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SRA—CEM: An Improved CEM Target Detection
Algorithm for Hyperspectral Images Based on
Subregion Analysis

Jiale Zhao ", Guanglong Wang

Abstract—Due to the limitations of spatial resolution and de-
tector level, traditional hyperspectral image (HSI) target detection
focuses more on spectral analysis, and spatial morphology informa-
tion is not fully utilized in HSI target detection. The constrained
energy minimization (CEM) method is a classic HSI target detec-
tion algorithm that can highlight the information of the target,
suppress background information, and achieve the effect of sepa-
rating the target from the image. However, the CEM method is a
supervised algorithm that requires obtaining spectral information
of the target in advance. Due to various factors, such as material
composition, object shape, and imaging conditions, the spectral
reflectance of targets usually exhibits strong uncertainty, which
is the main reason why the detection performance of traditional
target detection algorithms is not ideal. To address the above issues,
an improved CEM target detection algorithm for HSIs based on
subregion analysis (SRA-CEM) was proposed. The SRA-CEM
method first obtains the subregion where the target is located
based on its external features and then uses background detection
to infer the specific location of the target. SRA—-CEM uses prior
background spectral reflectance to replace the spectral reflectance
of unknown and variable targets and can avoid the impact of the
target signal as a background signal in the traditional CEM algo-
rithm on the detection results. Experiments were conducted using
publicly available and self-test hyperspectral data, respectively. The
results showed that compared to other target detection algorithms,
the SRA—CEM method could effectively improve the accuracy
of hyperspectral target detection. Especially in HSIs under land-
based imaging conditions, the area under the curve value of the
SRA-CEM method has increased by about 0.11.

Index Terms—Constrained energy minimization (CEM) algo-
rithm, hyperspectral imaging, spatial-spectral combination, target
detection.

I. INTRODUCTION

YPERSPECTRAL imaging technology is a multidimen-
I I sional information acquisition technology that combines
imaging technology with spectral detection technology, which
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can obtain precise spectral information while obtaining target
spatial image information [1], [2], [3]. Compared with tradi-
tional imaging methods, the advantage of hyperspectral im-
ages (HSIs) is that they break through the limitation of two-
dimensional (2-D) space, and the spectral resolution has reached
the nanometer level [4]. Due to its ability to accurately obtain
diagnostic spectral features of targets, hyperspectral imaging
technology is widely used in various fields, such as agriculture
[5], [6], medicine [7], [8], and military [9].

Since the 1980s, various classic target detection algorithms
have emerged for different scenarios and types of HSIs [10]. For
situations where the target spectrum and background spectrum
are known, the basic idea of target detection is to highlight the
target and suppress the background. There are orthogonal sub-
space projection (OSP) [11], signature subspace projection [12],
generalized likelihood ratio test (GLRT) [13], adaptive subspace
matching detector (AMSD) [14], and so on. Simple matching
methods and the properties of the sample correlation matrix can
be utilized for target detection when only the spectrum of the
target object is known. Spectral matched filter (SMF) algorithm
is adetection algorithm based on the segment normal distribution
model, which has a good detection effect in a simple background
[15]. In case of unknown targets and backgrounds, anomaly
detection algorithms based on probability statistical models are
widely used, such as the Reed Xiaoli algorithm [16]. The con-
strained energy minimization (CEM) algorithm is a target detec-
tion algorithm based on a linear discriminant criterion, which is
suitable for situations where the target spectrum is known but the
background spectrum is unknown [17]. Due to the assumption
that the CEM algorithm is based on a small number of target
pixels and a sufficiently large background range, its performance
in dealing with larger targets is poor. To improve this issue, re-
searchers have successively proposed the adaptive matched filter
algorithm [18] and the adaptive cosine/cosine estimator (ACE)
[1]. These two algorithms use both probability and statistical
models and subspace projection models, effectively improving
the performance of the CEM algorithm. The S-ACE algorithm is
a signed ACE method that enhances the robustness of the ACE
algorithm in certain applications [19]. The target constrained
interference minimized filter (TCIMF) algorithm achieves better
performance than CEM by designing a detection operator that
detects expected target features while eliminating unexpected
target features [20]. The kernel-based object detection algorithm
combines the ideas of kernel functions in machine learning
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with hyperspectral object detection algorithms, better utilizing
the hidden nonlinear features in hyperspectral data. At present,
many effective methods have been developed, such as KMF,
KMSD, KASD, KCEM [21], [22],[23], [24], [25], etc. However,
due to the lack of specific rules for selecting kernel functions,
there are also certain limitations in some applications. In recent
years, many researchers have been committed to improving
classic hyperspectral object detection algorithms for different
applications. Regarding the issue of pixel selection in multipixel
target detectors, Chen et al. [26] proposed a GLRT-based multip-
ixel target detector for HSIs. To better address the complex back-
ground issues in HSIs, Chen and Chang [20] integrated CEM and
OSP methods and proposed a BKG-annualized TCIMF method.
Among them, the hierarchical CEM (hCEM) proposed by Zou
and Shi [27] is an improved method based on CEM, which
is a hierarchical structure containing different layers of CEM
detectors. The hCEM increases detection performance layer by
layer through a hierarchical suppression process. Zhao et al.
[28] proposed an ensemble-based CEM (E-CEM) detector for
HSI target detection. The proposed E-CEM is designed based
on the classical CEM detection algorithm to improve both the
detection nonlinearity and generalization ability. Recently, more
and more researchers have recognized the important role of spa-
tial information, and the utilization rate of spatial information in
HSIs s constantly improving [29], [30]. With the development of
statistical pattern recognition and deep learning under Big Data,
new data-driven object detection algorithms have emerged [31],
[32]. However, data-driven object detection methods require a
large number of labeled samples and are costly, even though
their effectiveness is much higher than traditional methods.

