shown in Table I, there are significant spectral differences
between ground objects in different regions. These representa-
tive regions were chosen to ensure that the research methods
developed are universal.

B. Cloud Detection Algorithm

The cloud detection algorithm is based on the difference in
reflectance spectra between clouds and underlying surfaces in
the visible to near-infrared wavelengths [4]. However, relying on
specific bands alone may not reliably distinguish clouds from
other features. Hence, the algorithm combines distinct band
differences and spectral correlation to accurately differentiate
between cloudy and clear skies [6]. According to the conclusion
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TABLE I
MEAN AND VARIANCE OF THE REFLECTANCE VALUES OF CLOUD AND SNOW IN DIFFERENT BANDS

Fig. 3. Cloud detection results after threshold and correlation test. (a) Original
image. (b) Cloud detection result using 1.6 µm. (c) Result of correlation test
based on threshold detection.

of CDAG, different cloud detection algorithms must be evalu-
ated for different sensor data, which is time-consuming and not
conducive to future work expansion [16]. Therefore, if the most
common satellite band is used for detection, it can be applied to
as many sensors as possible and improve the level of automation.
In this article, due to the existence of complementary informa-
tion, the accuracy requirement can also be appropriately reduced
to detect the vast majority of clouds [55].

The single-band cloud detection algorithm is based on the
fact that the reflectance of clouds at the 1.6 µm band is typically
higher than that of the underlying surface. This method is
commonly used in remote sensing to detect clouds by setting
a threshold value for the reflectance of the 1.6 µm band. In this
study, we use a threshold range of 0.3 to 0.5 (1), which has been
shown to effectively detect thick clouds in previous research
[56]. This single-band method is combined with a correlation test
to further improve the accuracy of the cloud detection algorithm

and reduce the number of false positives (Fig. 3).

CLoudMask =

⎧⎨
⎩
0 band (1.6 µm) > 0.5
1 0.3 ≤ band (1.6 µm) ≤ 0.5
0 band (1.6 µm) < 0.3

. (1)

The proposed cloud detection algorithm is based on the dif-
ference in reflectance spectra between clouds and underlying
surfaces in the visible to near-infrared wavelengths. A combi-
nation of single-band and correlation tests is used to realize a
more conservative cloud detection algorithm with fewer false
detections. The 1.6 µm band in the single-band test is used
to set a threshold sensitive to clouds or atmospheric moisture,
as both Sentinel-2 MSI and Landsat 8 OLI have such bands.
The threshold is set at 0.3 and 0.5, which can detect most
thick clouds. After this process, the majority of thick clouds are
extracted, however, transparent sky pixels may not be detected
as cloud pixels during detection. To reduce false detection of
clear-sky pixels, a corrosion treatment of the detection results
is performed. The correlation coefficient (CC) (2) of typical
clouds is calculated to determine whether the remaining pix-
els should be identified as clouds or clear sky. A CC better
than 0.9 is used as the criterion for determining whether a
pixel is a cloud. To address the problem of detecting clouds
with less obvious characteristics, a spectral sample is selected
from more than 100 ROI regions from images within a year
before and after the original date of the reconstructed basic
image, and their spectral information is used to form a typical
cloud spectral library. This cloud spectral database provides
enough information for comparing clouds with less obvious
characteristics [12], [57].

r =

∑n
i=1

(
DNi −DN

) ∗ (ENi − EN
)

√[∑n
i=1 DN2

i − nDN
2
]
∗
[∑n

i=1 EN2
i − nEN

2
]
(2)

where DNi represents the DN value of different bands, DN
represents the average DN value of different types of cloud data,
ENi represents the cloud reflectance of reference data, and EN
represents the average reflectance; the n represents number of
bands of pixels being compared.

To verify the effectiveness of this method, we selected the
images with the area mentioned above as the test area. The
test terrain covers snow, mountains, forests, grasslands, lakes,
clouds, and bare soil. The diversity of ground surface types
facilitates the universality of the proposed method.

Cloud pixels correct rate =
TP

Cloud pixels in reference data
(3)
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Fig. 4. Spectral matching comparison. (a), (b), and (c) Target image for correction reference, the image to be corrected, and the result after correction, respectively.

