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Probabilistic Evaluation of Drought Propagation
Using Satellite Data and Deep Learning Model: From

Precipitation to Soil Moisture and Groundwater
Jae Young Seo and Sang-II Lee

Abstract— The frequency of drought events has increased with
climate change, making it vital to monitor and predict the response
to drought. In particular, the relationship among meteorological,
agricultural, and groundwater droughts needs to be characterized
under different drought conditions. In this study, a probabilistic
framework was developed for analyzing the spatio-temporal prop-
agation of droughts and applied to South Korea. Three drought
indices were calculated using satellite data and a deep learning
model to determine the spatial and temporal extents of drought.
The average propagation times were calculated. The time from me-
teorological to agricultural drought (MD-to-AD) was 2.83 months,
and that from meteorological to groundwater drought (MD-to-GD)
was 4.34 months. Next, the joint distribution among three drought
types based on the best-fit copula functions was constructed. The
conditional probabilities of drought occurrence were calculated
on temporal and spatial scales. For instance, the probabilities of
MD-to-GD propagation under light, moderate, severe, and extreme
meteorological drought conditions were 38%, 43%, 48%, and 53%,
respectively. The propagated drought occurrence probability was
confirmed to be the highest under extreme antecedent drought
conditions. The results of this study provide insight into the spatio-
temporal drought propagation process from a probabilistic view-
point. The use of satellite data and a deep learning model is expected
to increase the efficiency of drought management practices such as
vulnerability assessment and early warning system development.

Index Terms—Deep learning, groundwater drought, probability,
propagation, satellite.

I. INTRODUCTION

DROUGHT is often caused by meteorological conditions
changes, such as a deficiency of precipitation or high

temperature-related evaporation [1], [2], which results in water
cycle imbalance and repeated water shortages. It significantly
affects various domains, such as water resources, the environ-
ment, agriculture, and ecology [3]. On a broad and frequent
scale, due to accelerating climate change, drought can lead to
serious disasters [4].

A prolonged lack of precipitation and high temperatures can
cause meteorological drought, which may lead to agricultural
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drought because low soil moisture affects vegetation growth [5].
Subsequently, a reduction in the available amount of water in
streams and soils may result in groundwater drought [6].

Drought propagation is the mechanism whereby droughts oc-
cur successively along the hydrological cycle. It refers primarily
to the temporal movement and spatial expansion of droughts
from meteorological to agricultural and groundwater conditions
[5], [7], [8], [9]. Monitoring and predicting the propagation
of groundwater droughts have become increasingly important
because of the increasing demand for groundwater. Generally,
groundwater drought occurs as a consequence of precipitation
deficits (meteorological drought) and soil moisture dryness
(agricultural drought) along the vertical profile of terrestrial wa-
ter storage. However, groundwater drought has not attracted ex-
tensive research attention, because of its complex characteristics.
Moreover, the data available for previous studies on groundwater
drought were insufficient, and the modeling covered only small
areas [6], [10], [11]. Bloomfield and Marchant [12] proposed a
standardized groundwater index (SGI) that allows groundwater
drought to be easily monitored, facilitating relevant studies.
Accordingly, the analysis and evaluation of groundwater drought
became feasible considering the temporal and spatial correspon-
dences according to various types of drought occurrences.

Drought analysis mainly involves the use of calculated in-
dex data from point-based meteohydrological observations to
analyze drought conditions, duration, severity, and frequency.
However, it is difficult to use such point-based monitoring data
in spatio-temporal drought analysis, and there are uncertainties
when the spatial drought distribution is obtained using inter-
polation [13], [14]. Drought status from various perspectives
(meteorological, agricultural, and groundwater droughts) can
be determined using satellite data with space-time continuity,
even at locations without observation points [13], [14]. In recent
years, drought analyses based on satellite data have been con-
ducted. For example, researchers have analyzed meteorological
drought using precipitation observation satellites [e.g., tropical
rainfall measuring mission (TRMM) and global precipitation
measurement (GPM)] [15], [16], [17]; agricultural drought using
soil moisture, evapotranspiration, and vegetation indices from
Landsat, the moderate resolution imaging spectrometer, the
advanced microwave scanning radiometer 2, and soil moisture
active passive [18], [19], [20]; and groundwater drought using
terrestrial water storage changes measured by gravity recovery
and climate experiment (GRACE) satellites [21], [22], [23].
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Several studies have focused on developing methodologies
for more accurately monitoring and predicting spatio-temporal
changes in groundwater storage using geostatistical or ma-
chine/deep learning models to overcome the relatively low res-
olution of GRACE [24], [25], [26], [27], [28]. Seo and Lee [25]
used an artificial neural network model to analyze changes in
groundwater storage. They estimated the gridded SGI in South
Korea from 2003 to 2015 based on groundwater storage estima-
tions and compared SGI with meteorological drought indices.
In another study, Seo and Lee [26] developed and validated
satellite-based deep learning models for predicting groundwater
storage changes by considering meteorological, vegetation, and
hydrological factors in South Korea from 2003 to 2019.

