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Comprehensive Evaluation of Multisource Soil
Moisture Products in a Managed Agricultural

Region: An Integrated Hydrologic
Modeling Approach

Zheng Lu , Yuan He, Shuyan Peng, and Xiaofan Yang

Abstract—Soil moisture (SM) is important in understanding
Earth’s hydrologic cycles. However, an overall performance of
multisource SM products is still unclear due to a lack of compre-
hensive validation. Using SM simulated by hydrologic models as
a reference to perform validation is a promising alternative since
SM simulation is not restricted by its coverage or scale. In this
study, an integrated hydrologic model (ParFlow-CLM) forced by
hydrometeorological and agricultural water use reanalysis data
is built in the middle reaches of the Heihe River Basin (HRB), a
typical managed agricultural region in Northwestern China. Using
the ParFlow-CLM simulated SM data as the validating reference,
ten SM products, including four single-source RS SM, three merged
SM, and three assimilated SM products are systematically assessed
by a comprehensive evaluation framework composed of fifteen
statistical performance indicators. For validation, the results show
that ParFlow-CLM SM simulations agree with the time domain
reflectometry probe and cosmic ray neutron probes observations.
The merged SM and assimilated SM outperform the single-source
RS SM products if compared with ParFlow-CLM simulated data.
Results from the intercomparison demonstrate that hydraulic con-
ductivity and leaf area index are the dominant factors in SM spatial
variations based on the generalized additive model. The statistical
linkage indicates that mean absolute deviation, uncertainty at 95%
(U95), Nash–Sutcliffe’s efficiency, and combined performance in-
dex serve as substitutes for quantifying the relative uncertainty of
SM. This study paves a way for model-data intercomparison of
SM products in the HRB as well as in other arid and semiarid
basins.

Index Terms—Heihe River Basin (HRB), integrated hydrologic
model, intercomparison, remote sensing (RS) products, soil
moisture (SM), validation.
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I. INTRODUCTION

SOIL moisture (SM) is a key element linking the at-
mosphere and terrestrial ecosystems [1]. Comprehensive

validation and intercomparison of SM products could help
improve many hydrometeorological applications, such as pre-
cipitation forecasting [2], flood and drought monitoring [3],
and climate change studies [4]. Currently, SM estimates are
primarily obtained by in situ measurements, satellite retrievals,
data assimilations, and hydrologic model simulations.

In recent decades, microwave remote sensing (RS), especially
passive microwave approaches, has become an effective tech-
nology for SM global mapping owing to its high sensitivity to
surface SM [5], [6], [7]. The passive microwave SM products
include advanced microwave scanning radiometer (AMSR-E)
on the Earth observing system (EOS) Aqua satellite [8], sub-
sequent advanced microwave scanning radiometer 2 (AMSR2)
onboard the global change observation mission (GCOM-W1)
spacecraft [9], and microwave imaging radiometer with aperture
synthesis onboard the soil moisture and ocean salinity (SMOS)
satellite [10]. These satellite SM products, which have global
coverage at a certain revisit time step, are feasible in global-scale
applications, as they offer a snapshot of the evolving land surface
processes at a specific local time [11].

However, single RS-source SM suffers from many deficien-
cies in practice, such as discontinuity in time series and higher
uncertainty applied in dense vegetation cover areas [12]. The
European Space Agency (ESA) Climate Change Initiative (CCI)
project considers an integration of active and/or passive SM
products and provides three effective merged SM products,
which aims to overcome the drawbacks of the single RS-source
SM [13]. The CCI SM dataset consists of three SM products by
different blending techniques [14].

Additionally, as a multidisciplinary approach that considers
several land surface processes, SM products by data assimilation
are an effective tool for providing spatiotemporally continuous
multilayer SM at different scales. Two of the widely used
assimilated SM products are NASA’s Global Land Data
Assimilation System (GLDAS) SM product [15] and the Global
Land Evaporation Amsterdam Model (GLEAM) SM product
[16]. For better understanding and utilizing the above-mentioned
SM products, an effective validation of SM products is
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commonly performed by comparisons against reference data,
aiming at obtaining systematic and random errors or deviations
in SM products and accessing quantitative statistics on the SM
quality [17].