The CEM method must have prior knowledge of the spectral
information of the target. However, obtaining spectral infor-
mation of unknown targets is relatively difficult. In addition,
with the improvement of spatial resolution, there is also some
uncertainty in the spectral reflectance of the same target due to
the diversity of constituent materials and spatial structures [33].
A framework based on subregion analysis (SRA) is proposed to
improve the CEM algorithm based on the characteristics of HSIs
and the current status of object detection algorithms. The key of
the SRA—CEM method is to fully utilize the advantages of high
spatial resolution of HSIs and obvious target shape features,
changing the preprocessing method of HSIs from traditional
spectral dimensions to 2-D geometric spaces. In summary, the
main contributions of this article can be described as follows.

This article introduces subregion spatial information into
hyperspectral object detection, and a target detection method
SRA-CEM based on SRA is proposed. This method improves
the CEM method by utilizing background spectra as prior in-
formation, which can overcome the spectral uncertainty of the
target.

In SRA-CEM, the main contributions are as follows: first, the
establishment of 2-D spatial data samples for land-based HSIs
and the use of a deep-learning-based 2-D image object detection
algorithm to obtain subregions of the target. The second is to use
“pseudo spectral filling” to solve the problem of suppressing
the target when calculating the autocorrelation matrix using
the CEM method. The third is to use the method of detecting
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background in subregions to infer the detection results of the
target, avoiding the impact of spectral changes of the target.

In this article, we also innovatively conducted experiments
on our HSI data to verify the feasibility of the proposed method
and achieved some encouraging results.

The rest of the article is organized as follows. In Section II,
we first briefly introduce the CEM method and object detection
methods in the field of computer vision (CV), and then provide
a detailed introduction to our proposed SRA—CEM method. In
Section III, evaluation experiments were conducted on two com-
mon datasets and one self-test data to verify the effectiveness of
the proposed method. In addition, the experimental results were
also discussed in the Section III. Finally, Section VI concludes
this article.

II. BASIC THEORY
A. CEM Algorithm

The CEM algorithm is a supervised algorithm that completes
target detection tasks without knowing the background spec-
trum, even though the target spectrum is known [34]. The main
idea of this algorithm is to design a linear filter through which the
image can obtain detection results. The function of the filter is to
suppress and filter out the background and filter out the interested
targets [27]. Assuming the hyperspectral data is X (L x N), the
number of bands in the data is L, the total number of pixels is
N, and the target spectral vector is d. The purpose of CEM
is to design a linear filtering vector w = [wy,wa, ..., wL]T,
which minimizes the average output energy of the image after
being filtered by the filtering algorithm. The condition that
w = [wy, wa, ... 7wL]T needs to meet is as follows:

min(w? Rw)
dTw = 1.