Most previous studies on the relationships between different
types of drought indices have focused on correlation coefficients,
autocorrelation coefficients, and cross wavelets [29], [30], [31],
[32], [33]. Barker et al. [30] investigated relationship between
meteorological and hydrological droughts at various temporal
scales using correlation analysis and confirmed a correlation
between droughts. Bhardwaj et al. [32] estimated the propaga-
tion time, development, and recovery rate from meteorological
to hydrological droughts in India and found that seasonality
and baseflow indices significantly affected drought propagation.
Li et al. [33] constructed a framework of droughts (meteorolog-
ical and hydrological) propagation time analysis based on cross
wavelet and random forest algorithm and found that the seasonal
dynamics of drought propagation were considerably affected by
human activity.

However, the analysis of the correlation between drought
indices could not clearly explain their relationship with drought
propagation. Thus, it is essential to develop a procedure for the
probabilistic analysis of drought propagation. Fang et al. [34]
analyzed vegetation vulnerability under meteorological drought
conditions using probabilistic framework. Shin et al. [35] con-
structed a forecasting framework of hydrological drought based
on Bayesian networks that consider drought propagation rela-
tionships. Wang et al. [36] examined three types of probabilistic
propagation relationship between meteorological and hydrolog-
ical droughts. Although these methods provide insights into
drought propagation, studies on the probabilistic propagation
analysis of spatio-temporal groundwater droughts under various
preceding conditions are lacking.

In this study, meteorological, agricultural, and groundwa-
ter droughts were characterized using a probabilistic approach
based on satellite data and a deep learning model to analyze
drought propagation relationships. The specific objectives were
to 1) estimate groundwater storage changes using a satellite-
based deep learning model, 2) analyze three drought types using
multisatellite data, 3) estimate the propagation time between
droughts, and 4) determine drought propagation probabilities
using the best-fit copula function.

II. STUDY AREA AND DATA

A. Study Area

Of the 117 mid-watersheds in South Korea, 110 watersheds
were investigated in this study [Fig. 1(a)]. Three watersheds near

Fig. 1. Study area. (a) Mid-watersheds and major rivers. (b) Groundwater
observation wells and DEM.

the border of North Korea and four watersheds on Jeju Island
were excluded [grayed in Fig. 1(a)]. South Korea experiences
substantial seasonal temperature and precipitation variations
owing to its monsoon climate characteristics (cold and dry
climate in December–February and hot and wet climate in June–
August), with approximately 70% of the annual precipitation
occurring during summer. The annual average precipitation and
temperature from 1912 to 2017 were 1237.4 mm and 13.2 °C,
respectively [37]. In the past 30 years, the temperature and
precipitation have increased by approximately 1.4 °C and 124
mm, respectively, compared with those in the early 20th century
(1912–1941), and the variability during this period was high
[37].

More than 65% of the land area consists of forests and
mountainous terrain, particularly in the eastern and southern
areas [corresponding to high values in the digital elevation
model (DEM); Fig. 1(b)]. The persistence of long-term drought
increases the risk of forest fires due to high water stress and
dryness of the air and forests.

B. Data

1) Remote Sensing Data: Table I presents the remote sensing
data used to estimate groundwater storage changes and calculate
various drought indices. The 3B43V7 monthly precipitation data
from TRMM jointly developed by the National Aeronautics
and Space Administration (NASA) and the Japan Aerospace
Exploration Agency (JAXA) were used. The data were acquired
from the Goddard Earth Sciences Data and Information Service
Center (GES DISC). TRMM 3B43 data were combined with
observations from the Global Precipitation Climatology Center
(GPCC), 3B42 data (3-h precipitation data of TRMM), and
gridded data produced by the Climate Prediction Center of the
National Oceanic and Atmospheric Administration (NOAA).
The 3B43 data had a spatial resolution of 0.25° for the regions
from 50°S to 50°N and 180°W to 180°E.