One key issue in validating the SM products is the reference
data selection. The reference data, which are assumed to be
reliable in representing the “validating referenced” SM value,
are commonly provided from three sources: field campaigns,
in situ networks, and model simulations [18], [19]. in situ
measurements (e.g., time domain reflectometry probes or ground
penetrating radar probes) that arguably provide the most precise
SM estimates are usually limited in spatial expansion [20].
However, the mismatch of spatial-temporal scales in targeted
RS SM data between field campaigns and in situ networks are
inevitable [18], [21], [22]. Using SM simulated by hydrological
or land-surface models as a reference to perform validation is
a promising alternative since SM simulation is not restricted
by its coverage or scale [18]. Model simulations can provide
regional SM maps with spatial-temporal continuity [23], [24].
Another advantage of using model simulations is that the model
can output several relevant hydrological variables which can be
used to analyze the corresponding responses in SM variations,
such as evapotranspiration (ET) and infiltration (I) [25]. Usually,
precipitation (from Tropical Rainfall Measuring Mission and
Global Precipitation Measurement precipitations datasets) is
utilized as an auxiliary variable alone to help analyze water
balance in SM validation [26]. However, clouds or atmospheric
distortions usually cause the time series discontinuity of pre-
cipitation, and thus spatial-temporal distributions of I cannot
be directly obtained [27]. Vertical water exchange between the
atmosphere and the surface soil layer is equal to I-ET, which is
actually the net downward flux [28]. Therefore, it is important to
obtain the correlation between SM responses and I-ET variations
in the same framework.

Another important issue in validating the SM products is the
evaluation method and assessment indicators. According to the
work in [26] and [29], methods in SM validation are generally
classified into two categories: direct and indirect evaluations.
Direct evaluation usually uses statistical performance indicators
calculated by comparing reference data against targeted SM
products. Indirect evaluation is mainly based on cross-validation
and consistency analysis of spatiotemporal trends using impact
factors [30], [31]. It is noted that both direct and indirect evalu-
ation methodologies need to improve. For direct evaluation, the
shortcoming is that most SM validation research usually uses
limited statistical performance indicators to assess the compar-
ison results. Gruber et al. [18] summarized the current direct
validation methods for SM products. Gueymard [32] provided
an important review of validation methodologies and statistical
performance indicators in solar project fields. Both reviews not
only provided a theoretical background about SM validation
studies but also proactively and effectively formed a validation
framework. It is then feasible to transform the methodology
system from Gueymard [32] to SM product validation. For indi-
rect evaluation, the weakness is neglecting the linkage between
cross-validation methods and indices in the direct validation.
Liu et al. [31] reported that the three-cornered hat (TCH) based

relative uncertainty (RU) and root mean square error (RMSE)
indices have good consistencies. However, the correlations of
RUs and director performance indicators as well as the unifor-
mities in direct and indirect results are still unknown [33]. It is
therefore important to obtain their mathematical relationships.

The novelties of the current study include: 1) providing a ref-
erence SM from an integrated hydrological model with superior
accuracy and high spatial-temporal resolution over a modern
agricultural area, 2) developing a validation methodology based
on fifteen statistical indicators and linking the SM RU and other
statistical performance indicators, and 3) diagnosing the impact
degrees of soil and vegetation environmental factors on SM
products. Without any doubt, SM estimations are critical in
arid and semiarid regions and are heavily affected by irrigation
[7], [34]. With respect to the water budget, irrigation increases
SM and in turn ET while decreasing runoff and depleting river
and irrigation channel flows as well as groundwater, depending
on the agricultural water use strategies [35]. From a hydro-
logical perspective, irrigation strategies have huge impacts on
local hydrological dynamics such as groundwater flow systems
and groundwater-surface water storage changes, which would
further affect streamflow, ET, and SM variations [36], [37].
Therefore, it is important to consider the complex water source
use in SM validation in model simulations. Numerous validation
studies based on simulated SM have been widely carried out,
e.g., in the Rur and Erft catchments in Germany [38], over
the US continent [39], on the Tibetan Plateau in China [40],
and globally [41], [42]. In this study, we provide a compre-
hensive validation and intercomparison of ten SM products,
namely, JAXA, LPRM-C, LPRM-X, SMOS-IC, CCI-A, CCI-P,
CCI-C, GLEAM-A, GLEAM-B, and GLDAS SM products,
based on outputs from a high-resolution integrated hydrologic
model (ParFlow-CLM) in a typical managed agricultural re-
gion, the Heihe River Basin (HRB) in Northwestern China
[Fig. 1(a)].

The objectives of this study are: 1) to evaluate ten SM prod-
ucts using integrated hydrologic model simulations based on
fifteen statistical performance indicators, 2) to diagnose the
impacts of eight environmental factors (DEM, clay content,
sand content, porosity, saturated hydraulic conductivity, organic
matter content, leaf area index, and root abundance) on SM
products, and 3) to find the precise correlations between the
relative uncertainties and other statistical performance indica-
tors. The fifteen statistical performance indicators employed
in this study include the mean absolute difference (MAD),
mean bias difference (MBD), RMSE, standard deviation of
the residual (SD), uncertainty at 95% (U95), the t-statistic
(TS), Pearson’s correlation coefficient (R-Pearson), Spearman’s
Rho correlation coefficient (R-Spearman), slope of best-fit line
(SBF), Nash–Sutcliffe’s efficiency (NSE), Legates’s coefficient
of efficiency (LCE), Willmotts’s index of agreement (WIA), the
Kolmogorov–Smirnov integral (KSI), a combined performance
index (CPI), and the TCH-based RU.