D

By solving the conditional extremum problem, the filtering
vector wegm that satisfies the conditions is obtained as follows:
Rd

WeEM = e (2)

Among them, R is the autocorrelation matrix of the sample

set, and this linear filtering vector is applied to each pixel in the

HSI to obtain the distribution of the target vector in the image,

achieving target detection. The filtered result is represented by
vy, as follows:

_ X"Rd
T dTRd

Rid \"
v=venl X = () X

B. Two-Dimensional Spatial Target Detection Method

3

Target detection for 2-D images can achieve precise posi-
tioning and classification of targets. It is an important content
in the field of CV and has significant research value in video
tracking, unmanned driving, and other fields [35], [36], [37].
Target detection algorithms based on spatial information can
be divided into two categories: traditional target detection al-
gorithms and deep-learning-based target detection algorithms
[38]. Traditional target detection methods generally involve
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Fig. 1. Common spatial target detection algorithms.

three steps: first, selecting candidate regions on a given image,
then extracting features from these regions, and finally using
a classifier for classification [39]. Deep-learning-based target
detection algorithms also include two-stage target detection
algorithms and single-stage target detection algorithms. The
two-stage target detection algorithm extracts candidate boxes
from the image and then performs classification and regression
based on the candidate regions to obtain detection results. The
detection accuracy is high, but the detection speed is slow. The
single-stage target detection algorithm utilizes deep neural net-
works to directly calculate the image and generate detection re-
sults, which have fast detection speed but low detection accuracy.
Therefore, in target detection, it is necessary to continuously
improve and optimize mainstream target detection algorithms
to achieve the optimal balance between detection accuracy and
detection speed. Typical target detection algorithms include
SIFT feature extraction method [40], faster R-CNN [41], YOLO
series algorithm [42], [43], SSD [44], and other algorithms, as
shown in Fig. 1. Traditional target detection algorithms rely
on manual experience for feature extraction, algorithm, and
parameter solidification, and have good processing effects for
specific targets and backgrounds. However, traditional methods
have significant limitations and weak universality. When the tar-
get shape changes or the background changes, their processing
effectiveness significantly decreases. Compared with traditional
object detection algorithms, deep-learning-based object detec-
tion algorithms rely on training network structure parameters on
a large number of data samples, and have better stability against
changes in targets and backgrounds.

In order to verify the effectiveness of the SRA—~CEM method,
this article uses annotated image data to train the YOLOVS target
detection model in experiments on actual datasets. Use single
band HSIs from different directions, wavelengths, and back-
grounds as training samples. Some sample images are shown in
Fig. 2.

C. SRA-CEM Method

With the improvement of spatial resolution in HSIs, the role
of spatial information in target detection tasks in HSIs is be-
coming increasingly prominent. In order to fully utilize spatial
information and solve the problem of difficulty in obtaining

Fig. 2.

Some target detection samples.

target spectra, a target detection algorithm based on SRA is
proposed. This method mainly includes the following steps:
principle component analysis (PCA), determination of subre-
gions to be tested, selection of background spectra, filling of
pseudo target spectra, and CEM algorithm detection and result
inversion. The overall process of this method is shown in Fig. 3.

PCA: PCA is a commonly used unsupervised dimensionality
reduction method for HSIs. Under the processing of PCA, HSIs
cannot only achieve the goal of data dimensionality reduction
but also extract features. Extracting the first principle component
image using the PCA method preserves most of the information
of the original HSI, making the spatial features of the target more
prominent.

There are two main ways to determine the subregion of
the target using the first principle component image: one is to
manually determine the subregion of the target, and the other is to
use spatial target detection algorithms. For targets with obvious
appearance features, priority should be given to selecting highly
intelligent spatial target detection algorithms. For targets with
unclear appearance features, the subregion to be tested can be
manually determined based on other prior information.
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Fig. 3. Overall process of SRA-CEM method.

Choosing a background spectrum: In practical applications,
compared to complex and variable target spectra, the background
spectrum is easier to obtain and relatively stable. Select the
corresponding background spectrum as the test spectrum in the
spectral library, and infer the target by detecting the background
of the subregion.