Landsat 5 and Landsat 8 satellite data with a 30 m spatial
resolution were used to monitor various inland covers [modified
normalized difference water index (MNDWI) and normalized
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TABLE I
DETAILS OF THE REMOTE SENSING DATASET USED IN THIS STUDY

difference vegetation index (NDVI)]. A total of 2652 images
including South Korea were obtained from the USGS Earth
Explorer [38] from January 2003 to February 2013 (Landsat 5)
and from March 2013 to December 2019 (Landsat 8). Radiomet-
ric and atmospheric corrections were calibrated using the Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm. For missing data, images were averaged
to produce monthly MNDWI and NDVI values, and the images
were resampled using the nearest-neighbor average.

Global Land Data Assimilation System (GLDAS) provides
meteorological and hydrological data on the land surface. Owing
to the high accuracy of the land surface model, these data
are widely used for analyses of climate change, the water
cycle, and weather forecasting. In this study, the Noah prod-
uct (GLDAS_Noah025_M) from GLDAS 2.1 version with a
monthly spatial resolution of 0.25° was used, which included
the average temperature and four soil moisture layers (0–10,
10–40, 40–100, and 100–200 cm).

Terrestrial water storage anomaly (TWSA) was estimated
using GRACE and GRACE-follow-on (GRACE-FO) of the
Center for Space Research (CSR) RL06 mascon data with a
0.25° spatial resolution. Compared with the previous GRACE
spherical harmonic-based processing method, the mass concen-
tration (mascon) processing method was corrected to account for
the Earth’s ellipsoidal shape. This better preserves the improved
signals and low leakage errors compared with other products
[39], [40]. Because data were missing between GRACE and
GRACE-FO for 14 months, temporal gaps were filled using
cubic spline interpolation [26].

2) Groundwater Observation Data: The basic data observed
in the National Groundwater Observation Monitoring Network
(NGMN) in South Korea include the monthly groundwater
level, groundwater temperature, and electrical conductivity of
the groundwater. Fig. 1(b) represents the groundwater obser-
vation wells used in this study. A total of 166 stations with
observational data (considering the study period: January 2003
to December 2019) were selected among the total groundwater

stations. The groundwater observation wells of the NGMN
were subjected to alluvial and bedrock aquifer measurements
according to the depth of the aquifer, and the bedrock and alluvial
layers were simultaneously observed at 95 of the 166 selected
stations. Changes in the water cycle and groundwater storage
were generally more strongly correlated in the alluvial layer than
in the deep bedrock layer. Therefore, alluvial layer data were
used for the observation stations with both bedrock and alluvial
aquifer observation wells. For each watershed, the groundwater
level data obtained were transformed into groundwater storage
changes via multiplication by the specific yield values. Specific
yield was estimated using a detailed soil texture classification
map from the National Institute of Agricultural Sciences and the
Korean Rural Development Administration (RDA), along with
range values based on the soil texture, as reported by Johnson
[41] and Loheide II et al. [42].

III. METHODOLOGY

A. Satellite-Based Deep Learning for Groundwater Storage
Changes

The procedure of the groundwater prediction framework
using the satellite-based deep learning model is illustrated in
Fig. 2 (Step 1). The deep learning model used for this analysis
was a convolutional neural network–long short-term memory
(CNN–LSTM) model based on multisatellite data from 2003 to
2019, which was developed by Seo and Lee [26] for South Korea.
The satellite-based predictor variables included the precipita-
tion, temperature, NDVI, MNDWI, soil moisture content, and
TWSA, and the response variable was the groundwater storage
changes (GWSC). The prediction model was trained using the
Adam optimizer with a rectified linear unit (ReLU) activation
function to minimize the loss function (mean squared error). The
hyper-parameters (lag time, number of epochs, nodes, filters,
hidden layers, and batch size) were tuned to achieve optimal
performance using Bayesian optimization.

B. Drought Index Calculation

1) Meteorological Drought Index: The standardized precip-
itation index (SPI) can express meteorological drought condi-
tions using the probability distribution of precipitation [43].
Cumulative precipitation data for various time scales (1–24
months) were fitted to the gamma distribution (1), after which
they were converted into a normal distribution.

f (x;α, β) =
1

βα ∫∞0 xα−1e−xdx
xα−1e−x/β . (1)

In (1), x represents the accumulated precipitation (x > 0), α
is a shape parameter, and β is a scale parameter. The mean of
the normalized probability distribution model was 0, allowing
comparisons of the drought time series and severity among the
regions. Table II presents the classification of drought conditions
based on the SPI. The SPI for each mid-watershed was calculated
by converting 0.25° precipitation data from the TRMM satellite
according to the weight of the area in this study. Because the fre-
quency of drought events decreases as the time scale of drought
increases, the analysis of drought events with longer time scales



SEO AND LEE: PROBABILISTIC EVALUATION OF DROUGHT PROPAGATION USING SATELLITE DATA AND DEEP LEARNING MODEL 6051

Fig. 2. Proposed framework in this study.