The rest of this article is organized as follows. Section II
introduces the study area, the integrated hydrologic model,
multisource SM products, and other auxiliary data. Section III
provides the validation methodologies and explains the
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Fig. 1. ParFlow-CLM modeling domain and satellite pixel locations in the middle reaches of the HRB. (a) Location. (b) Grids and landcovers map. (c) Grids and
hydrometeorological stations over DEM map. (d) TDRP and CRNP locations of the Daman superstation.

calculation approaches of impact quantifications and factor
contributions. Section IV presents the assessment results, and
Section V provides a further discussion on SM RU. Finally,
conclusions are summarized in Section VI.

II. STUDY AREA AND DATASETS

A. Study Area and In Situ Observations

The Heihe River, the second largest inland river situated in
arid-semiarid region of Northwestern China, originates from
the alpine region of the Qilian Mountains, flowing north and
terminating in the Juyan Lakes in the Gobi deserts [43]. The
study area is located in the middle reaches of the HRB (hereafter
referred as the mHRB, 38.5°–39.5° N and 100°–101° E), which
is controlled by an endorheic climate with annual precipitation
ranging from 100 to 200 mm and potential evaporation within the
range of 1200–1800 mm [22], [44]. Being famous for its grain
production, the mHRB is covered by a large amount of irrigated
farmland [Fig. 1(b)]. Several irrigation canals have been built
to maintain local agricultural demands. The elevation ranges
from 1303 to 4065 m, with Zhangye Basin sitting in the central

section and Longshou Mountain located on the northeastern
edge [Fig. 1(c)].

The in situ SM measurements within the mHRB were es-
tablished during the HiWATER project, which was initialized
in 2012 and designed to be a comprehensive ecohydrological
experiment [21]. In this study, the SM data collected using
the time domain reflectometry probe (TDRP) and cosmic ray
neutron probes (CRNP) [22] were used for validation [Fig. 1(d)].
The TDRP automatically collected SM data at a depth of 2 cm
and 10-min intervals since September 2012. The CRNP was
installed in October 2012 and measured the intensity of ambient
low-energy tertiary neutrons to calculate surface SM with a
radius of 360 m and at an original 10-min interval. All the in situ
data were resampled to daily time steps after standard quality
control processes [45].

B. Multisource SM Products

Ten global surface SM products were considered in this
study for intercomparison, including AMSR, SMOS, and ESA
CCI, as well as the land data assimilation products GLEAM
and GLDAS. Although these SM products were sourced from
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TABLE I
SUMMARY OF THE RS SM PRODUCTS AND PARFLOW-CLM SIMULATED REFERENCE USED FOR INTERCOMPARISON

different technologies (i.e., retrieval, reanalysis and merge, and
assimilation), here they were collectively referred to as “RS SM
products” and distinguished as single RS-source SM, merged
SM, and assimilated SM, respectively. Information on the SM
products is shown in Table I.

1) AMSR (AMSR-E/AMSR2): The AMSR SM products con-
tain two series of products: the pioneer AMSR-E and its suc-
cessor, AMSR2. The AMSR-E on the EOS Aqua satellite was
launched by NASA on May 4, 2002 [8], while the AMSR2
onboard the GCOM-W1 satellite was launched by JAXA on
May 18, 2012 [9]. As the ascending and descending overpasses
of AMSR2 are identical to those of AMSR-E, the term “AMSR”
represents the combination of both products.

Here, we utilized the three most widely used SM products
from the AMSR series: JAXA SM product (version 8 for AMSR-
E and version 3 for AMSR2, hereafter referred to as JAXA
products) [9], [46], [47] and two LPRM SM products (generated
from the C-band and X-band, hereafter referred to as LPRM-
C and LPRM-X products, respectively) [48]. The JAXA SM
data are available at https://www.eorc.jaxa.jp/AMSR/index_en.
html, while LPRM SM data can be found on the NASA Earth
Observation Data website (https://search.earthdata.nasa.gov/).

2) SMOS IC: The SMOS satellite was launched on Novem-
ber 2, 2009, and has since become an invaluable tool for
monitoring key components of the global water cycle. SMOS
provides global coverage at the equator every three days, with an
ascending orbit at 06:00 local solar time and a descending orbit
at 18:00 local solar time [49]. The L-band microwave emission
of the biosphere (L-MEB) model, based on a zero-order radiative
transfer equation, is the forward model used for SMOS SM
retrieval [50]. The newly developed SMOS-IC product (version
1.d) is a recently improved product that corrects some errors
in the initialization of vegetation optical depth (version v.105)
[51] The data can be accessed from https://data.catds.fr/cecsm/
Land_products/.