Pseudo target spectral filling: Due to the need to obtain the
autocorrelation matrix of the image before using the CEM
algorithm, other parts of the image that are not in the subregion
to be tested will affect the detection results. In order to reduce
adverse effects, the filling operation of “pseudo target spectra”
is carried out in these nontest areas, which are determined by
the pixel spectra with the lowest similarity to the background
spectrum in the test subregions.

CEM algorithm detection and result inversion: After com-
pleting the above steps, the CEM target detection algorithm can
be used to detect targets. Reverse the detection results within
the subregion to obtain the detection results of the target, and
then use the receiver operating characteristic (ROC) curve for
evaluation.

The specific steps of SRA-CEM are shown in Algorithm 1.

III. EXPERIMENTS

In order to verify the detection effect of SRA-CEM, exper-
iments were conducted using both public and actual captured
datasets. First, two publicly available hyperspectral datasets
were used for experiments to verify the detection performance
of SRA—-CEM in different complexity scenarios. Subsequently,
experiments were conducted using land-based HSIs captured
by field imaging spectrometers, further confirming the stability
of the SRA-CEM method in hyperspectral target detection
applications. In the experiment aimed at the public dataset,
because the shape characteristics of the target are not obvious

Target detection results
in space

sub-region I

Algorithm 1: Target Detection by the Proposed SRA-CEM.

Input: Hyperspectral image data H, prior knowledge
background spectrum d, parameter 1);
Step:
1: Obtain the position coordinates of the subregion of the
target (Spatial object detection algorithm or Manual
selection)
2: Obtain autocorrelation matrix R
for each spectral vector in subregion pixels M = 1:n do
similarity S between R and M
it S<p
random pseudo target filling
end
return H
finding the autocorrelation matrix R of H*
3: Place R and d into CEM to detect background in
subregions
4: Using the detection results of background in subregions
to infer target probability
Output: Detection results of the target in H

enough, this part of the experiment uses artificial selection of the
subregion to be measured. A target detection algorithm based on
the YOLOVS5 model determines the subregions for the measured
land-based HSI target detection dataset.

A. Experimental Data and Evaluation Indicators

1) Publicly Available Hyperspectral Image Dataset: The
first publicly available dataset used in the experiment was
the SanDiego dataset. The SanDiego dataset is hyperspectral
data obtained by using the hyperspectral imaging spectrometer
AVIRIS to capture the San Diego airport in the USA. There are
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Fig. 4. First publicly available hyperspectral image dataset: (a) hyperspectral
data cube, (b) single band hyperspectral grayscale image, and (c) labeled image.

Fig. 5. Second publicly available hyperspectral image dataset: (a) hyperspec-
tral data cube, (b) single band hyperspectral grayscale image, and (c) labeled
image.

a total of 400 x 400 pixels, each with 224 bands of information,
with a spatial resolution of 3.5 m and spectral coverage between
0.4 and 1.8 nm. This dataset is widely used in target detection
tasks, and only the pixels in the upper left corner 100 x 100 are
used in this experiment, as shown in Fig. 4.

The other publicly available dataset used in the experiment
is captured in Los Angeles on November 9, 2011, which was
collected by the airborne visible/infrared imaging spectrometer
AVIRIS. AVIRIS is a typical swing scan imager. The HSI of
noise removal band captured includes 205 bands, the wavelength
range is 0.4-2.5 pum, the spectral resolution is 10 nm, and the
spatial resolution is 7.1 m. The original image and its annotation
of this dataset are shown in Fig. 5.

2) Measured Dataset: The traditional hyperspectral imaging
target detection technology is mainly applied in the field of
remote sensing. The spatial resolution of remote sensing HSIs
is low and the target shape features are not clear enough [45].
However, the HSIs obtained using field imaging spectrometers
have the characteristics of high spatial resolution, significant
geometric features, and prominent target shape contours, which
effectively improve the efficiency of comprehensively utiliz-
ing spatial-spectral information to complete target detection
tasks. The imaging spectrometer in visible light band used in
the experiment is an HIS-300 imaging spectrometer based on
acousto-optic tunable filer. By setting the wavelength interval
to 4 nm, 89 images of different wavelengths can be obtained
within the spectral range of 449—801 nm. Each image records
the radiance values of ground objects at different wavelengths.
The experimental location is Shijiazhuang City, Hebei Province,
China, and the subject of the shooting is a model airplane. The
shooting time was October 19, 2022, and the imaging conditions
are shown in Fig. 6. The aircraft model was annotated at the pixel
level based on the target distribution, as shown in Fig. 7.
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Fig. 6. Imaging equipment and diagram of imaging condition: (a) imaging
equipment and (b) diagram of imaging condition.
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Fig. 7. Measured hyperspectral image dataset: (a) pseudo color image and
(b) labeled image.
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Fig. 8. PCA images and subregion labeling for the first publicly available
hyperspectral image.