Clear sky pixels correct rate

=
TN

Clear sky pixels in reference data
(4)

Error rate =
FP

Clear sky pixels in reference data
(5)

Missing rate =
FN

Cloud pixels in reference data
. (6)

To quantitatively evaluate this method, we compared the
cloud detection results with the manual quantization results used
as the reference and calculated the clear sky pixel accuracy,
misjudgment rate, and error rate (3)–(6). The following four
indicators can be used as the basis for judgment.

Where TP (true positive) represents the pixel determined as
a cloud layer in both the reference data and detection results;
TN (true negative) represents the pixel that is determined to be
clear sky in both the reference data and the detection result; FP
(false positive) indicates the pixels that are clear in the reference
data and classified as clouds in the detection result; and FN
(false negative) indicates the pixels classified as the cloud in the
reference data and clear sky in the detection result.

C. Cloud-Free Image Reconstruction

To ensure continuity in the reconstructed image, spectral
correction is performed to account for variations in imaging

conditions across different images. This step ensures that the
spectral characteristics of the reconstructed image are consistent
and comparable across different regions and time periods. Using
the precise coordinate transformation of remote sensing images,
we can simply complete image registration [58]. The subse-
quent multispectral and multitemporal problems can be solved
through spectral matching on the one hand, and complemented
by weighting time distance on the other hand.

As depicted in Fig. 4, the proposed method utilizes the original
image as the reconstructed target image and the complementary
image as the image providing supplementary data. However, due
to varying imaging conditions, these images may exhibit signif-
icant spectral differences, which can have a significant impact
on subsequent quantitative analysis [59]. To mitigate this issue,
the proposed method employs a histogram matching technique,
which utilizes the statistical features of pixels in cloud-free areas
to correct the spectra of the complementary images [60]. By
doing so, the proposed method is able to maintain high fusion
accuracy even in the presence of spatiotemporal changes and
produce relatively stable results, even when the input image is
affected by thin clouds [31]. Spectral matching reveals that the
cloud-free region of the complementary image has at least more
than 30% higher spectral similarity with the original image,
making the complementary image a more reliable source of
supplementary data.

After histogram matching, the pixels are mosaicked step-by-
step according to the imaging date for reconstruction [61]. Due
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Fig. 5. Cloud detection results from different underlying surfaces. The red part on the right of each group of images is the cloud detection results, and the rest is
expressed as transparent sky pixels. (a)–(c) Result of urban area. (d) Results of seaside towns. (e) Result of the sea-shore with dense vegetation. (f)–(h) Result of
the snow mountain.

to the particular offset of each imaging position of the satellite,
direct reconstruction is difficult [41]. However, the overall distri-
bution of the ground, particularly the distribution of vegetation
and crops, does not change significantly. Thus, it is feasible
to mosaic pixels according to coordinates. To minimize the
difference between mosaic pixels and original pixels, cloudless
pixels are filled with images of similar dates according to the
time difference between complementary images and the original
image [62]. If it is perceived as a cloud, it would be supplemented
by the image of the latest date.

In this section, we present the results and discussion of our
proposed method. We conducted two experiments to evaluate
the effectiveness of our method. The first experiment involved
cloud detection, where we targeted clouds in different regions
and underlying surfaces, and compared the results of our T-C
(threshold-correlation) method with other methods. In the sec-
ond experiment, we compared the reconstructed image with the
target date image, analyzing the overall quality and data corre-
lation between the two images. This comprehensive evaluation
confirms the usefulness and general applicability of our method.
The proposed algorithm was validated using a diverse set of
Sentinel-2 MSI and Landsat 8 OLI images from various dates
between 2016 and 2020, including images of thin, thick, broken
clouds, as well as various underlying surfaces such as vegetation,
sand, snow, etc. Additionally, the validation was performed on

various scales to ensure its broad applicability. The selection
of images acquired at different times and underlying surfaces
makes the verification more thorough, accurate, and reliable.

