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for Object Detection in Remote Sensing Images
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and Hao Feng

Abstract—In remote sensing image (RSI) object detection, the
oriented bounding box (OBB) can accurately locate objects with ar-
bitrary orientation and obtain orientation information. The detec-
tion based on OBB is still a challenging task. In RSI, the distribution
of objects is extremely uneven, which causes aggregation to occur.
Some researchers believe that the characteristic of dense distribu-
tion is a reason for the difficulty of object detection. However, there
are no in-depth experimental studies on this. This paper proposes
an OBB-based dense object determination method, which deter-
mines the dense objects in datasets by two conditions consisting of
interclass distance, intraclass distance, minimum distance between
objects, and minimum edge length of objects. The experimental
results of dense and non-dense object detection concludes that the
characteristics of dense distribution in RSI do not easily cause
the objects to be more difficult to detect. To make full use of the
object features, we propose a second-stage detection head named
RoIF-Net, in which we extract region of interest (RoI) from the
input image and fuse it with the RoI extracted from feature maps
to add detail features, and construct a feature induction module
based on self-attention mechanism to achieve position regression
and category classification. This structure can be used in any two-
stage network to enhance detection capabilities. Using our method
on three credible and challenging datasets, DOTA, DIOR-R, and
UCAS-AOD, we obtained 81.80%, 68.49%, and 90.25% mAP,
respectively, reaching SOTA based on OBB detection, proving the
effectiveness and advancement of our method.

Index Terms—Dense object, object detection, remote sensing
images (RSI), region of interest (RoI) fusion, self-attention.

I. INTRODUCTION

IN RECENT years, the acquisition cost of remote sensing
images (RSIs) has gradually decreased and the resolution

has become higher and higher. Its application potential in various
fields is gradually gaining attention and needs to be explored.
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Object detection in RSI can play an important role in many fields,
such as military reconnaissance, postdisaster reconstruction,
environmental protection, urban and rural planning, economic
evaluation, among others. Since RSI are characterized by com-
plex surface environments and large differences in object scales,
it is extremely challenging to perform object detection on them.

In the RSI object detection datasets, two forms are generally
used to label the objects. One is horizontal bounding box (HBB),
which is the smallest external horizontal rectangular box that
can contain the object [1], [2], [3], [4], and the other is oriented
bounding box (OBB), which is a rectangular box with corre-
sponding angle according to the rotation direction of the object
[3], [5], [6], [7]. In generic scenes on natural images, HBBs
are more commonly used. However, in RSI, the special bird’s-
eye view causes the objects in them to have arbitrary rotation
directions. In this case, using the HBB introduces unnecessary
background information and makes it difficult to obtain accurate
object pose, so the OBBs are usually used to annotate and detect
the objects in RSI. The visual annotations of HBBs and OBBs are
shown in Fig. 1. At present, there have been numerous related
research works on the oriented object detection in RSI based
on OBB [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18]. However, the complex background of RSI can cause more
difficult feature recognition and bring a considerable challenge
to the object detection on it, which is still a key problem that
needs to be solved for RSI-oriented object detection.

In addition, researchers have pointed out in some works
that objects are more difficult to detect when they are densely
arranged together [19], [20], [21], [22], [23], [24], [25], [26],
[27]. In natural image scenes, dense can lead to overlap between
objects, which results in the absence of object features, which
greatly affects the detection results. In contrast, overlap almost
rarely occurs due to the overhead view in RSI. No research work
has made careful experiments on whether closely spaced objects
in RSI are more difficult to detect. First, there is no clear and
reasonable determination of dense objects, and second, there is
no comparative analysis of the detection results of dense and
nondense objects. Therefore, we believe that whether dense
objects are more difficult to detect in remote sensing object
detection is an inconclusive issue.

In order to determine whether dense objects in RSI are more
difficult to detect for the network, we design the determination
conditions for dense objects based on understanding of dense
objects and implement the classification of objects in the datasets
into dense and nondense objects. Then we determine whether
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Fig. 1. (a) Objects annotated by OBB. (b) Objects annotated by HBB.

dense objects in RSI are more difficult to detect based on the
detection results for both dense and nondense objects. We design
a dense object determination method with two determination
conditions, which is based on OBB labeling. When any object
in the image is judged, if this object and any other object in
the image satisfy both conditions, both two objects are judged
as dense objects. One of the determination conditions is that
the ratio of the interclass distance to the intraclass distance of
the two objects is less than a specific threshold, and the other
determination condition is that the minimum distance between
the two objects is less than an expression related to the minimum
edge length of that object. After determining whether objects in
the datasets are dense objects using the determination method,
we detect them. By analyzing the detection results, we found
that dense objects have a higher recall compared to nondense
objects. It is concluded that dense is not a fundamental factor
that makes the object difficult to detect in RSI object detection.

When using OBB for object detection, a two-stage network
is often used to obtain better detection results, in which the
extracted region of interest (RoI) needs to be fed into the second
stage detection head. In order to extract RoI containing rich detail
features and make full use of them, we propose RoIF-Net. The
classical RoI extractions, such as RoI pooling [28] and RoI align
[29], are performed on feature maps output from the backbone
network, which is rich in high-level semantic features but lacks
such detail information as low-level spatial features after being
extracted by layer after layer of convolutional networks. Other
improved RoI extraction methods [49], [50] expand the RoI
range without taking the issue into account. We propose RoI
fusion module to enrich the low-level spatial features by adding
RoI extraction on the original images. Noting that the original
image has higher resolution compared to the feature map, we
perform RoI extraction on the original image by resampling it
to a 28× 28 patch, then generating a 7× 7 patch by channel
rearrangement, then expand it to the same dimension as the
feature map, and finally add it to the RoI extracted from the
feature map to obtain the final RoI. After obtaining the RoI
with more detail information, it is detected in the second stage.
The simple fully connection layer structure in most methods
[10], [34], [42], [51] cannot fully utilize the more complex
feature information. In order to fully exploit and utilize the
feature information of the fused RoI, we construct a feature
induction module to discriminate and generalize the features of

RoI, using the self-attention mechanism of Transformer [30]
and combining convolutional and fully connection layers to
enhance the discriminative ability of the network for complex
features. The aforementioned is our design of RoIF-Net, a new
second-stage detection structure, which is used to fully utilize
the advantages of the two-stage detection network and improve
the classification and positioning accuracy of the second stage
detection head.