3) Evaluating Indicator: In addition to evaluating the devi-
ation between the detection result map and the actual reference
data through direct visual perception, the test results can also
be objectively expressed in data form. ROC and area under the
curve (AUC) are commonly used evaluation indicators for target
detection. The ROC curve describes the relationship between
detection accuracy and error rate. Based on the actual annotated
image and prediction results of the target, a series of detection
and false alarm rates are calculated by dynamically adjusting
the size of the threshold, and then the ROC curve is drawn. The
closer the ROC curve is to the upper left, the better the detection
performance. When the ROC curves of different detection algo-
rithms are too close, it is impossible to make accurate judgments
about the performance of the detection algorithm. At this point,
the area under the ROC curve, i.e., the AUC value, can provide
a more intuitive conclusion. The value of AUC is between [0,1],
and a larger value indicates a higher accuracy of the detection
algorithm.
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Using the average spectrum of the target or background in region A as the measured spectrum:

Ground truth
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Fig. 9. Target detection results based on subregion A.
Using the average spectrum of the target or background in region B as the measured spectrum:
Ground truth
S-ACE
Fig. 10. Target detection results based on subregion B.

B. Experimental Results

In order to highlight the advantages of the SRA-CEM al-
gorithm, this article selects CEM, OSP, SMF, TCIMF, ACE,
S-ACE, GLRT, and AMSD as comparative algorithms for re-
search. Select ROC and AUC as evaluation indicators for target
detection results. Verify the stability of the SRA—CEM detection
method by utilizing the spectra of backgrounds and targets
in different subregions. Verify the applicability of SRA-CEM
detection method to land-based HSIs through self-test dataset
experiments.

1) Experimental Results on Publicly Available Hyperspectral
Data: First, perform PCA on HSIs, and the results of PCA
are shown in Fig. 8. The first principle component obtained
through dimensionality reduction processing contains 95.18%
information of the original image, making it easier to analyze
its spatial structure. The experiment was completed by artificial
selection of the target area. As shown in Fig. 8, the experimental

area can be divided into three areas, labeled with A, B, and C.
Select different target detection algorithms to detect the target.
The average spectrum of the target or background in Region A
is used as the detection result of the tested spectrum, as shown
in Fig. 9. The average spectrum of the target or background in
Region B is used as the detection result of the tested spectrum,
as shown in Fig. 10. The average spectrum of the target or
background in Region C is used as the detection result of the
tested spectrum, as shown in Fig. 11.

From Figs. 9-11, it can be roughly seen that various target de-
tection algorithms have good results in detecting target objects.
In order to quantify and compare the detection capabilities of
different algorithms, Fig. 12 plots the ROC curves of differ-
ent algorithms, and Table I lists the AUC values of different
algorithms.

For the second publicly available datasets, mark the target
subregions as D and E, and use the same method for validation.
The first principle component obtained through dimensionality
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Using the average spectrum of the target or background in region C as the measured spectrum:
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S-ACE GLRT AMSD SRA-CEM

Fig. 11.  Target detection results based on subregion C.
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Fig. 12. ROC curves for the detection results of the first publicly available hyperspectral image: (a) ROC curves of target detection results based on subregion

A, (b) ROC curves of target detection results based on subregion B, and (c) ROC curves of target detection results based on subregion C.

TABLE I
AUC VALUES FOR DIFFERENT ALGORITHMS IN THE FIRST PUBLICLY AVAILABLE HYPERSPECTRAL IMAGE

Condition CEM OSpP SMF TCIMF ACE S-ACE GLRT AMSD SRA—-CEM
Based on subregion A 0.9609  0.9716  0.9632  0.9438 0.9515 0.9603 09513  0.9545 0.9842
Based on subregion B 0.9791  0.9827 0.9835 0.9747 0.9731 0.9816 0.9729  0.9785 0.9896
Based on subregion C  0.9792  0.9826  0.9809 0.9592  0.9698 0.9784 0.9699  0.9702 0.9938

reduction processing contains 95.51% of the information content
of the image. The first five principle component images and
subregion annotations of the HSI are shown in Fig. 13.