III. RESULTS AND DISCUSSIONS

A. Cloud Detection Results

In this section, we conducted an experiment to evaluate the
effectiveness of the proposed cloud detection method on various
regions and underlying surfaces. A total of 23 Landsat-8 OLI
images and 32 Sentinel-2 MSI images were used for validation.
Fig. 5 illustrates the cloud detection results of Sentinel-2, with
the left image in each group showing a false-color composite
MSI image and the right image showing the corresponding cloud
detection result, where the red parts represent cloudy pixels
and the rest represents clear-sky pixels. The results of the first
three groups show detection results for vegetation and urban
surfaces, which demonstrate the satisfactory performance of the
method. The detection results for offshore areas, forests, cities,
bare soil, and oceans in the fifth to seventh groups also indicate
the accurate detection of clouds without confusion with land
and ocean. In the eighth to tenth groups, the detection results
for snowy mountains, which are prone to confusion between
the spectra of snow and clouds, are conservative, but retain
complementary information. These results demonstrate that the
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TABLE II
NUMBER OF PIXELS OF DIFFERENT UNDERLYING

TABLE III
RESULTS COMPARISON OF T-C CLOUD DETECTION

proposed method can effectively separate clear sky from clouds
and remove all clouds on various underlying surfaces. Table I
presents the statistics for cloud detection results obtained from
two satellite images. The accuracy evaluation matrix indicates
that the proposed method has a high level of accuracy for both
satellites, with cloud detection accuracy greater than 0.9, and
low error and missed detection rates. This is sufficient for the
reconstruction of cloud-free images. It should be noted that
the detection accuracy may be affected by the thickness of
the clouds, with thicker clouds having a higher accuracy rate.
Additionally, Table I shows that the T-C method has advan-
tages over other simple cloud detection algorithms, such as
dynamic thresholding and the use of multiple features, while
being lightweight and simple yet effective. The cloud detection
rate of the T-C algorithm is also higher than official results, as it is
more sensitive to thin clouds, resulting in a larger coverage rate.
Furthermore, the detected clouds generally cover the official
detection results, and do not produce significant differences in
undetected cloud layers. Overall, these results are reliable and
can be used for practical applications.

The results in Table II and III indicate that the threshold corre-
lation algorithm (T-C) has certain advantages over the other two
algorithms, such as dynamic threshold and multifeature SVM.
The overall cloud coverage of the image using T-C is higher
than the others, and its detection accuracy relative to the official
algorithm is also higher. This suggests that T-C is more sensitive
to thin clouds and has a larger coverage rate than the official
results. Additionally, the detected clouds using T-C are found
to be in alignment with the official detection results, indicating
that the T-C algorithm produces plausible and usable results.

B. Cloud-Free Image Reconstruction

In this section, we conducted an experiment to evaluate the
effectiveness of the proposed cloud-free image reconstruction
method using over 80 images on Sentinel-2 and Landsat-8.
Specifically, we compared the proposed method with other
existing methods, such as MNSPI [44], LLHM [45], and WLR
[46] on the same surface. The results of the experiments, as

shown in Fig. 6, demonstrate the practicability of the proposed
framework under various conditions.

In most cases, the proposed method is effective in reconstruct-
ing the cloud-free areas of the original image, as long as the
local weather is not excessively cloudy. However, in instances
where most areas are covered by clouds for an extended period
of time, the number of cloud-free pixel references is limited and
the credibility of the reconstruction is not high. It is important to
note that this problem cannot be solved using traditional optical
remote sensing methods, and alternative methods such as using
microwave or other bands that are not affected by clouds must
be considered [63], [64].

Furthermore, as shown in Fig. 6, most of the original im-
age data used in the experiments were redundant, wasting a
significant amount of data. A more efficient solution is to ob-
tain cloud masks of the target area from multiple images, and
then select the images with the most significant differences in
cloud cover positions. By utilizing this method, it is possible
to reconstruct cloud-free images using only a few images. The
method involves obtaining the cloud mask of the original image
area, then downloading the cloud masks of other images (such
data is generally provided and the data amount is minimal).
Then, by reversing the mask of these complementary data,
the clear image element mask can be obtained. The original
data’s cloud mask and the complementary data’s clear mask
are then intersected and sorted according to the intersection
size. The complementary data with the largest intersection is
selected. This approach allows for the screening of hundreds of
complementary data without downloading the complete image.
An example of this is shown in the following cloud-free im-
age of southern Tibet, which was synthesized using only four
images.

Fig. 7 illustrates the reconstructed cloud-free image in the
southern region of the Himalayas. Despite the significant local
variations in spectra and radiation, the complexity of the area,
and the significant altitude changes, the proposed reconstruction
method demonstrates its effectiveness. The surface features,
such as rivers and mountains, are clearly visible and consistent,
and a majority of the information obstructed by clouds has been
effectively recovered. These results demonstrate the efficacy of
our method in reconstructing cloud-free images in large-scale
and multitemporal scenes.