3) ESA CCI: This study utilized three ESA CCI SM datasets:
the active RS product (referred to as the CCI-A product), which
is generated by fusing four scatterometers based on C-band
observations, the passive RS product (referred to as the CCI-P
product), generated from ten radiometers, and the combined
product (referred to as the CCI-C product), which is a blended
product based on CCI-A and CCI-P results [52]. These datasets

were originally developed by the University of Vienna and can
be accessed from https://www.esa-soilmoisture-cci.org/.

4) GLEAM: Two GLEAM SM datasets (version 3.6),
GLEAM-A and GLEAM-B, were used in this study, which are
generated from different forcing data in the surface layer (0–0.01
m) [53]. GLEAM-A uses radiation and air temperature datasets
from the reanalysis ERA-Interim, while GLEAM-B is driven
by RS datasets [16]. Furthermore, precipitation, snow water
equivalent, vegetation optical depth, and vegetation fractions
are largely driven by RS data for both datasets. Additionally,
both GLEAM-A and GLEAM-B assimilate the CCI-C SM
product. The dataset utilized in this study was obtained from
Vrije University Amsterdam (VU) and can be accessed from
https://www.gleam.eu/.

5) GLDAS: The GLDAS was provided by a joint effort of
NASA’s Goddard Space Flight Center and NOAA’s National
Centers for Environmental Prediction (NCEP). Among the four
available land surface models, the level-4 Noah model [54]
was selected. The GLDAS2 Noah SM data with 0.25° spatial
resolution and a temporal resolution of 3 h were obtained, and
the top layer (0–0.01 m depth) of the output SM was used. Daily
averaged values were employed in this study.

C. Auxiliary Data

The DEM and landcover maps are shown in Fig. 1. Spatial
variation analysis was conducted using eight environmental
factors, namely: 1) DEM; 2) clay content (hereafter referred
to as clay); 3) sand content (hereafter referred to as sand);
4) porosity (Por); 5) saturated hydraulic conductivity (Ks); 6)
organic matter content (OMC); 7) leaf area index (LAI); and
8) root abundance (RA). The LAI data were sourced from the
“30 m month compositing leaf area index (LAI) product of
the Heihe River Basin” [56] and can be downloaded from the
National Tibetan Plateau/Third Pole Environment Data Center.
Soil texture data utilized in this study were obtained from
[57]. The Por, Ks, OMC, and RA data were sourced from
two datasets, namely, “The Global Dataset of Soil Hydraulic
and Thermal Parameters for Earth System Modeling” [58] and
“The Global Soil Dataset for Earth System Modeling” [59]
(http://globalchange.bnu.edu.cn/research/data). These four data

https://www.eorc.jaxa.jp/AMSR/index_en.html
https://www.eorc.jaxa.jp/AMSR/index_en.html
https://search.earthdata.nasa.gov/
https://data.catds.fr/cecsm/Land_products/
https://data.catds.fr/cecsm/Land_products/
https://www.esa-soilmoisture-cci.org/
https://www.gleam.eu/
http://globalchange.bnu.edu.cn/research/data
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TABLE II
SUMMARY OF MODEL PARAMETERS USED IN PARFLOW-CLM SIMULATIONS

were also resampled to a spatial resolution of 0.005° to fit the
ParFlow-CLM grid.

III. METHODOLOGY

A. ParFlow-CLM Model

The reference SM in this validation study was simulated
by the integrated hydrologic model ParFlow-CLM [60], [61],
which couples the ParFlow model for simulating groundwater
[62], [63] and the Common Land Model (CLM) [64], and
thus feasible for simulating regional SM with high-resolution.
ParFlow-CLM solves the three-dimensional variably saturated
groundwater flow and surface flow in a globally implicit
manner; the land-surface formulation includes radiation budget,
plant water use, land-energy balance, and snow processes. More
information on the ParFlow-CLM can be found in Maxwell
and Condon [65], and here, we only provide the water budget
calculation as follows [28]:

Prain + Psnow +Rirri +Rin −Rout +Qin −Qout − ETveg

− Edir = ΔSsoil +ΔSsurf +ΔSgw +ΔSsnow (1)

where Prain, Psnow, Rirri, Rin, Rout, ETveg, and Edir

represent rain, snow, anthropogenic irrigation, inward overland
flows, outward overland flow, subsurface influx, subsurface
outflux, transpiration, and evaporation from barelands,
respectively. Qin and Qout denote groundwater flux to deeper
reservoirs and downstream from the mHRB. ΔSsoil, ΔSsurf ,
ΔSgw and ΔSsnow represent the soil reservoir, surface water
ponding, groundwater reservoirs, and snow water equivalent,
respectively. All the components of the water budget in (1) are
in unit volume per time.