Figs. 14 and 15 show the detection results using the average
spectra of the target or background in the D and E regions as ql]
the test spectra. In order to quantitatively compare the detection =
capabilities of different algorithms, Fig. 16 plots the ROC curves
of different algorithms for this HSI, and Table II lists the AUC
values of different algorithms.

2) Experimental Results of Measured Hyperspectral Data:
The measured hyperspectral data is a land-based HSI obtained

First principal component

Fourth principal component Fifth principal component

using a field imaging spectrometer. Land-based HSIs can si- Fig. 13. PCA images and subregion labeling for the second publicly available

multaneously obtain spectral and spatial information of ground ~ Pyperspectral image.

objects, and for targets with obvious appearance features, their



ZHAO et al.: SRA-CEM: AN IMPROVED CEM TARGET DETECTION ALGORITHM 6033

Using the average spectrum of the target or background in region D as the measured spectrum:
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Fig. 14.  Target detection results based on subregion D.

Using the average spectrum of the target or background in region E as the measured spectrum:
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Fig. 15. Target detection results based on subregion E.
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Fig. 16.  ROC curves for the detection results of the second publicly available hyperspectral image: (a) ROC curves of target detection results based on subregion
D and (b) ROC curves of target detection results based on subregion E.
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TABLE II
AUC VALUES FOR DIFFERENT ALGORITHMS IN THE SECOND PUBLICLY AVAILABLE HYPERSPECTRAL IMAGE
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Condition CEM OSP SMF TCIMF ACE S-ACE GLRT AMSD SRA—CEM
Based on subregionD  0.8568 0.9349 0.8571 0.7673 0.8677 0.8527 0.8689 0.8551 0.9709
Based on subregion E 0.7824  0.9297 0.7896 0.7789 0.7356 0.7871 0.7358 0.7844 0.9682

TABLE III
AUC VALUES OF DIFFERENT ALGORITHMS IN THE MEASURED HYPERSPECTRAL IMAGE
Method CEM OSP SMF TCIMF ACE S-ACE GLRT AMSD SRA—CEM
AUC 0.8079 0.6239 0.8309 0.8294 0.7103 0.8274 0.7204 0.8136 0.8855

L First principal component |

Second principal component Third principal component

Fig. 17.
image.

PCA images and subregion labeling for the measured hyperspectral

spatial information can be more fully utilized. Fig. 17 shows
the results of PCA and spatial target detection of measured
hyperspectral data. The first principle component obtained from
hyperspectral data through dimensionality reduction processing
contains 95.10% information of the original image. By inputting
the first principle component image into the trained spatial target
detection model, the coordinate information of the target can be
obtained.

The experimental background is a common cement road
surface, and the prior spectral information of the background is
used as the input spectrum of the SRA—CEM method. For other
supervised target detection algorithms used for comparison,
the spectral average of the aircraft model is used as the target
spectrum to be tested. Select different target detection algorithms
to detect targets in two sets of measured hyperspectral data, and
the detection results are shown in Fig. 18. Fig. 19 shows the
ROC curves under different detection algorithms, and Table III
lists the corresponding AUC values.

C. Discussions

The above experiment can be divided into two parts: one is
based on two sets of publicly available hyperspectral datasets,
and the other is based on measured hyperspectral datasets. In
order to demonstrate the stability of the proposed method in
the public dataset, comparative experiments were conducted
using different subregions where the target is located. Compared
to other hyperspectral target detection algorithms in the actual
dataset, the SRA—CEM method still exhibits outstanding de-
tection performance. In summary, the experimental results can
validate the following viewpoints:

1)

2)

3)

4)

The SRA-CEM method is a relatively stable target detec-
tion method, which is not only suitable for remote sensing
HSIs, but also for land-based HSIs. In the three datasets
mentioned above, the SRA—CEM method has the best
detection performance. Although the advantages in the
first publicly available hyperspectral datasets were not ob-
vious, the SRA-CEM method demonstrated its excellent
target detection ability in both the second publicly avail-
able hyperspectral datasets and the actual hyperspectral
datasets.