The results presented in Fig. 8 demonstrate that the pro-
posed method Fig. 8(b) reconstructs the image closer to the
original clear image Fig. 8(a) compared to the other methods.
The LLHM method Fig. 8(e) produces a recovery result in the
cloud-contaminated region with a serious spectral distortion,
particularly in the river and mountain region. This outcome
indicates that a simple histogram matching method is inadequate
when the two images have a complex terrain and large spec-
tral differences. The results of the MNSPI and WLR methods
Fig. 8(c) and (d) are similar, and most of the ground features are
well recovered. However, in the mountain region, particularly
with snow, the spectral characteristics differ from those in the
remaining area, which may also be due to the large spec-
tral differences between the target and reference images. The
proposed method produces the most plausible visual result, and



ZHOU et al.: SHORT TIME CLOUD-FREE IMAGE RECONSTRUCTION BASED ON TIME SERIES IMAGES 59

Fig. 6. Sentinel-2 data reconstructed cloudless images at different regions in 2017 and 2018. The first column is reconstructed cloudless image with subsequent
columns, only three images are presented here for limited space. (a) Case in southern Tibet with 15 original images. (b) Case in Shanghai with 10 original images.
(c) Case in Hainan with 10 original images. (d) Case in Western Sichuan with 15 original images. (e) Case in Qinghai with 20 original images.

Fig. 7. Cloud-free image reconstructed from four cloud images in the southern Himalayas. We used images (a)–(d) to rebuild a cloud-free image (e).

some of the detailed information is well recovered while also
effectively suppressing unnecessary noise. Notably, the original
and reference images were acquired in different seasons, and
the spectral characteristics of the ground features have changed
significantly. The LLHM, MNSPI, and WLR methods cannot
handle this issue very well, leading to more errors in their results.
In contrast, the proposed method utilizes similar pixel offsets and
the radiometric information of the image itself to fill the missing
region, enabling it to better address this issue. The quantitative
assessment in Table IV also confirms the clear superiority of the
proposed method.

In Table IV, we have calculated the average efficiency of
these methods for cloud removal. It can be seen that the method
proposed in this article is a very simple and effective cloud-free
image reconstruction technology in comprehensive consider-
ation of complex landform, climate, and other environmental
conditions.

As can be seen from the comparison, our proposed method
has distinct advantages over alternative approaches such as the
harmonic analysis of the time series (HATS) algorithm and the
multichannel singular spectrum analysis (m-SSA) method. The
HATS algorithm is primarily used for reconstructing single-band
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Fig. 8. Comparison results of different cloud-free image reconstruction methods. The five images are located in Hainan, Sichuan, Nepal, Qinghai, and Shanghai
in China, where (a) is the target image to be reconstructed, and (b)–(e) are the proposed methods, LLHM, MNSPI, and WLR.

TABLE IV
AVERAGE CLOUD REMOVAL EFFICIENCY OF THE FOUR METHODS FOR FIVE

REGIONS (RATIO OF THE PERCENTAGE OF REDUCED CLOUD LAYER TO THE

PERCENTAGE OF ORIGINAL CLOUD LAYER)

data types and is not suitable for data whose imaging conditions
change slightly, such as spectra, which can result in significant
differences [18]. Similarly, the m-SSA method may not be able
to reconstruct data in cases of missing values and complex corre-
lations. Additionally, deep learning methods, such as cloud-free
sea surface temperature image reconstruction based on abnormal
network repair, are limited to single bands and can be costly
to implement [65]. Furthermore, sparse reconstruction based
on random samples, such as spark unmixing-based denoising
for single scene cloud removal, is challenging in the presence
of polluted pixel information (e.g., haze) and does not use the
time sequence information of multiple scenes [66]. Our pro-
posed method, on the other hand, is effective in reconstructing
cloudless images in large-scale and multitemporal scenes while
being computationally efficient.