In this study, the ParFlow-CLM model was horizontally dis-
cretized at a 0.005° (−500 m) spatial resolution with 8 vertical
layers with a total thickness of 102 m. The top layer was 0.045 m,
and a free overland surface boundary condition was employed
for continuity of pressure and flux at the surface–subsurface
interface. The DEM data used to calculate x- and y-direction
slopes was derived from the “30 m Aster-gdem Data in Qilian
Mountain Area” [66]. The land cover map was obtained from
the “Landcover dataset at Qilian Mountain area (V1.0)” [67].
The original spatial resolutions of both datasets were 30 m
and then were resampled to the same criteria as those of the
ParFlow-CLM. The model parameters, including van Genuchten
parameters, Manning coefficients, subsurface geology proper-
ties, and vegetation properties, are listed in Table II.

The forcing data consists of the hydrometeorological data and
agricultural water use data. The required atmospheric forcings
of ParFlow-CLM (i.e., temperature, precipitation, specific hu-
midity, longitudinal and latitudinal wind speeds, and downward
longwave and shortwave radiations) were obtained from the
gridded outputs by Weather Research and Forecasting (WRF)
model simulations [68]. Considering the extensive usage and
the associated effects of irrigation on the regional water and
energy budgets, the agricultural water use including both surface
water and groundwater irrigation, was derived from the Irriga-
tion Datasets with 30 s spatial resolution over the entire HRB
[69], [70]. Subsequently, irrigation is applied to the surface as
spray irrigation. The irrigation schedule was made on an hourly
basis throughout the growing seasons according to the Zhangye
Water Affairs Bureau (www.zhangye.gov.cn/swj/). All the data
could be accessed from the National Tibetan Plateau Data
Center/Third Pole Environment Data Center (http://data.tpdc.
ac.cn/).

www.zhangye.gov.cn/swj/
http://data.tpdc.ac.cn/
http://data.tpdc.ac.cn/
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The ParFlow-CLM simulation began with a 3-year spin-up
(2008–2010) followed by a 3-year simulation (2011–2013). The
initial time step was hourly based but outputted at daily scale.
Differences between ET and I were calculated as well to obtain
the response of SM products to I-ET.

B. Validation Methodologies (Statistical Performance
Indicators)

As previously noted, assessments and quantitative analyses of
SM products and their behaviors are crucial for understanding
the terrestrial water cycle. Previous studies have tended to focus
on a particular aspect, such as qualitative analysis of deviation
against observations. For decades, RS SM validation has relied
on simple conventional statistical indicators, such as MAD,
RMSE, and coefficient of determination [26], [29]. Compre-
hensive assessments are absolutely necessary by providing a
multiclass evaluation. Therefore, in this study, we proposed an
overall statistical indicator validation methodology to validate
the SM [32].

The overall statistical indicator validation methodologies
were first introduced in Gueymard [32] in solar product fields.
Here, we revised the forms of validation indicators to better
understand the overall performance of ten SM products. The
statistical candidate indices and index metrics commonly em-
ployed in performance assessment can be classified into four
categories as follows:

1) Indices representing the deviation (as for other model data)
or error (as for in situ data) of individual points, of which
the value would be 0 for a perfect match or ideal model.

2) Indices representing holistic performance (as for time-
series-self-correlation) or mutual coherence (as for cross-
correlation), of which the value would be 1 for a perfect
match.

3) Indices representing distribution conformity, of which the
value would be 0 for a perfect match.

4) Indices exploring the relative uncertainties.
More information about statistical indices and formulas can

be found in [31] and [32].
In what follows, the ith simulated SM data (reference) point

is noted as si, and the ith RS estimated SM data (target) point
is noted as ti. The average values of simulated SM data and
RS estimated SM data are noted sm and tm, respectively. N
is the number of the data points. The ith estimated-modeled
difference (or error) is ti − si. Unlike the absolute units used
in some validation studies (e.g., [17], [30], [31], and [73]), the
stating expression of the sm value was converted back to the
percent form, which is consistent with [32].

1) Class 1—indicators of dispersion: MAD, which is also
referred as the mean absolute deviation or mean absolute error

MAD =

(
i=N∑
i=1

|ti − si|
)
/N. (2)

MBD, which also refers to the mean bias deviation or mean
bias error

MBD =

[
i=N∑
i=1

(ti − si)

]
/N. (3)

RMSE is also referred to as the root mean square difference

RMSE =

[
i=N∑
i=1

(ti − si)
2/N

]1/2
. (4)

SD is calculated as follows:

SD =

⎡
⎣i=N∑

i=1

N(ti − si)
2 −

〈
i=N∑
i=1

(ti − si)

〉2
⎤
⎦
1/2

/N. (5)

U95 is calculated as follows:

U95 = 1.96
(
SD2 + RMSE2

)1/2
. (6)

TS is calculated as follows:

TS =
[
(N − 1)MBD2/

(
RMSE2 − MBD2

)]1/2
. (7)

MAD, MBD, and RMSE are fundamental in RS retrieval
and validation, while U95 and TS are less common in the RS
field than former ones. Similarly, they convey relatively similar
information, with the cosmetic advantage that a smaller value
indicates a better SM retrieval.