The main contributions of this article are as follows.
1) The dense object determination method is proposed,

which defines dense objects by interclass distance, intr-
aclass distance, minimum distance, and minimum edge
length. By this method, the objects are classified into dense
and nondense objects. Further, our experimental results
show that these defined dense objects are not relatively
more difficult to be detected in RSI.

2) The second-stage detection head RoIF-Net consisting of
RoI fusion module and feature induction module is pro-
posed, which increases the detail information of RoI by
extracting RoI from the original image and improves the
feature discrimination and generalization ability through
the self-attention mechanism, and this structure can be
applied to any two-stage detection network to improve
the detection accuracy.

3) The proposed method achieves SOTA for rotated object
detection on three strongly credible and highly challeng-
ing RSI object detection datasets: DOTA, DIOR-R, and
UCAS-AOD with 81.80%, 68.49%, and 90.25% mAP,
respectively.

The rest of this article is structured as follows. Section II cov-
ers the recent work on RSI object detection. Section III presents
a detailed introduction of the proposed dense object definition
method and RoIF-Net. Section IV is about the demonstration
and analysis of the experimental results. Section V presents the
conclusion and outlook of this article.

II. RELATED WORKS

A. Dense Object Detection

Some objects in the image are densely packed together and
many works mention that these objects are difficult to detect
[19], [20], [21], [22], [23], [24], [25], [26], [27]. In natural
image, commodity detection on supermarket shelves [21], [22],
face and pedestrian detection in crowded scenes [23], [24], etc.,
may be performed on a large number of dense objects. The
distribution of objects in RSI is extremely uneven, and many
scenes such as airports, parking lots, and ship ports have a high
number of dense objects clustered together, as shown in Fig. 2.
Yingxue et al. [20] select only aircraft, vehicles, and ships in the
DOTA [3] dataset for detection, which have a higher probability
of dense alignment. Shu et al. [19] obtain object center point
before generating accurate object bounding box in order to
detect dense buildings. Ming et al. [27] proposed a coordinate
attention module to deal with the problem of severe performance
degradation caused by minor position deviations in dense small
object detection. Li et al. [26] enhance the shallow feature
information of small and dense objects by jump connecting
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Fig. 2. (a) Densely distributed airplanes in RSI. (b) Densely distributed cars
and tennis courts in RSI.

the manually extracted shallow features to the deep network
after processing. Deng and Yang [25] proposed a multistep
sampling strategy to improve the probability of dense objects
being sampled during the training process. However, there is
no clear determination of dense objects in these works, and no
separate analysis of detection results for dense and nondense
objects, but only qualitative statements that dense objects are
relatively difficult to detect. Whether dense is a factor causing
the difficulty of object detection remains to be confirmed. The
study of dense objects contributes to the further development
of RSI object detection techniques. In this article, a method to
determine dense objects is proposed. The objects in the dataset
are divided into dense objects and nondense objects. According
to their detection results in the experiments, whether they are
difficult to detect is analyzed.

B. RSI Object Detection Based on Deep Learning

The annotation method commonly used in object detection is
the minimum external HBB. In natural image object detection
datasets, horizontal boxes are almost always used to annotate
objects. The remote sensing object detection datasets with high
credibility, such as NWPU VHR-10 [1], RSOD [2], DOTA [3],
and DIOR [4], have horizontal box annotation. The network
detects the object by generating a HBB, the position of which
is used to locate the object. The position of the rectangular box
can be represented by four parameters, which are typically the
coordinates of the center point, the length and the width of the
rectangular box. It is also necessary to classify the objects in the
detection box. Therefore, the final result of the detection network
generally consists of a regression part and a classification part. In
natural image object detection, classical networks, such as SSD
[31], RCNN series [28], [29], [32], [33], [34], YOLO series [35],
[36], [37], [38], and RetinaNet [39], are all HBB-based object
detection networks. These networks can be directly applied to
RSI object detection, but the effect needs to be improved.

RSI are captured by aerial imaging devices from a top-down
view, where the object is on the earth’s surface, and has an
arbitrary rotation angle in this view. If an HBB is used to locate an
object, the box will contain a large amount of background when
the object direction deviates from the horizontal or vertical angle

and will contain other objects when the objects are densely dis-
tributed, and the above-mentioned phenomenon is more obvious
when the object aspect ratio is large. The OBB with angle can
solve the above problem, and the object can be included to the
maximum extent when the rectangular box direction is the same
as the object direction. In RSI object detection, more and more
datasets use OBB to label objects, such as DOTA [3], UCAS-
AOD [5], HRSC2016 [6], and DIOR-R [7]. Determining an OBB
is simply a matter of adding the angle to the HBB, so adding the
angle information prediction branch to a network structure based
on HBB detection can achieve OBB object detection. In order
to achieve more accurate orientation detection, some detectors
improve the network structure specifically for angle prediction
[40], [41], [42], [43], [44], [45], [46], [47], [48]. DCL [44] and
CSL [45] convert the angle detection from a regression problem
to a classification problem. Oriented RCNN [42] determines
OBB by the minimum external HBB and the distance from the
vertex of the OBB to the midpoint of the edge of that HBB.
CenterMap [41] determines the OBB by generating a foreground
region heat map that has high heat value in the center region of
the object and low heat value in the edge region. GWD [46] and
KLD [47] learn OBB with angular information by regression
loss based on Gaussian model.

C. Two-Stage Detection Network

The two-stage network is an important object detection strat-
egy based on deep learning. In the two-stage detection network,
the first stage performs preliminary localization and classifica-
tion of the object, then the RoI at the corresponding location
is extracted on the feature map based on the initially obtained
detection box, and finally, the second stage performs more accu-
rate position regression and classification of the RoI. Two-stage
detection network is proposed for the first time in RCNN [32],
in which selective search is used to extract RoI. In fast RCNN
[28], RoI pooling is proposed to provide uniform size input for
the second stage. Then in faster RCNN [33], region proposal
network is used instead of selective search for the first-stage
detection, and the most commonly used two-stage detection
network is built. In RSI object detection, two-stage detection
networks are also widely adopted and continuously improved for
their high accuracy [10], [42], [49], [50], [51]. Li et al. [49] and
Gong et al. [50] obtain object context information by extracting
and fusing a wider range of RoI. RoI Transformer [51] adds angle
prediction for RoI based on HBB in the second stage, and then
extracts RoI based on OBB for final detection. Oriented RCNN
[42] directly extracts RoI based on the OBB in the second stage
according to the angle prediction in the first stage.