C. Usability of the Reconstructed Data

The effectiveness of the proposed method is further illustrated
by quantitative assessments using the root mean square error

(RMSE) and CC indices (7)–(8). The RMSE index measures
the average difference between the values of the recovered pixels
and the corresponding true values in the original image, while the
CC index measures the linear relationship between the recovered
and original pixel values. The definitions of these evaluation
indices are as follows:

RMSE =

√
1

N

∑n

i=1
(Yi − f (xi))

2 (7)

CC =

∑N
j=1

(
I0j − Ī0

) (
IRj − ĪR

)
√∑N

j=1

(
I0j − Ī0

)2 ∑N
i=1

(
IRj − ĪR

)2 . (8)

To evaluate the usability of the reconstructed data for fur-
ther applications, the Normalized Difference Vegetation Indices
(NDVI) of the recovered images are compared in the second
experiment. Based on the scatterplots presented in Fig. 9, it
is suggested that the LLHM [45] method estimates the val-
ues in cloud-contaminated regions with larger errors. On the
other hand, the MNSPI [44] and WLR [46] methods have a
better agreement with the original image. However, the pro-
posed STMRF method still outperforms the other methods. As
illustrated in Fig. 9, the R2 value of the LLHM result is unsat-
isfactory at −0.375. In contrast, the MNSPI and WLR results
show a significant increase to 0.021 and 0.386, respectively.
The proposed method achieves the highest value of 0.843. These
results demonstrate that the cloud removal results obtained from
the proposed method can significantly enhance the support for
further applications.
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Fig. 9. Scatterplots of the true and the estimated NDVI values corresponding to Fig. 8. (a) LLHM method. (b) MNSPI method. (c) WLR method. (d) Proposed
method.

This method has been demonstrated to be effective in dealing
with the significant changes of multitemporal images. However,
it is important to note that it is most suitable for areas with
dense, random cloud cover as opposed to sites where clouds
remain in a fixed range for an extended period. Additionally,
due to the nature of time-series imaging, this method may not
be appropriate for areas with significant differences in ground
spectra. It is also important to note that the return cycle of the
satellite used for reconstruction should not be too long in order to
ensure the continuity of the reconstructed data. Furthermore, the
proposed detection method relies on the sensor band covering
short-wave infrared in order to realize coarse cloud screening.
Additionally, in the event of frequent and extensive cloud cover
at the imaging site, and unfavorable atmospheric conditions, the
complementary images obtained may provide limited effective
information. In such cases, long-term multisource images from
multiple satellite platforms may be required to collect sufficient
cloud-free pixels to effectively restore the surface image, or
resorting to microwave remote sensing may be necessary.

D. Efficiency Evaluation of Proposed Methods

To evaluate the efficiency of the proposed cloud removal
method, we compared its processing time with three comparison
methods. We selected three different satellites’ remote sensing

TABLE V
SIZE AND CLOUD COVERAGE OF EXPERIMENTAL DATA

images as experimental data, namely Landsat 8 OLI, MODIS,
and Sentinel-2. The numbers, size, and cloud coverage of each
image are shown in Table V. We ran all the methods on a PC
configured with Intel Core i7-9700K CPU and 16 GB RAM,
and recorded the time required for each method to process these
images. Table VI shows the results of the processing time in
seconds.

From Table VI, it can be seen that the proposed cloud re-
moval method has the fastest processing speed on all images,
far faster than the other three methods. This indicates that the
proposed method can not only effectively restore information in
cloud-covered areas, but also has high computational efficiency,
making it suitable for large-scale and real-time remote sensing
image cloud removal applications. Compared to the other three
methods, although they can also achieve certain cloud removal
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Fig. 10. PSNR and SSIM values of different methods in crop fields and water bodies.

TABLE VI
COMPARISON OF PROCESSING TIME IN SECONDS

TABLE VII
STATISTICS OF PSNR AND SSIM IN CROP FIELDS AND WATER BODIES

effects, their processing time is relatively long. This is mainly
because the other method requires multiple complex transfor-
mations and inverse transformations on the image, while the
proposed method only requires simple spatial domain operations
on the image.

E. Data Demand for Reconstruction

To further evaluate the performance of the proposed cloud-
free image reconstruction method, we discuss some issues re-
lated to the data requirements of this method in the following
sections.