2) Class 2—indicators of overall performance: R-Pearson is
calculated as follows:

R− Pearson =

∑i=N
i=1 (ti − tm) (si − sm)[∑i=N

i=1 (ti − tm)2
∑i=N

i=1 (si − sm)2
]1/2 .

(8)
R-Spearman is calculated as follows:

R− Spearman = 1− 6

i = N∑
i = 1

(ti − si)
2/
(
N
(
N2 − 1

))
. (9)

SBF is calculated as follows:

SBF =

[
i=N∑
i=1

(ti − tm) (si − sm)

]
/

[
i=N∑
i=1

(si − sm)2
]
.

(10)
NSE is calculated as follows:

NSE = 1−
[
i = N∑
i = 1

(ti − si)
2

]
/

[
i = N∑
i = 1

(si − sm)2
]
. (11)

LCE is calculated as follows:

LCE = 1−
[
i = N∑
i = 1

|ti − si|
]
/

[
i = N∑
i = 1

|si − sm|
]
. (12)

WIA is calculated as follows:

WIA = 1

−
[
i = N∑
i = 1

(ti − si)
2

]
/

[
i = N∑
i = 1

(|ti − sm|+ |si − sm|)2
]
.

(13)

R-Pearson, R-Spearman, and SBF vary between 1 for a perfect
positive match and −1 for a negative match, whereas 0 is
total disagreement. LCE and NSE vary between 1 for perfect
agreement and−∞ for complete disagreement. The WIA varies
only between 1 and 0.
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3) Class 3—indicators of distribution similitude: Here, the
goal is to compare one or more cumulative frequency distribu-
tions of modeled data to those of a reference dataset. The KSI
and CPI were utilized.

KSI is calculated as follows:

KSI =
100

Ac

Xmax∫
Xmin

Dndx (14)

whereDn is the absolute difference between the two normalized
distributions within irradiance interval n. Xmax and Xmin are
the maximum and minimum values of the binned reduced irra-
diance, x, and Ac is a characteristic quantity of the distribution

Ac = Dc (Xmax −Xmin) (15)

where the critical value Dc is a statistical characteristic of the
reference distribution, defined as a function of its number of
points, N

Dc = Φ(N) /N1/2 (16)

where Φ(N) is a pure function of N, for which an accurate
numerical approximation has been obtained. Here, we assume
that Φ(N) is a constant Φ (N) = 1.63.

CPI is defined as follows:

CPI = (KSI + RMSE) /2 (17)

where all values are expressed in the same unit as that of SM.
KSI and CPI both vary between 0 for perfect agreement and ∞
for complete disagreement. The cons and pros of the evaluation
indicators and detailed guidelines can be found in [32].

4) Class 4—indicators of relative uncertainties: The TCH
method facilitates the solution of estimating SM uncertainties
with no prior knowledge. Fundamentally, the TCH method
allows more than three SM products to take part in the calculation
simultaneously, with a tolerance to the error cross-correlation.
At a certain RS grid, TCH splits each SM time series of the
observations into two terms

Ti = P0 + εi, i = 1, · · · , N (18)

where P0 is the true SM value at the grid scale and εi represents
the corresponding error. The TCH-based RU is

RUi =

√
rii
Ti

, i = 12, · · · , N (19)

where rii is the unknown diagonal element of the εi covariance.
Detailed methodologies of both TCH theory and TCH-derived

RU equations are well documented in [31].

C. Definition of the Variation Coefficient

The variation coefficient (CV) is defined as follows:

CV =

√∑i=n
i=1 (vi − v̄)2/n

v̄
, i = 1, 2, · · · , n (20)

where vi and v̄ are the ith, averaged value of SM and other
environmental factors of 0.005° variables within a 0.25° grid. n
is the sample number of the subgrids. Specifically, SM, DEM,

Clay, Sand, Por, Ks, OMC, LAI, and RA participated in the CV
calculations.