Based on the two-stage detection network, a number of other
variant forms have been further developed, which can be cate-
gorized as two-stage detection networks in a broad sense. Cai
and Vasconcelos [34] proposed Cascade RCNN to discriminate
positive samples by incremental intersection-over-union (IoU)
thresholds in multiple detection stages, and multistage detection
networks were thus generated and developed. The key for the
two-stage detector to be able to achieve the second detection is to
align the features according to the detection box obtained from
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the first-stage detection before performing the second detection,
which is the function achieved by RoI extraction. In deformable
convolution [52], [53], the shape of the convolution kernel is not
fixed and can vary. Inspired by this, the refinement detector was
proposed. In the refinement detector, the shape of the deformable
convolution kernel is set according to the shape of the detection
box obtained in the first stage, and feature alignment is achieved
by convolution using such a kernel. S2A-NET [54] and R3DET
[55] use this method, avoiding the RoI extraction step, and the
detector is implemented by a fully convolutional network.

In the second-stage detection network proposed in this ar-
ticle, RoI extraction on the original image is added in RoI
fusion module to enrich the feature information, especially the
low-level features with detail information. A feature induction
module is designed to discriminate and generalize the features
in RoI using a self-attention mechanism, which complements
the detail features added in RoI and enhances the network’s
discrimination of confusable features. The increased capability
of the second-stage detection network allows for a higher level
of detection accuracy across the detector.

III. PROPOSED METHOD

In this section, we describe the proposed dense object de-
termination method and the second-stage detection head in
detail. First, dense object determination method is detailed in
Section III-A. Next, the overall network structure of two-stage
detector is introduced in Section III-B. Finally, the designed
RoIF-Net is introduced in Section III-C.

A. Determination Method for Dense Object

In previous research work, there is no specific definition of
dense objects to determine dense objects, let alone to analyze
the detection results of dense objects. In order to be able to
analyze the detection effect of the network on dense objects, we
designed the method for determining dense objects. According
to this method, the objects in the dataset can be divided into
dense and nondense objects so that the detection effect can
be analyzed in the network test using evaluation metrics for
both dense and nondense objects. Because the object detection
dataset uses rectangular boxes to label the objects, we need to
use the object location information from the rectangular box
annotations to identify dense objects in the dataset. If the HBB
annotations are used to determine dense objects, it will result
in a situation where the rectangular boxes are dense or even
overlapping while the objects in the boxes are still far away
from each other. This is because the HBB does not contain any
object pose information, and the box may contain a large amount
of background in addition to the object, and the area of the
rectangular box cannot be approximated as the object area.

Therefore, we use OBB annotation to determine the dense
object. The OBB has the angular information of the object,
which can closely contain the object compared to the HBB,
which contains less background, and the area of the OBB can be
approximated as the area of the object. In the determination
method we designed, the OBB represents the object and is
used for judgment. When considering how to perform dense

object determination, if only the minimum distance between
objects is used to determine, it cannot represent the complex
position relationship between objects and the judgment result is
not satisfactory. If the number of objects in a region is counted
to determine the dense area, it is not possible to quantify the
relationship between an object and its surrounding objects. In
order to quantify whether an object is dense or not and to take into
account the position relationship of all pixels between objects
as much as possible, we designed two conditions for the deter-
mination. If an object and any other object in the same image
satisfy these two conditions, the object is considered as dense.

The first determination condition is based on the ratio of
the interobject distance to the intraobject distance. In pattern
discriminant analysis, for a pattern class {ai}i = 1,2,...,Ka, the
intraclass distance is

D2({ai}, {aj}) = 1

Ka

Ka∑
j=1

⎡
⎣ 1

Ka − 1

Ka∑
i=1,i�=j

(aj − ai)
2

⎤
⎦

(1)
the smaller the intraclass distance is, the higher the degree of
aggregation of this pattern class. If there is another pattern class
{bi}i = 1,2,...,Kb, its interclass distance with the previous pattern
class is

D2({ai}, {bj}) = 1

Kb

Kb∑
j=1

[
1

Ka

Ka∑
i=1

(bj − ai)
2

]
(2)

which can be used as a measure of the separability of these two
pattern classes, and the larger interclass distance indicates that
their separability is better. We consider each object on the image
as a pattern class, and each pixel within the object as a sample
in this pattern class. We calculate the intraclass distance of each
object and the interclass distance of every two objects, and use
the ratio of the interclass distance to the intraclass distance to
determine the denseness, and the smaller the interclass distance
relative to the intraclass distance, the more intensive the two
objects are. Since we can only use the rectangular box annotation
in the dataset to identify the object, we recognize the OBB as
the object to calculate the intraclass and interclass distance. The
distance of sample points within one object class and the distance
of sample points belonging to different object classes are shown
in Fig. 3. In the determination process, for any object on the
image, its intraclass distance is calculated as Dw. If there is
another object on the image, their interclass distance is Db, which
is less than the threshold value we set, then both two objects
meet the first determination condition for dense objects. The
first determination condition of our design can be expressed by

Db/Dw < T. (3)

In this formula, the larger the threshold T is, the larger the
ratio of interclass distance to intraclass distance that satisfies the
condition is, and the less intensive it is. Conversely, the smaller
the threshold T, the higher the denseness. The determination of
the dense object is relatively subjective, and the threshold T can
be set autonomously according to the different demands on the
denseness.
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Fig. 3. References in dense object determination method. Green box is the
object range. Green dots in the box represent the sample points in the object.
D(ai, aj) denotes the distance between two sample points in a single object.
D(ai, bj) denotes the distance between two sample points belonging to different
objects. l denotes the minimum side length of the object. And d denotes the
minimum distance between two objects.