The SRA-CEM method is basically unaffected by the
uncertainty of the target spectrum, and compared to other
supervised target detection algorithms, the detection re-
sults of the SRA-CEM method have strong stability.
In the experiment targeting, the first publicly available
hyperspectral data, various object detection algorithms
performed well due to the small intraclass spectral differ-
ences of target pixels and significant interclass differences
between the target and background. The second publicly
available hyperspectral data has strong uncertainty in the
target spectrum, resulting in poor stability of the detection
method based on the target spectrum, highlighting the
superiority of the method proposed in this article.

The SRA-CEM detection method still has significant lim-
itations and many urgent problems for target detection in
land-based HSIs. The overall target detection performance
of different algorithm types in hyperspectral remote sens-
ing images is better than that of land-based HSIs. Com-
pared to hyperspectral remote sensing images, land-based
HSIs can obtain more detailed spatial structure informa-
tion of targets. However, influenced by the imaging envi-
ronment and imaging conditions, land-based HSIs further
increase the differences between target pixels, which poses
greater challenges to target detection and recognition in
land-based HSIs. For the measured hyperspectral data,
the AUC value of the SRA-CEM detection method is
only 0.8855. This is because the details of the measured
dataset are more abundant, and the shaded parts are more
prominent. Due to the influence of target shadows, some
algorithms have a high false detection rate.

The proposed SRA-CEM is a method that balances com-
putational speed and accuracy. The computing time of
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Fig. 18.  Target detection results for the measured hyperspectral image.
TABLE IV
COMPUTING TIME (IN S) OF THE COMPARED METHODS
. Average calculation time (in s)
Hyperspectral image data
CEM OSP SMF TCIMF ACE S-ACE GLRT AMSD SRA—CEM

The first publicly 0.0630 02050  0.0850  0.1800  0.6750  0.8460  0.7130  0.9930 0.0950
available data

The second publicly 4 5160 01880  0.0660 0.1830 07550 09120 07230  0.9860 0.0770
available data

The self-test data 0.6180 0.5200 0.7574 1317.8 9.8310 13.0190 139770 14.0290 0.7480
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ROC curves for the detection results of the measured hyperspectral

different methods is presented in Table I'V. All the exper-
iments are carried out on an Inter (R) Xeon (R) E5-2630
CPU machine with 32 GB of RAM. All methods are
executed on MATLAB R2014a. From the table, it can
be seen that SRA—CEM has achieved excellent detection
performance at the cost of tolerable time. In contrast,
SRA-CEM consumes the same amount of time as CEM
and SMF methods, and does not achieve better perfor-
mance than CEM at the cost of time.

IV. CONCLUSION

This article proposes an algorithm SRA-CEM based on SRA
and proves its detection effectiveness and robustness through
experiments. The important premise of SRA-CEM is to accu-
rately obtain the spatial location information of the target. In al-
gorithm design, the background spectrum replaces the complex
and variable target spectrum to improve detection performance.
Although the experiment has confirmed that the SRA-CEM
target detection algorithm has strong robustness for different
types of HSIs, there are still some aspects that can be further
studied. One is the role of data dimensionality reduction methods
in hyperspectral target detection tasks. This article verifies that
the SRA—CEM algorithm uses hyperspectral raw data and does
not perform dimensionality reduction preprocessing on the data,
which may be one of the reasons for the low detection accu-
racy. Second, the SRA—CEM method proposed in this article
completes target location by artificial selection or spatial target
detection model, but it has certain limitations for the shape
features that are not obvious and camouflage targets. Therefore,
it is crucial to quickly and accurately obtain the location of
the target through various prior information. In addition, the
SRA-CEM method generally requires the target in the subregion
to occupy the majority of pixels. It is not suitable for targets with
hollow structures. SRA-CEM method introduces 2-D spatial
positioning methods into hyperspectral object detection algo-
rithms. Compared to traditional object detection methods, the
proposed SRA—CEM has strong robustness and has achieved
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excellent results in target detection tasks for different types of
HSIs, providing a new approach for future article on HSI object
detection algorithms.
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