TABLE II
DROUGHT CONDITIONS FOR THE SPI, SSMI, AND SGI

may not provide significant statistical results. Therefore, this
study analyzed meteorological drought on a one-month time
scale to identify the number of propagated drought events.

2) Agricultural Drought Index: The persistence of meteo-
rological drought results in agriculture-related soil moisture
deficiencies and increases moisture stress during vegetation
growth. The standardized soil moisture index (SSMI) is an
agricultural drought indicator that has been validated in previous
studies [44], [45] and can express soil moisture deficit condition.
We integrated four layers of soil moisture data from GLDAS
Noah_025_M at 0.25° and used them to calculate the SSMI.
The mean and standard deviation of the multiyear soil moisture
values for each grid in each calendar month were obtained by
computing the grid-by-grid term series. The SSMI was calcu-
lated as follows:

SSMIi,j =
SMi,j − μi

σi
(2)

where SMi,j represents the soil moisture for month i and year
j, and μi and σi is the mean and standard deviation of the SMi

across all years, respectively. The gridded SSMI was converted
into the SSMI for each mid-watershed. The SSMI drought
conditions were identical to those for the SPI (Table II).

3) Groundwater Drought Index: Bloomfield and Marchant
[12] proposed an SGI for the characterization of groundwater
drought and analyzed groundwater drought by comparing the
SGI and SPI of 14 groundwater observation stations using major
aquifers in the United Kingdom. In contrast to precipitation
data, groundwater data vary continuously and do not require
accumulation during a specific period. As the monthly ground-
water level or storage changes exhibit various data ranges and
distributions for each station, it is difficult to fit the monthly
probability distribution using a standard distribution and pa-
rameter estimation. In this study, the probability distribution of
monthly GWSC predicted from the satellite-based deep learning
model was estimated using kernel density estimation (KDE),
which is a nonparametric estimation method. When xi is GWSC
predictions, the probability density function for random variable
X can be obtained using the KDE as follows [46]:

f̂h (X) =
1

nh

n∑
i = 1

K

(
X − xi

h

)
(3)

where n is the number of data points, K is the kernel function,
and h is the bandwidth, which is a smoothing parameter. Com-
monly used kernel functions include the normal, box, triangle,
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TABLE III
COPULA FUNCTIONS USED IN THIS STUDY

Fig. 3. Schematic of drought propagation.

and Epanechnikov functions. In this study, a normal function
was used and the bandwidth was set as 0.8.

The cumulative distribution function (CDF) of the kernel
distribution can be projected onto the inverse of the normal
distribution to calculate the SGI. Table II presents the drought
condition classifications based on the SGI.

C. Drought Identification and Propagation

The propagation time was estimated by comparing the peak
differences among meteorological, agricultural, and groundwa-
ter droughts using the SPI, SSMI, and SGI (Fig. 3). It is nec-
essary to analyze the linkage between droughts considering the

temporal order of meteorological, agricultural, and groundwater
droughts before calculating the propagation time. In this study,
we used the temporal overlapping approach proposed by Liu
et al. [9].

First, the threshold was set as−0.5 (light condition of drought;
Table II) to capture the onset of the drought event. It was
considered that a drought started if the index value was < −0.5
for more than consecutive two months and that the drought ended
if the index value was > 0 for two or more consecutive months.

After the onset and end times of the three types of drought
events were identified, the drought onset/end times and overlap
time were used to investigate the presence of propagation links
between meteorological drought to agricultural drought (MD-
to-AD), meteorological drought to groundwater drought (MD-
to-GD), and agricultural drought to groundwater drought (AD-
to-GD). If the temporal overlap of MD-to-AD, MD-to-GD, and
AD-to-GD exceeds 0, droughts were considered to be linked [9],
as defined by the following criteria:{

tMDO ≤ tADO and
D (tMDO, tMDE) ∩D (tADO, tADE) > 0

(4)

{
tMDO ≤ tGDO and

D (tMDO, tMDE) ∩D (tGDO, tGDE) > 0
(5)

{
tADO ≤ tGDO and

D (tADO, tADE) ∩D (tGDO, tGDE) > 0
(6)

where D(tMDO, tMDE), D(tADO, tADE), and D(tGDO,
tGDE) are the durations between the onset time (tMDO) and
end time (tMDE) of meteorological drought events, the onset
time (tADO) and end time (tADE) of agricultural drought events,
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Fig. 4. (a) Time series of GWSC: CNN-LSTM versus in situ. The vertical
dotted line divides the periods for training and test. (b) Performance of the
CNN-LSTM model for the test period.

and the onset time (tGDO) and end time (tGDE) of groundwater
drought events, respectively.