The second criterion is related to the minimum distance be-
tween objects and the minimum side length of objects. The min-
imum distance is the value of the closest distance between two
objects. We think that the minimum distance needs to be limited
when determining dense objects. Considering that the larger the
object size is, the larger its feature scale is, the minimum distance
restriction in the determination condition should be relaxed for
that object. We use the minimum side length of the object as the
factor limiting the minimum distance. In addition, we consider
that the minimum distance limit should not increase in equal pro-
portion to the object size because the number of pixels increases
with the object size, and the more pixels between objects, the
less dense they are. So, we square the minimum side length of
the object to reduce the rate of increase of the minimum distance
limit. We still consider the OBB as the object to calculate the
minimum distance and the minimum edge length. The minimum
side length of an object and the minimum distance between two
objects are shown in Fig. 3. In the determination process, for an
object on the image whose minimum edge length is l, if there
exists another object on the image and the minimum distance
between them is d, and these two objects satisfy each other with

d < a
√
l (4)

then both two objects satisfy the second determination condition.
In this formula, similar to T in (3), a is used as a moderator to
adjust the severity of this condition to meet different subjective
needs. The smaller a is, the stricter the minimum distance
restriction and the more dense the object is.

An object in an image is considered as a dense object when
it satisfies both of the determination conditions we designed.
The first condition, (3), determines whether an object is dense
or not by comparing the dispersion of the object with another
object and its own dispersion, and this form of determination
considers the denseness from the totality of the two object areas.

TABLE I
NUMBER OF DENSE AND NONDENSE OBJECTS IN THE DOTA, DIOR-R, AND

UCAS-AOD DATASETS UNDER THE DETERMINATION METHOD WITH

DIFFERENT T AND a VALUES

The second determination condition, (4), ensures that the closest
points between two objects can be within a threshold value. The
combination of these two conditions considers the denseness
both from the whole object area and from a single pixel point,
which can determine dense objects in a more reasonable way.
The severity of the determination conditions can be adjusted
according to different subjective requirements. We divide the
objects in the DOTA [3], DIOR-R [7], and UCAS-AOD [5]
datasets into dense and nondense objects according to the de-
signed determination method with different values of T and
different values of a. The results are given in Table I. As can be
seen from the table, the number of dense objects in the datasets
increases with increasing threshold T and moderator a. This is
due to the fact that the larger the threshold T or the moderator a is,
the more lenient the determination conditions are, as described
earlier. Furthermore, in Tables II and III, we give the division
between the DOTA and the DIOR datasets for each category of
objects when the threshold T is 7.75 and the moderator a is 5. The
results of dividing dense and nondense objects in some images
with three different thresholds T and three different moderators a
are shown in Figs. 4 and 5. The comparison of the results visually
demonstrates that the dense object determination condition is
more relaxed when T or a is larger. And it can be seen that the
determination method we designed can ideally distinguish dense
objects from nondense objects. The effectiveness of this method
is proved.

B. Two-Stage Detection Network as Baseline

In this article, we propose the second-stage detection structure
RoIF-Net, which is part of a two-stage detection network. The
two-stage detection network detects the object in the image
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TABLE II
NUMBER OF DENSE AND NONDENSE OBJECTS IN EACH CATEGORY IN THE

DOTA DATASET UNDER THE DETERMINATION METHOD WITH T VALUE OF

7.75 AND a VALUE OF 5

twice, and the first detection generates relatively coarse localiza-
tion and classification results, followed by further localization
correction and accurate classification in the second-stage detec-
tion network based on the first generated coarse results. The
overall structure of the classical two-stage detection network
is shown in Fig. 6. The image to be detected is fed into the
network as an input, and first, the backbone network is used for
feature extraction, then the extracted feature map is fused in the
neck network to generate a multiscale feature map [56], next
the first-stage detection head is used to detect on the multiscale
feature map to obtain preliminary results. The detection results
of the first stage generally include the regression and classifica-
tion results of the object boxes. During the training process, the
generated detection boxes need to be matched with the annotated
real objects, and the position regression losses are calculated
based on the mutually matched detection boxes and real boxes.
These detection boxes that can match to the real boxes are clas-
sified as foreground and those that are not matched are classified
as background, and the classification loss is obtained according
to the foreground and background, and the network parameters
are updated by these losses so that the network gradually learns
how to detect the objects. RoI extraction is performed based on
the object box obtained from the first-stage detection, and the
extracted RoI is fed into the second-stage detection head for
adjustment, which includes position regression adjustment and
accurate category classification. During the training process, the
regression loss is calculated again in the same way, and the clas-
sification loss is calculated according to the object class, from
which the network parameters are then updated. The detection
result after the second-stage detector head adjustment is the final
result of the whole two-stage detector.

TABLE III
NUMBER OF DENSE AND NONDENSE OBJECTS IN EACH CATEGORY IN THE

DIOR-R DATASET UNDER THE DETERMINATION METHOD WITH T VALUE OF

7.75 AND a VALUE OF 5

In a two-stage detection network, the loss function generally
consists of two major parts, one for the losses generated by
the first-stage detection head and the other for the losses gener-
ated by the second-stage detection head. As mentioned above,
the loss generated at each stage contains regression loss and
classification loss, and the network learns the object location
and size through regression loss and the object class through
classification loss. The overall loss function is given by

Loss =
λ1

NF

(∑
i

Lc

(
cFi , l

∗
i

)
+
∑
i

[l∗i ≥ 1]Lr

(
xF
i , g

∗
i

))

+
λ2

NS

(∑
i

Lc

(
cSi , l

∗
i

)
+
∑
i

[l∗i ≥ 1]Lr

(
xS
i , g

∗
i

))
.

(5)

The equation consists of two parts, which are the first-stage
loss and the second-stage loss. In the losses of these two stages,
λ1 and λ2 are the loss balance coefficients, which are generally
1, NF and NS are the number of positive samples in the two
stages, i represents each sample, Lc and Lr are the classification
and the regression loss functions, cFi and cSi are the classification
predictions in the two stages, l∗i is the classification label, [l∗i >
1] is the Iverson bracket indication equation, which means the
value is 1 when i is a positive sample, xF

i and xS
i are the location

predictions in the two stages, and g∗i is the location label.
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Fig. 4. Dense objects and nondense objects judged by the determination
method with different values of T. Objects boxed in red are dense objects
and those boxed in green are nondense objects. (a) and (b) Results of the
determination of dense and nondense objects at a T value of 5.25. (c) and (d)
Determination results at a T value of 7.75. (e) and (f) Determination results at a
T value of 10.25.