D. Contribution of Environmental Factors to SM Uncertainty

The generalized additive model (GAM) was utilized to quan-
tify the contributions of each factor to the total deviance of the
ten SM RUs. GAM has been widely used in practice with its
availability of statistically well-founded smoothing parameter
estimation methods that are numerically efficient and robust
[74]. Provided that gi(RUi) can be represented via several basis
expansions of environmental factors (ψi), the form of GAM is
written as follows [75]:

gi (RUi) = α+
i = M∑
i = 1

fi (βiψi) + ε (21)

where RUi is the TCH-based RU and gi is the link function.
M (M = 7 + 1) is the number of environmental factors along
with the sample size. α and βi are unknown coefficients, and fi
are unknown basis functions used for smoothing environmental
factorsψi. ε is the total error term. The GAM model (version 1.8-
40) can be accessed from https://rdocumentation.org/packages/
mgcv/versions/1.8-40. For more details on the GAM algorithm,
please refer to [74] and [75], while two examples in calculating
contributions to RS SM can be found in [31] and [76].

IV. RESULTS

A. Validation of the ParFlow-CLM SM Simulation

The ParFlow-CLM simulated SM was first validated against
two groups of in situ observations from the Daman meteoro-
logical superstation. The TDRP only probe a very small soil
volume while the CRNP is better suited for the validation of
satellite-based SM products due to larger footprint area (with
a horizontal radius of about 360 m in the mHRB [45]). Fig. 2
displays the comparison of the ParFlow-CLM simulation with
TDRP and CRNP SM observations for the Daman superstation.
The observed SM data are the reference (si), and the simulated
SM data are the target (ti). The low RMSEs (< 0.06 m3/m3) and
relatively high NSE indicated that the ParFlow-CLM simulation
and observations are consistent in SM variations. The R-Person
values were 0.83 and 0.93, while the R-Spearman values were
0.73 and 0.87 against TDRP and CRNP, respectively, demon-
strating that the three SM time series were in good agreement.
It is noted that ParFlow-CLM simulated results were almost
equally distributed around the 1:1 line with TDRP and CRNP
SM observations [Fig. 2(b)], demonstrating that the accuracy of
the simulated SM. All the three SM time series can capture
rainfall events with different magnitudes. Moreover, effects
of irrigation on SM were identified through SM time series
fluctuations from June to September. In winters, ParFlow-CLM
SM continuously decline similar to observations. This showed
that ParFlow-CLM simulation captured the temporal variation
of both TDRP and CRNP SM measurements. All these revealed
that ParFlow-CLM SM simulations agreed well with TDRP and
CRNP observations and could fully reflect seasonality features
of SM.

https://rdocumentation.org/packages/mgcv/versions/1.8-40
https://rdocumentation.org/packages/mgcv/versions/1.8-40


8 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 2. Comparison of the ParFlow-CLM SM simulation (ParFlow-CLM Sim) with TDRP and CRNP SM observations (Daman TDRP Obs and Daman CRNP
Obs) for the Daman superstation. (a) Three SM time series in 2013. (b) Scatter plot in the corresponding period. The unit of RMSE is m3/m3.

TABLE III
ERROR METRICS OF TEN SM PRODUCTS

Compared with the TDRP SM time series data, the ParFlow-
CLM SM had a tendency similar to that of CRNP, owing to
different spatial scales. According to Montzka et al. [77], the
CRNP approach is better suited for evaluations of satellite-based
SM products because it integrates small-scale spatial variations
in SM [78]. The validated results demonstrated that the SM
simulated by ParFlow-CLM exhibited a higher degree of sim-
ilarity to the SM dynamics obtained from the CRNP, along
with better correlation. This suggests that the ParFlow-CLM
SM simulation is capable of representing SM fluctuations at
kilometer scale, thus providing an enhanced reference dataset
for validating single-source RS, merged, and assimilated SM
products. Notably, the time-series of the TDRP SM presented
a discontinuity period, which could be attributed to the inclu-
sion of extra hydrogen sources. This observation reinforces the
potential of using hydrologic model simulations as a reliable
reference dataset, exhibiting improved time-series continuity,
for validating SM products [79], [80].

B. Performance of Ten SM Products

All available SM estimates for each product during the
whole period (2011–2013) were evaluated to obtain the accurate

statistical indicators for the purposes that users can utilize these
SM products directly [17]. First, AMSR and SMOS RS SM
data were resampled to daily time steps after quality control
processes. GLDAS 3-h SM data were also merged to daily scale.
All the results of the statistical performance indicators are listed
in Table III.