First, we assess the number of images needed for the re-
construction. Since the proposed method is based on spatio-
temporal recovery, sufficient supplementary data are needed to
fill in the information in the cloud-covered areas. Specifically,
the number of images depends on the cloud cover rate, the
cloud cover location, and the target date, which are not easy
to quantify. Generally speaking, the higher the cloud cover rate,
the more dispersed the cloud cover location, and the closer the
target date to the cloudy season, the more images are needed.
To quantify this issue, we designed an experiment that selected
a cloud-covered image from the Landsat 8 OLI dataset as
the target image, and randomly selected different numbers of
supplementary data from images of the same area on different
dates. PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural
Similarity) are two indicators that measure the similarity of
images, we calculated the PSNR and SSIM metrics between
the reconstructed image and the real cloud-free image under
different numbers of supplementary data, and plotted the curves
shown in Fig. 10.

Fig. 10 shows that as the number of supplementary data
increases, the quality of the reconstructed image also improves.
However, when the number of supplementary data reaches a cer-
tain level, the reconstruction quality tends to saturate. This indi-
cates that the proposed method can achieve good reconstruction
results with a limited number of supplementary data, without
requiring a large amount of data. Specifically, in this experiment,
when the supplementary data covers 90% of the cloud-covered
area in the original image, it generally requires eight images,
and the reconstructed image can achieve high PSNR and SSIM
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values. Therefore, we recommend using around eight supple-
mentary data to implement the proposed method.

Second, we discuss the applicability of the proposed method
in rapidly changing regions. Since the proposed method is based
on spatio-temporal recovery, it assumes that the target region
has similar or stable spectral features at different time points.
However, in some rapidly changing regions, such as crop fields
and water bodies, this assumption may not hold true. To verify
this issue, we selected two remote sensing images containing
crop fields and water bodies as experimental data, and applied
the proposed method and three comparative methods for cloud-
free image reconstruction. We calculated the PSNR and SSIM
metrics between the reconstructed image and the real cloud-free
image in the crop and water regions, and presented the results
in Table VI.

Table VII shows that in the crop region, the proposed method
can still obtain the highest PSNR and SSIM values, indicating
that the method can adapt to changes in the crop region and
maintain good reconstruction results. However, in the water
region, the PSNR and SSIM values of the proposed method
are significantly lower than those of the other three methods,
indicating that the method performs poorly in the water region.
This may be because there are many factors such as ripples,
reflections, and turbidity in the water region, resulting in large
spectral differences at different time points in the water region.
Therefore, for cloud-free image reconstruction in water regions,
further improvements are needed for the proposed method or
other methods that are more suitable for water features. In
summary, the proposed method can effectively recover the
information of cloud-covered areas with a limited number of
(around eight) and relatively stable supplementary data, and is
applicable for cloud-free image reconstruction in most regions.
However, for rapidly changing regions such as water bodies, the
reconstruction performance of the proposed method is poor, and
further research and improvement are required.

IV. CONCLUSION

When optical remotely sensed images are affected by cloud
cover, much ground information cannot be acquired, which
significantly limits their application. Despite the abundance of
remotely sensed images available today, high-quality images
that provide complete, clear ground information remain a
sought-after goal. Therefore, this article proposes a new and
effective method to remove clouds and accurately reconstruct
ground information. Missing pixels are replaced with similar
pixels from the remaining regions of the cloud-contaminated
image, with another complementary temporal image serving
as a reference to locate the similar pixels. To select the
most appropriate similar pixels to replace missing pixels, we
build a time-histogram select and match model to obtain its
optimal solution. This optimal solution represents the optimal
combination of similar pixels to replace all missing pixels.

The experimental results demonstrate that incorporating
spatio-temporal information in image reconstruction signifi-
cantly enhances the accuracy compared to conventional meth-
ods. Furthermore, the proposed method effectively utilizes the

radiometric information within the image itself to reconstruct
missing data, thereby demonstrating its robustness to various
atmospheric conditions and seasonal changes in multitemporal
images. Overall, the proposed method is capable of achieving
temporally, spatially, and spectrally coherent reconstruction.

However, the proposed method has certain limitations. It
performs well in handling significant changes in multitemporal
images. However, when the time interval is very short and the
atmospheric conditions are similar, the acquired multitemporal
images may be very similar or their changes may be simple
and linear. In such cases, conventional methods such as fitting,
matching, and regression can obtain excellent reconstruction
results and their computations are fast. Therefore, compared to
these conventional methods, the proposed method may not have
a distinct advantage and may be time-consuming. To address this
issue, we plan to combine the proposed method with traditional
methods to handle different levels of changes in multitemporal
images in our future work.
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