C. Structure of RoIF-Net

The second stage outputs the final detection results, which
plays an important role in the two-stage detection network and
is a key factor for the two-stage detection network to obtain high
accuracy. Noting the importance of the second stage, in order
to give full play to its role in the overall detection network, we
designed the second-stage network structure RoIF-Net, as shown
in Fig. 7. RoIF-Net is divided into two parts. One is the RoI
fusion module, which simultaneously performs RoI extraction
on the feature map and the original image and fuses them
together. The other is the feature induction module based on
the self-attention mechanism, which is able to discriminate and
generalize the features and generates the final adjustment results.

In the RoI fusion module, we extract RoI not only on the
feature map but also on the original image, which is to be able

Fig. 5. Dense objects and nondense objects judged by the determination
method with different values of moderator a. Objects boxed in red are dense
objects and those boxed in green are nondense objects. (a) and (b) Results of the
determination of dense and nondense objects at a moderator a of 3. (c) and (d)
Determination results at a moderator a of 5. (e) and (f) Determination results at
a moderator a of 7.

to obtain more detail features. The feature map obtained after
backbone extraction has sufficient high-level features; however,
the most original detail information will disappear after the
complex network, and the supplement of detail information
is beneficial to the second-stage detection network for more
accurate object localization and classification. In this structure,
according to the detection boxes generated by the first stage,
RoI extraction is performed on the feature map obtained from
backbone and the original image as the input to the whole
network, respectively. When extracting RoI on the feature map,
as in the classical two-stage detection network Faster RCNN
[33], we resample its corresponding range into a 7 × 7 patch,
regardless of the detection box size. When extracting RoI on
the original image, we resample the range corresponding to the
detection box into a 28 × 28 patch in order to avoid losing
too much information since the original image size is much
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Fig. 6. Overall framework of a two-stage detection network. Classical two-stage detection network consists of backbone, neck, the first-stage detection head,
and the second-stage detection head. Image to be detected is input into the backbone, and the second-stage detection head generates the final results.

Fig. 7. Overall structure of RoIF-Net. Structure is a second-stage detection head consisting of an RoI fusion module and a feature induction module that outputs
detection results.

larger relative to the feature map (at least four times in general).
Next, in order to fuse the two RoIs, we inverse the subpixel
convolution strategy [57], reducing the size of the RoI on the
original image by expanding the number of channels without
losing information, then expanding the dimensionality to that of
the RoI on the feature map with a 1 × 1 convolution kernel, and
finally fusing the extracted two RoIs by summing operations.

In the feature induction module, we constructed it using the
transformer structure based on the self-attentive mechanism
[30], as shown in Fig. 8. This part makes full use of RoI with
fused detail features to enhance the discrimination of confusable
features and perform feature generalization, which improves
the classification and localization accuracy of the second-stage
detection network. In this structure, first we expand the RoI ob-
tained in the previous structure into 49 256-dimensional feature
vectors and use them as 49 tokens of the transformer. Three
feature matrices Q, K, V are generated from the input token,
in which each 256-dimensional feature vector is decomposed
into four 64-dimensional feature vectors. Q and KT are mul-
tiplied to get the self-attention weight matrix. Since there is

a positional relationship between feature points in an image,
it is important to add positional information to the feature
points used as token inputs. We use the positional encoding
matrix in Swin Transformer [58], which contains the relative
positional information between every two feature points and
helps the network to judge the spatial location of features. The
self-attention matrix is obtained by adding the weight matrix
with the position matrix and then multiplying it with the V matrix
after performing softmax. The four 64-dimensional vectors are
synthesized into a 256-dimensional feature vector, and then the
expanded spatial dimension is restored to obtain the RoI after the
self-attentive mechanism. Then using the residual mechanism
[59], it is summed with the original RoI. Finally, the final
regression and classification results are obtained after passing
through two convolution layers and two fully connected layers.

RoIF-Net adds detail features by fusing the RoI extracted
from the original image to provide more information for the
final regression and classification, uses a self-attention mecha-
nism to enhance the discrimination of confusing features, and
finally performs feature generalization to achieve high-quality
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Fig. 8. Overall structure of the feature induction module.

adjustment of the detection box. Since the second stage is
relatively independent in the detector, RoIF-Net can theoreti-
cally be applied to any two-stage detection network. Simply
replacing the second-stage detection network with RoIF-Net
can make the original two-stage detector a step up in detection
effectiveness.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

1) DOTA-v1.0: DOTA-v1.0 [3] is a large aerial remote sens-
ing dataset, which contains 2806 aerial images collected from
Google Earth, satellite JL-1, etc. It has 188 282 ground objects
annotated on it for object detection tasks, some of which are
arranged very densely. These objects cover 15 common cate-
gories, namely plane (PL), baseball diamond (BD), bridge (BR),
ground track field (GTF), small vehicle (SV), large vehicle (LV),
ship (SH), tennis court (TC), basketball court (BC), storage tank
(ST), soccer-ball field (SBF), roundabout (RA), harbor (HA),
swimming pool (SP), and helicopter (HC). There are two types
of annotation in this dataset: HBB and OBB. In this article,
we use OBB annotation for dense object determination and all
experiments. The whole dataset has been divided into three parts
by the publisher: the training set, the validation set, and the test
set, and their ratio is 3:1:2.

The images in the DOTA dataset vary in size, with a large
gap between the minimum size of 800 × 800 pixels and the
maximum size of 4000× 4000 pixels. To avoid the loss of image
information caused by resizing, we cropped the original images
into a series of 1024 × 1024 patches as input. The experiments
performed on this dataset in this article all use the multiscale
data augmentation method, using three scale factors (0.5, 1.0,
1.5) to resize the original image and the crop step is 512. If
the instances are segmented at the time of cropping, we decide
whether to use them or not according to the method in [3]. In
the test, we map the detection results to the original size image
before evaluation.