D. Conditional Probability Based on Copula Function

The copula function was established by Sklar [47], and
Archimedean and Elliptical families in copula were developed
by Joe [48] and Nelsen [49]. Copula functions can couple more
than two variables to identify the dependencies between them,
particularly the relationship with the maximum or minimum
point of the joint distribution [50], [51]. They can be used
to analyze the dependencies between variables regardless of
limitations on the marginal distributions.

In this study, the copula function was used to analyze the
occurrence probability of agricultural and groundwater droughts
under meteorological drought conditions and that of ground-
water drought under agricultural drought conditions (Step 3 in
Fig. 2).

According to Sklar [47], the joint distribution of antecedent
and propagated droughts can be expressed as follows:

FX,Y (x, y) = P (X < x, Y < y) = C (FX (x) , FY (y)) (7)

where FX,Y (x, y) is the joint distributions, C() is a copula
function, and FX(x) and FY (y) are the CDFs of the marginal
distributions. In the case of the propagation process from me-
teorological drought to agricultural or groundwater drought, X
is the SPI and Y is the SSMI or SGI. For propagation from
agricultural to groundwater drought, X is the SSMI and Y is
the SGI. The marginal distributions of the SPI, SSMI, and SGI
were set as the normal distribution because the drought indices
had to follow the normal distribution in the calculation process.

Nelsen [49] proposed five copulas (Gumbel, Clayton, Frank,
Gaussian, and Student’s t) for probability distributions from

Fig. 5. Time series and color maps of the monthly SPI, SSMI, and SGI.

the Archimedean and Elliptical families, as shown in Table III.
In this study, the parameter (θ) of each copula function were
calculated using the maximum likelihood estimation. The copula
that best captured the relationship between the drought indices
was determined using the Akaike information criterion (AIC)
and Bayesian information criterion (BIC).

The framework produces a series of occurrence probabili-
ties for drought propagation from diverse meteorological and
agricultural drought conditions. Higher occurrence probabilities
under drought conditions imply higher degrees of soil moisture
and groundwater drought vulnerability.

The conditional probability of droughts under preceding
drought conditions can be derived using (8) and (9), given the
joint probability distribution of the SPI, SSMI, and SGI [i.e.,
(7)] [34].

P (Y ≤ y|X ≤ x) =
P (X ≤ x, Y ≤ y)

P (X ≤ x)
=

FX,Y (x, y)

FX (x)

(8)

P (Y ≤ y|x1 < X ≤ x2) =
P (x1 < X ≤ x2, Y ≤ y)

P (x1 < X ≤ x2)

=
FX,Y (x2, y)− FX,Y (x1, y)

FX (x2)− FX (x1)
(9)
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Fig. 6. Spatial distributions of the SPI, SSMI, and SGI from September 2008 to February 2009.

Fig. 7. Average propagation time and the number of temporally overlapped drought events in each watershed for MD-to-AD, MD-to-GD, and AD-to-GD.

The probabilities of drought propagation from a meteorologi-
cal drought condition (light, moderate, severe, or extreme) to an
agricultural or groundwater drought state (SSMI, SGI < −0.5)
and from an agricultural drought condition to a groundwater
drought state (SGI < −0.5) can be calculated using (8) and (9).

IV. RESULTS AND DISCUSSIONS

A. Spatio-Temporal Distribution of Drought Indices

The spatio-temporal characteristics of groundwater drought
were analyzed using the GWSC predictions based on data from

multiple satellites and a deep learning model (CNN-LSTM)
through hyper-parameter optimization. Fig. 4(a) shows a com-
parison of the in situ and deep learning model time series
[training period (60%): January 2003 to February 2013; test
period (40%): March 2013 to December 2019] results. To assess
the accuracy of the model, the test results were examined in terms
of the correlation coefficient (r) and root mean square error
(RMSE) between the in situ and predicted GWSCs. Fig. 4(b)
shows scatterplots showing the correlation. The r and RMSE
of the CNN-LSTM model-predicted GWSC and in situ GWSC
were 0.72 and 42.92 mm/month, respectively. The performance
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Fig. 8. Determination of propagation times from temporally overlapped drought events in (a) Hyeongsan River Watershed (2008) and (b) Han River-Goyang
watershed (2014).

of the prediction model exhibited a significant positive correla-
tion and small error.