2) DIOR-R: DIOR-R [7] is a large-scale publicly available
remote sensing dataset for object detection, which is an extended
version of the DIOR [4] dataset that uses OBBs to annotate
objects in images. It contains 23 463 images covering a wide
range of scenes on which 192 518 object instances belonging
to 20 common object classes are annotated, namely airplane
(APL), airport (APO), baseball field (BF), basketball court
(BC), bridge (BR), chimney (CH), dam (DAM), expressway
toll station (ETS), expressway service area (ESA), golf field
(GF), ground track field (GTF), harbor (HA), overpass (OP),
ship (SH), stadium (STA), storage tank (STO), tennis court (TC),
train station (TS), vehicle (VE), and windmill (WM). The image
size in the dataset is uniformly 800 × 800 pixels, and the spatial
resolution ranges from 0.5 to 30 m, so the objects on the images
have large-scale differences. The training and validation set of
DIOR-R contains 11 725 images and 68 073 instances, and the
test set includes 11 738 images and 124 445 instances.

3) UCAS-AOD: UCAS-AOD [5] is a publicly available high-
definition aerial photography dataset for object detection, in
which images are captured in selected regions of the world using
Google Earth. The dataset contains 1510 images of approxi-
mately 1300 × 700 in size, which are labeled with two types
of objects: car and plane. The labels are in the form of HBB
and OBB, and in this article, we use OBB annotations for our
experiments. The images are randomly divided into a training
set, a validation set, and a test set in the ratio of 5:2:3.

B. Implementation Details

The backbone network used in our following experiments is
first pretrained on ImageNet [60], and the network is initialized
using the parameters obtained from the pretraining. In the train-
ing phase, two Nvidia RTX3090 GPUs are used to perform the
experiments, and the batch size of a single GPU is set to 2, for
a total of 4. When ResNet50 [59] is used as the backbone, the
SGD optimizer is used to perform gradient updates of the model
parameters, where the initial learning rate is set to 0.005, the
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learning rate is reduced to 1/10 of the original at each decay,
and the momentum and weight decays are set to 0.9 and 0.0001,
respectively. When ConvNeXT [61] or Swin [58] is used as the
backbone network, the AdamW [62], [63] optimizer is used to
perform gradient updates, where the initial learning rate is set
to 0.0001, the learning rate is reduced to 1/10 of the original at
each decay, and the weight decay is set to 0.05. When DOTA
dataset is used for experiments, the number of training times is
set to 12 epochs, and the learning rate is decayed after the 8th
and 11th epochs, respectively. In the training process, we use
data enhancement strategies, such as random flipping, random
rotation, and multiscale scaling, to increase the complexity of
the dataset. When using DIOR-R, the number of training times
is still 12 epochs, and the learning rate decay is still performed
after the 8th and 11th epochs, and data enhancement strategies
such as random flipping and random rotation are used. When
using UCAS-AOD, the number of training times is 36 epochs,
and the learning rate decay is performed after the 24th and 33th
epochs. In the testing phase, we use a single Nvidia RTX3090
GPU for inference. We keep the bounding boxes with confidence
scores greater than 0.05 and set the IOU threshold of NMS to 0.1.
At the same time, considering that an image contains a limited
number of objects, we set the maximum number of objects in
each image to 2000.

C. Evaluation Metrics

When evaluating the effectiveness of detection networks, a
uniform set of criteria is needed. Average precision (AP) is
the most authoritative evaluation metric in object detection,
and the calculation of this value is related to two basic and
credible evaluation metrics: precision and recall. To judge that
the network correctly detects the object, two conditions need
to be satisfied. The first condition is that the IoU between the
detection box and the ground truth box is greater than 0.5,
and the second is that the network classifies the object in the
detection box correctly. On this basis, the precision and recall
are determined by the formulas

precision =
TP

TP + FP
(6)

recall =
TP

TP + FN
(7)

where TP is the number of objects determined by the network
to be positive samples and detected correctly, FP is the number
of objects determined by the network to be positive samples
but detected incorrectly, and FN is the number of ground truth
objects determined by the network to be negative samples.
When evaluating the detection results, as the confidence score
decreases, more and more objects are detected, and the recall
is higher. Generally speaking, the precision decreases with the
increase of recall. AP is the precision integral of the recall from
0 to 1, which can be expressed as

AP =

∫ 1

0

(precision)d(recall). (8)

TABLE IV
RECALL OF DENSE AND NONDENSE OBJECTS IN THE DIOR-R DATASET UNDER

THE DETERMINATION METHOD WITH DIFFERENT T VALUES

The values of 11 recall rates (0, 0.1, …, 1) are generally used
for calculation. AP can make a valid evaluation of the detection
results of one class of objects. And when evaluating the detection
results of multiple classes of objects, mAP, which is the average
of AP of multiple classes of objects, can be used.

In this article, we are going to evaluate the detection results
of dense and nondense objects separately. The determination of
density involves objects other than the one to be determined.
When determining dense objects on the detection results, other
objects are not necessarily ground truth objects, so the determi-
nation results are not credible. When calculating the precision of
dense objects and nondense objects separately, it is necessary to
know the number of dense and nondense objects in the detection
results. Since the dense objects determined on the detection
results are not credible, the precision in this case does not provide
a valid assessment of the detection results. Instead, the number
of dense and nondense objects in the ground truth needs to be
known when calculating the recall separately. The determination
of dense or nondense objects on the ground truth is credible,
so the recall can still effectively evaluate the detection results.
As aforementioned, we evaluate the detection results of dense
and nondense objects using only the recall without using the
precision and the AP that includes the precision.