Fig. 5 shows the time series and color maps of the SPI (from
the TRMM precipitation data), SSMI (from the GLDAS soil
moisture data), and SGI (from the GWSC results based on
multisatellite data and the deep learning model) across South
Korea during the study period. The black line corresponds to
the time series of the SPI, SSMI, and SGI, and the yellow to
red bars indicate the drought conditions. The results revealed
that meteorological, agricultural, and groundwater droughts
occurred frequently during the study period. Droughts existed in
the study area in 2008, 2012, 2014, 2015, and 2017 with severe
or extreme conditions.

As previously reported [12], [23], [30], the SPI, SSMI, and
SGI are closely related but have differences. Severe or extreme
meteorological and groundwater droughts occurred in 2008,
whereas agricultural droughts were moderate. In addition, ex-
treme meteorological and agricultural droughts occurred from
2017 to 2019, whereas groundwater droughts during this period
were light or relatively insignificant. On the other hand, only
groundwater drought showed a significantly more severe condi-
tion contrary to SPI or SSMI in 2004 and 2011. The occurrence
of groundwater drought in the absence of meteorological or
agricultural drought may be caused by the long propagation
time due to the shortage of cumulative precipitation or the
soil moisture depletion. Otherwise, groundwater drought could
be attributable to anthropogenic factors such as groundwater
extraction.

Fig. 6 shows the spatial distributions of the SPI, SSMI, and
SGI values for the period from September 2008 to February
2009, where the drought periods (SPI, SSMI, SGI ≤ −0.5) are

exhibited varying in colors from yellow to dark red, in order of
becoming worse drought condition. The southern region expe-
rienced severe or extreme meteorological drought in September
2008, and some severe droughts continued in November and
December before recovery from the droughts in February 2009.
Agricultural drought expanded throughout the central part of the
region following the onset of severe or extreme drought condi-
tions in the southern part in October 2008. In most areas, drought
peaked in January 2009, and progressive recovery occurred in
February. Groundwater droughts, which began in September
2008, were most severe in October and exhibited complete
recovery in February, similar to meteorological droughts.

The influence of agricultural droughts continued even after
recovery from meteorological drought, whereas groundwater
droughts tended to terminate immediately after recovery from
meteorological drought. This may have been due to a reduction
in the amount of groundwater pumping and the recovery of
groundwater storage with the improvement of meteorological
drought conditions.

B. Analysis of Propagation Time Between Drought Events

The overlapped drought events among meteorological, agri-
cultural, and groundwater droughts were identified according to
their temporal overlap using (4)–(6). The propagation time was
calculated as the peak time difference between temporally over-
lapped drought events. The propagation times for MD-to-AD,
MD-to-GD, and AD-to-GD were estimated for the temporally
overlapped drought events.

The propagation times and the number of overlapped drought
events are shown in Fig. 7. The propagation time in the study



6056 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

area ranged from 1 to 8 months, and there was a lag time between
meteorological, agricultural, and groundwater droughts. The
average propagation time and the number of overlapped drought
events for MD-to-AD, MD-to-GD, and AD-to-GD were 2.83,
4.34, and 4.54 months and 11.47, 11.86, and 12.32, respectively.

For most watersheds, the time required for MD-to-GD prop-
agation was longer than that for MD-to-AD propagation. The
longest propagation time (MD-to-GD) was observed in the
southern and northwestern areas, and the shortest propagation
time (MD-to-AD) was observed in the northern and south-
central areas, which have mountainous terrain and near-natural
conditions. The average propagation time of MD-to-AD was
shorter than the average propagation time of MD-to-GD. This is
attributed to be due to the hydrological processes in the vertical
profile of terrestrial water storage. The number of MD-to-GD
overlapped events exceeded the number of MD-to-AD over-
lapped events. This implies that groundwater droughts caused
by human activity not only nature processes tend to affect me-
teorological conditions more rapidly than agricultural droughts,
as mentioned in the previous section.

The AD-to-GD average propagation time was longer than the
MD-to-AD and MD-to-GD average propagation times. This is
attributed to the fact that the MD-to-GD and AD-to-GD spatial
distributions were relatively similar, whereas the AD-to-GD
propagation time was longer in some central watersheds. In
addition, the difference in peak time was larger than those for
MD-to-AD and MD-to-GD because of the longer duration of
agricultural drought compared with groundwater drought. The
large number of AD-to-GD overlapped events indicated that
agricultural and groundwater droughts were closely related.