D. Analysis of Dense Object Detection Results

We classify the objects in the DIOR-R [7] dataset into dense
and nondense objects according to the determination method
proposed in Section III-A with three thresholds T representing
different densities: 5.25, 7.75, and 10.25. RoI Transformers [51]
are used to detect and calculate their recall, respectively. The
results of the experiment are given in Table IV. The recall rate
of dense objects is 8.20% higher than that of nondense objects
when T is 5.25, 6.58% higher when T is 7.75, and 4.76% higher
when T is 10.25. Similarly, we performed the same experiments
using three different modulators a, 3, 5, and 7, and the results
are given in Table V. The recall rate of dense objects is 5.60%
higher than that of nondense objects when a is 3, 6.58% higher
when a is 5, and 8.93% higher when a is 7. It can be seen that the
recall rate of dense objects is higher under both relatively strict
and lenient determination conditions. In addition, for the dense
and nondense objects discriminated in the DOTA [3], DIOR-R
[7], and UCAS-AOD [5] datasets under the relatively moderate
T value of 7.75 and a value of 5, we use two different detection
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TABLE V
RECALL OF DENSE AND NONDENSE OBJECTS IN THE DIOR-R DATASET UNDER

THE DETERMINATION METHOD WITH DIFFERENT a VALUES

TABLE VI
RECALL OF DENSE AND NONDENSE OBJECTS IN DOTA, DIOR-R, AND

UCAS-AOD DATASETS

networks, Faster RCNN [33] and RoI Transformer, to detect
and calculate their recall separately. In this experiment, we use
the training set for training and validation set for testing on the
DOTA dataset, and the trainval set for training and test set for
testing on the DIOR-R and UCAS-AOD datasets. In order to
avoid the imbalance of training samples between dense and non-
dense objects in the datasets, which will lead to the imbalance of
network learning and affect the judgment of results, we balance
the training samples to make the number of dense and nondense
objects the same before training. The results of the experiment
are given in Table VI. On the DOTA dataset, the recall of dense
objects obtained by Faster RCNN is 3.91% higher than the
nondense objects, and the recall of dense objects obtained by RoI
Transformer is 5.21% higher than the nondense objects. On the
DIOR-R dataset, the recall of dense objects obtained by Faster
RCNN is 6.14% higher than the nondense objects, and the recall
of dense objects obtained by RoI Transformer is 6.58% higher
than the nondense objects. On the UCAS-AOD dataset, the recall
of dense objects obtained by Faster RCNN is 3.78% higher than
the nondense objects, and the recall of dense objects obtained
by RoI Transformer is 2.68% higher than the nondense objects.
It is known from this experiment that the overall recall of dense
objects is somewhat higher compared to nondense objects when
tested on different datasets using different networks. This result
is different from our intuitive understanding and from other
works that describe dense objects as harder to detect. In other
works, it is only qualitatively stated that dense objects are more
difficult to detect without relevant experimental proof, while our
results rely on experiments and are relatively more credible.

As shown in Fig. 9, we display the feature maps extracted
by backbone and sent to the detection head in the hot map.
In order to show the characteristics of the feature maps more

Fig. 9. Dense and nondense objects on the input image and feature heat map.
(a), (b) Input images. (c), (d) Feature heat maps. Those in the yellow circle are
dense objects, while those in the blue circle are nondense objects.

comprehensively, we average the values on all feature channels
and convert them into a hot map. From the circles marked in the
figure, we can see that the area with dense objects has higher
values, while the area with sparse objects has lower values,
indicating that the network has a higher response to the area
with dense objects. The network achieves the object detection
task based on the recognition of various different features. The
features in the region with a large number of objects are richer
and denser, so the network has a high response to this region.
In addition, in a natural image with an imaging perspective of
front or side view, multiple objects on it may be at different depth
positions, resulting in mutual occlusion phenomena that cause
the loss of object features. This phenomenon is more likely to
occur in the area with dense targets, which has a great adverse
impact on the detection of dense objects. Due to its special
overhead view in RSI, the imaging targets are objects on the
ground surface and rarely exist to obscure each other, and the
object features are basically complete with few missing cases.
From the above-mentioned analysis, it can be concluded that the
densely distributed objects in the object detection of RSI are less
likely to be difficult to detect.

E. Ablation Experiments of RoIF-Net

In this section, we perform ablation experiments to verify
the effectiveness of the proposed second-stage detection head
RoIF-Net. The experiments are all trained on the training set of
the DOTA [3] dataset and tested on the test set. We use mAP as
a criterion to evaluate the performance of the method.
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TABLE VII
RESULTS OF ABLATION EXPERIMENTS FOR ROI FUSION MODULE AND FEATURE INDUCTION MODULE ON DOTA DATASET

1) Ablation Experiments of RoI Fusion Module and Feature
Induction Module: The overall structure of RoIF-Net is divided
into two parts: the RoI fusion module and the feature induction
module. In the RoI fusion module, the RoI are extracted from
the original image and the feature maps, and they are summed
and fused together to increase the detail features. The feature
induction module uses a self-attentive mechanism to discrimi-
nate and generalize the features to produce the final regression
and classification results. In this section, we present and analyze
the results of the ablation experiments of these two modules.
In the experiment, RoI Transformer [51] is used as the baseline
and ConvNeXT [61] as the backbone. We design four groups
of experiments, in which the first group uses the traditional
second-stage detection structure in the original method, the
second group uses only the RoI fusion module, the third group
uses only the feature induction module, and the fourth group
uses both two modules, and each group is trained and tested
the network separately. The test results are given in Table VII.
It can be seen from the table that the RoI fusion module does
not improve mAP when used alone and even has a 0.05% drop,
the feature induction module has a slight 0.19% improvement
in mAP when used alone, and only when these two modules
are used together does mAP improve significantly by 0.64%.
When the RoI fusion module is used alone, the added detail
features on the original image are not further extracted and
generalized, which is hardly helpful for the final regression and
classification of the second stage network. The feature induction
module mainly consists of a self-attention mechanism, which
works poorly on the rich high-level semantic features extracted
from the feature map, while it works better on the detail features
extracted from the original image. The two modules complement
each other and are used together to fully utilize the capabilities
of the RoIF-Net.

2) Ablation Experiments of RoIF-Net in Different Two-Stage
Detector: As described in Section III-C, the RoIF-Net we de-
signed can be placed in an arbitrary two-stage detector. In
this section, we use different two-stage detection networks as
baseline, and change the second stage to RoIF-Net for abla-
tion experiments. In this experiment, we use three two-stage
detection networks, i.e., Faster RCNN [33], Oriented RCNN
[42], and RoI Transformer [51], with different backbone. The
experimental results are given in Table VIII, from which it can be
seen that the detection results of the network improved by 0.65%,
0.41%, 0.56%, and 0.64% of mAP after using the RoIF-Net we
designed, respectively. This result indicates that the RoIF-Net
stimulates the potential of the second-stage detection network,
which can be effective in improving the accuracy in different
two-stage detection networks with strong universality.