Fig. 8 shows time series of drought indices for two mid-
watersheds having temporally overlapped drought events. For
the 2008 drought event [Fig. 8(a)] of the Hyeongsan River
Watershed, the peaks of SSMI and SGI occurred 7 months after
the peak of SPI at the same time. For the 2014 drought events
of the Han River-Goyang watershed [Fig. 8(b)], the peak of the
meteorological drought was observed 3 months before the peak
of the agricultural drought and 8 months before the peak of the
groundwater drought. In addition, there is a propagation time
of 5 months between SSMI and SGI. As shown in Figs. 6 and
8(a), the agricultural drought in the Hyungsan River Watershed
continued even after the groundwater drought ended. In the
2008 drought event, the duration of agricultural drought was
significantly longer.

C. Best-Fit Copula Function for Joint Distribution of Drought
Indices

The copula function was used to probabilistically quantify
the monthly propagation of drought. The best-fit copulas were
selected for each watershed according to the AIC and BIC
goodness-of-fit test results (Fig. 9).

Fig. 9(a) shows the number of selected copulas for each
watershed for the five copula functions. The average AIC and
BIC values for the 110 watersheds are shown in Fig. 9(b) and (c),
respectively. The Frank copula function exhibited the smallest
AIC and BIC values for describing the joint distribution between

Fig. 9. Comparison of five copulas for different drought propagation types.
(a) Histogram of the selected copula functions. Boxplots of (b) AIC and (c) BIC
values.

the SPI and SSMI (i.e., MD-to-AD). The Gaussian function
showed the best-fit between SPI and SGI (MD-to-GD), and
the Clayton function showed the best-fit between SSMI and
SGI (AD-to-GD). Table IV presents the statistics of the best-fit
copulas for the different drought propagation types.

D. Conditional Probability of Drought Propagation

The probabilities of drought propagation were calculated us-
ing the joint distribution with the best-fit copula function [(8) and
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TABLE IV
MEAN ± STANDARD DEVIATION OF THE AIC AND BIC VALUES FOR THE

BEST-FIT COPULAS IN 110 WATERSHEDS

(9)] under the four drought conditions (light, moderate, severe,
and extreme), as shown in Table II.

Fig. 10 shows the CDFs of the drought indices under different
preceding conditions. The curves indicate that the probability
of drought propagation was the highest when the preceding
conditions were extreme (SPI, SSMI < −2.0). The SSMI con-
ditions hardly affected SGI, compared with SPI-to-SSMI and
SPI-to-SGI [Fig. 10(c)].

Table V presents the average probabilities of MD-to-AD, MD-
to-GD, and AD-to-GD propagation under various preceding
drought conditions. The probability of MD-to-AD propagation
ranged from 3% to 66% depending on the SPI value. MD-to-
GD propagation had a 6%–53% probability. Under agricultural
drought conditions, the probability of groundwater drought oc-
currence was 6%–42%, which was lower than those of the other
types of drought propagation.

Although the number of AD-to-GD overlapped drought
events was large, as shown in Fig. 7, the effects of the pre-
ceding conditions on the groundwater occurrence probability
were less significant than those for MD-to-AD and MD-to-GD.
This is considered to be because there are not often groundwater
drought events that are worse than the severe condition in South
Korea. In addition, drought analysis generally requires more
than 30 years of data, and there was a lack of data for drought
analysis from the study period (2003–2019). If continuous data
are available, long-term probabilistic drought frequency analysis
can be performed using the proposed methodology.

Figs. 11–13 show drought occurrence probabilities given
various preceding conditions on a spatial scale. Such informa-
tion is useful for identifying the vulnerability and risk of each
watershed. The probability of propagated drought occurrence is
anticipated to increase as preceding drought conditions deterio-
rate.

The likelihood of agricultural drought was high in the southern
part of the country, where agriculture was the dominant land
use type (Fig. 11). The groundwater drought vulnerability under
meteorological drought conditions was high in the western part
and in a specific eastern watershed (Fig. 12).

Generally, groundwater droughts occur less frequently than
agricultural droughts as the meteorological conditions improve,
because of reduced pumping and the consequent recovery of
groundwater levels. Regarding the AD-to-GD propagation with
respect to the preceding drought conditions, the probability of
groundwater drought occurrence was lower than that of MD-to-
GD propagation throughout the region; however, the western
and southern edges were prone to groundwater drought. In
particular, Seoul (the capital of South Korea where groundwater

Fig. 10. Conditional CDF of drought indices under different preceding drought
conditions. (a) MD-to-AD, (b) MD-to-GD, (c) AD-to-GD.

use accounts for 6.2% of the national total) exhibited a high risk
of agricultural droughts propagating into groundwater droughts
(Fig. 13).

Overall, the probability of agricultural and groundwater
droughts increases as the preceding drought conditions get
worsen. Quantification of conditional probabilities on a spatio-
temporal scale, which was achieved by multisatellite data and
a deep learning model in this study, can be useful for assessing
vulnerability to drought and for efficient drought management.

E. Discussions

This study analyzed the propagation process from meteo-
rological to agricultural and groundwater droughts, focusing
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TABLE V
DROUGHT PROPAGATION PROBABILITY FOR VARIOUS PRECEDING DROUGHT CONDITIONS

Fig. 11. Spatial distributions of the probability of agricultural drought under
different meteorological (SPI) conditions.

on the identification of drought type, propagation time, and
conditional probability of drought occurrence. The conditional
probability was calculated using the copula function, which
has the advantage of describing complex dependencies between
variables relatively easily.

In other works studied the drought propagation in South
Korea, the analysis was performed using traditional drought
indices or copula functions: They include the bivariate frequency
analysis using SPI and copula functions [52], the correlation
analysis between SPI, Standardized Precipitation Evapotranspi-
ration Index (SPEI), and Standardized Runoff Index (SRI) to
estimate the future probability of drought propagation using
climate change scenarios [53], the prediction of Palmer Hydro-
logical Drought Index (PHDI) using SPI and Bayesian network
[35], and the forecasting of SRI based on machine learning
models [54]. These studies focused on drought analysis at point
scales (weather stations) or in parts of watersheds and did not
consider the groundwater drought. The novelty of this study

Fig. 12. Spatial distributions of the probability of groundwater drought under
different meteorological (SPI) conditions.

is to analyze the spatio-temporal groundwater drought across
South Korea using satellite data and a deep learning model, and
to estimate the likelihood of propagation from meteorological
or agricultural to groundwater droughts using a probabilistic
approach.

Although our approach can predict monthly groundwater stor-
age changes and monitor spatio-temporal groundwater droughts,
there is a need to improve the accuracy of the results due to the
low spatial resolution of satellite data and cloud cover problems
(especially Landsat). While the study covers a relatively large
area including 110 mid-watersheds for a long period of time
(from 2003 to 2019), the resolution of the GRACE and GRACE-
FO data only allows the estimation of groundwater storage
changes with a spatial resolution of 0.25°. In future studies, the
use of satellite data such as soil moisture or temperature, which
have a higher spatial resolution and cover a longer period, as
suggested in [55] and [56], may improve the accuracy of the
analysis.
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Fig. 13. Spatial distributions of the probability of groundwater drought under
different agricultural (SSMI) conditions.

V. CONCLUSION

Meteorological drought can be understood as scarcity of
precipitation; however, agricultural and groundwater droughts
are complex phenomena caused by various natural and anthro-
pogenic factors. For determining the relationships among these
drought types, conventional temporal correlation analyses face
limitations.

To identify meteorological, agricultural, and groundwater
droughts, drought indices (SPI, SSMI, and SGI) were calcu-
lated for 110 watersheds in South Korea using multiple satellite
datasets and a deep learning model. The gridded precipitation
data from the TRMM satellite were used for the SPI calcula-
tion, whereas the SSMI was calculated using soil moisture data
from the GLDAS output. The SGI was calculated using a deep
learning model (CNN-LSTM) with meteorological (precipita-
tion and temperature), agricultural (MNDWI and NDVI), and
hydrological (soil moisture content and TWSA) data obtained
from multiple satellites (TRMM, GLDAS, Landsat, GRACE,
and GRACE-FO).

The average propagation times for MD-to-AD, MD-to-GD,
and AD-to-GD were 2.83, 4.34, and 4.54 months, respectively.
The occurrence probabilities for the different types of droughts
under various preceding drought conditions were calculated; for
instance, the occurrence probabilities of agricultural drought
under different preceding SPI conditions (MD-to-AD) were
44%, 53%, 60%, and 66%, respectively. For MD-to-GD, the
conditional probabilities were reduced to 38%, 43%, 48%,
and 53%, respectively. Meanwhile, AD-to-GD propagation had
lower probabilities of 36%, 39%, 40%, and 42%, respectively. In
addition, the propagation times and probabilities for MD-to-AD,
MD-to-GD, and AD-to-GD exhibited various change patterns in

different watersheds, indicating that the information provided by
the tool presented herein can be useful for drought-related tasks
such as vulnerability or risk assessment for drought manage-
ment.

In this study, we performed the probabilistic evaluation of
drought propagation. Meteorological, agricultural, and ground-
water droughts were identified via the corresponding indices
calculated using multisatellite data and a deep learning model.
The copula function was adopted to calculate the conditional
probabilities of drought propagation from one state to another.
The proposed probabilistic method along with the deep learning
model using satellite data is useful for responding to large-scale
droughts. Further research is needed to address the climate
change effects and investigate the role of human activities on
drought propagation.
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