TABLE VIII
RESULTS OF ABLATION EXPERIMENTS FOR ROIF-NET BASED ON DIFFERENT

TWO-STAGE DETECTION NETWORKS ON THE DOTA DATASET

TABLE IX
EFFECTIVENESS OF OUR PROPOSED ROIF-NET WITH FASTER RCNN AS

BASELINE ON THE DOTA DATASET

3) Analysis of the Computational Complexity of RoIF-Net:
We use Faster RCNN as the baseline for experiments and analyze
the computational complexity of the proposed method using the
number of model parameters, floating point operations (FLOPs),
and frames per second (FPS). The experimental results are given
in Table IX, from which it can be seen that using our proposed
second-stage detection structure RoIF-Net on the basis of Faster
RCNN, the number of model parameters and FLOPs increase
by 0.86M and 27.04G, respectively, and the FPS has a reduction
of 2.46, while the mAP improves by 0.65%. This is due to the
addition of RoI extraction and convolution operations in the RoI
fusion module and self-attention and convolution operations in
the feature induction module. These two modules improve the
detection effect, but reduce the detection efficiency.

F. Comparison With Advanced Methods

In this section, we compare the method proposed in this article
with other classical and advanced methods on the internationally
credible and challenging public datasets DOTA [3], DIOR-R
[7], and UCAS-AOD [5]. In the experiments of this section, our
method uses the two-stage detection network RoI Transformer
[51] as baseline and replaces the second-stage detection head
with RoIF-Net. The datasets are described in Section IV-A, and
the experimental parameters are set in Section IV-B.

1) Comparison Results on DOTA: On the DOTA dataset, we
compared with a variety of advanced methods as well as classical
methods and the results are given in Table X. As can be seen from
the table, our proposed RoIF-Net is able to achieve 81.80% mAP
when using ConvNeXT [61] as the backbone network, which
outperforms all the results in the table to the current SOTA level.
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TABLE X
COMPARISON WITH STATE-OF-THE-ART METHODS ON DOTA DATASET

Fig. 10. Some visualization results from our method on DOTA. Confidence threshold is set to 0.3. Boxes in different colors represent different categories of
objects.

Out of all 15 detection categories, we have the best or the second
best results in 7 categories, which proves the advantage of our
method in OBB object detection. In addition, when using Swin
[58] as the backbone, it was also able to achieve 81.20% mAP,
which is still better than other methods and in the next best level.
The above-mentioned results show the progressiveness of our
method. Some visual detection results on the DOTA dataset are
shown in Fig. 10. It can be seen from the figure that in the DOTA
dataset, although the background in the image is complex, the
size difference of the object is large, and the object has arbitrary

direction, each type of object can still be detected well, and the
visualization has achieved satisfactory results.

2) Comparison Results on DIOR-R: We also compare with
several classical and advanced methods on the DIOR-R dataset,
and the results are given in Table XI. The DIOR-R dataset has
20 categories and is relatively more challenging. As can be
seen from the table, our proposed method RoIF-Net is able to
achieve 65.12% mAP results when using ResNet50 [59] as the
backbone, which is better than all other methods and reaches the
SOTA. In addition, it was able to achieve an impressive 68.49%
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TABLE XI
COMPARISON WITH STATE-OF-THE-ART METHODS ON DIOR-R DATASET

Fig. 11. Some visualization results from our method on DIOR-R. Confidence threshold is set to 0.3. Boxes in different colors represent different categories of
objects.

mAP when using ConvNeXT [61] as the backbone, a result that
is significantly ahead of all other results in the table. Among
all the 20 detection categories, we have the best results in 11
categories. In some categories such as APL, ESA, GTF, STA,
and TC, we have a large mAP lead compared to other methods.
These aforementioned results illustrate the advancement of our
method. Some visual detection results of our method on this
dataset are shown in Fig. 11. It can be seen from the figure
that although the categories are diverse and the detection is
difficult, our method produces few errors in the detection of
objects with arbitrary directions, and the visualization achieves
desired results.

3) Comparison Results on UCAS-AOD: Similarly, on the test
set of the UCAS-AOD, we compared with other methods and the
results are given in Table XII. This dataset has only two types
of objects, so the detection difficulty is relatively small. As it
is shown in the table, our proposed RoIF-Net can achieve an
excellent mAP result of 90.25%, which is better than the other
methods. In both detection categories, our method is the best in
the detection results for plane and the second best for car. Some

TABLE XII
COMPARISON WITH STATE-OF-THE-ART METHODS ON UCAS-AOD DATASET

of the visualized detection results on this dataset are shown in
Fig. 12. As can be seen from this, good results are obtained for
the detection of cars and planes with arbitrary orientations in
different scenarios.
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Fig. 12. Some visualization results from our method on UCAS-AOD. Confi-
dence threshold is set to 0.3. Yellow boxes represent detected cars and the blue
boxes represent detected planes.

V. CONCLUSION AND DISCUSSION

In this article, we design a dense object determination method
based on OBB annotation, according to which the objects in
the datasets are classified as dense and nondense objects. Their
detection results show that dense objects in RSI are not more
difficult to detect compared to nondense objects. Our work
still has certain limitations: the determination method of dense
objects can further be optimized and improved, and the effect of
dense distribution on object feature recognition under different
environmental conditions can be studied in depth. The important
contribution of this work is to provide an idea to quantify the
denseness of objects, which hopefully will help to enrich and
deepen the study of dense objects in future work. We propose
the RoIF-Net to improve the detection effectiveness of two-stage
network based on OBB, which adds detail information by fusing
the RoI extracted from the original image and the feature maps,
and constructs a feature induction module to realize the final
position regression and category classification. We demonstrate
the effectiveness of our proposed method through extensive
experiments on the DOTA, DIOR-R, and UCAS-AOD datasets,
and the OBB detection experimental results achieve SOTA on
these datasets. However, this method is only applicable in the
two-stage detection method and increases the computational
complexity, which causes a decrease in detection efficiency. In
the future work, how to efficiently utilize detail features to make
the network avoid the background influence in identifying the
object features is of great research value.
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