1) Time-Series Comparisons and Performance Statistics:
The time series for all SM products are plotted in Fig. 3(a).
It is observed that the JAXA SM product exhibited a signifi-
cantly limited dynamic range. Both LPRM-X and LPRM-C SM
exhibited larger dynamic ranges compared with ParFlow-CLM
simulations. Bindlish et al. [81] found that LPRM SM products
have huge anomalous SM retrievals that are greater than the
soil porosity over the Little Washita watershed, which was
consistent with our study in the mHRB. Lu et al. [73] attributed
this phenomenon to the erroneous estimation of the vegetation
optical thickness. SMOS-IC SM had the largest variations with
several discontinuities after quality controls. The three CCI
SM products tended to underestimate the ParFlow-CLM SM
to different extents. However, the distribution of CCI-C SM was
close to that of ParFlow-CLM SM. The SM time-series data
pairs of GLEAM-A, GLEAM-B, and GLADS were the same as
ParFlow-CLM [see Fig. 3(d)] because they could all be regarded
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Fig. 3. Comparisons of ParFlow-CLM SM and ten SM products. (a) Time series of the domain-averaged ParFlow-CLM SM and ten SM products during
2011–2013. (b) Scatter plot of ten SM products showing the overall performance. (c) Rose diagram of correlations of ten SM products with I-ET. (d) Bar graph
showing data pairs of SM products involved in the comparisons.

Fig. 4. Spatial distribution patterns of eight environmental factors. (a) DEM. (b) Sand (sand content in %). (c) Clay (clay content in %). (d) Por (Porosity).
(e) Ks (saturated hydraulic conductivity in cm/day). (f) MOC (Organic matter content). (g) LAI (Leaf area index). (h) RA (Root abundance).

as “modeled SM” [17]. Additionally, the averages and variances
of these three SM products were similar to those of the ParFlow-
CLM SM, with smaller ranges. The overall performance shown
in Fig. 3(b) was based on R-Pearson calculated using all nine
RS grid data. The LPRM-X, LPRM-C, GLEAM-A, GLEAM-B,

and GLDAS SM retrievals are near-equally distributed around
the 1:1 line against the ParFlow-CLM data.

Table III shows the overall statistical indicators for the ten
SM products against the ParFlow-CLM SM. For the deviation
or error of SM time-series statistics (Class 1), GLDAS SM
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Fig. 5. Impacts of spatial variations in SM estimation using heatmaps. (a)
Biases of ten SM products against ParFlow-CLM on the nine 0.25° grids as well
as the entire domain. (b) CVs (variation coefficients) of SM and environmental
factors on the nine 0.25° grids as well as the entire domain. Note that the
“SM” here is the original 0.005° ParFlow-CLM SM. “Max|10bias|” denotes the
maximum value of the absolute bias of ten SM products. This value is plotted to
better detect the connections between the environmental variable heterogeneities
and SM biases.

had a low MAD value of 0.05 m3/m3, a small RMSE value
of 0.054 m3/m3. The minimum U95 value was 0.142 m3/m3

indicating that its SM points were highly close to ParFlow-CLM
SM. Almost all the RS SM underestimated the ParFlow-CLM
SM, with negative MBD values, while GLEAM-A SM had the
smallest value (−0.026 m3/m3). The SD indicators showed that
CCI-C performs the best since it had the lowest standard devi-
ation with ParFlow-CLM SM (0.044 m3/m3). For an integrated
statistic TS, LPRM-X depicted the smallest value of 8.3 m3/m3.
In the second category statistics (Class 2), the NSE, LCE, and
WIA values of GLEAM-B SM were the largest, which were
0.26, 0.22, and 0.54, respectively. Unlike these three efficiency
coefficients, the CCI-A SM had the highest SBF with a value of
0.27. In the correlation statistics, GLDAS and JAXA SM had the
largest R-Pearson and R-Spearman values of 0.619 and 0.601,
respectively. In the third category statistics (Class 3), LPRM-X
SM was the best performing SM product, with KSI and CPI
values down to 0.16 and 0.13, respectively. In a statistical sense,
the distributions of LPRM SM and ParFlow-CLM SM can be
considered identical. Here we can find that the error metrics in
Class 1 mainly show the deviations while statistics of Class 2

primarily depict the mutual coherence. Statistical indicators in
Class 3 represent the entire distribution conformity.

For the TCH-based RU results (Class 4), GLDAS had the
smallest value, while SMOS-IC obtained the largest value. Con-
sidering that GLEAM-B and GLDAS participated in RU calcula-
tions, the CCI-C SM gave the lowest RU value (13.18%) except
for these two SM products involved. In summary, merged SM
and assimilated SM products outperformed single RS-source
SM products. These results were similar to SM validation using
in situ networks (e.g., [82], [83], [84], [85], [86], and [87]). All
the validation results concluded that JAXA SM shows underes-
timations, and LRPM SM shows overestimations in the mHRB.
Additionally, the merged and assimilated SM outperformed the
single-source RS SM products. In general, the GLEAM-B and
GLDAS SM products exhibited higher levels of accuracy. Fur-
thermore, assimilated or merged products demonstrated superior
performance compared with individual RS-based SM products.
The GLDAS SM product demonstrated the highest level of ac-
curacy, which can be attributed to its extensive calibration using
ground-based observations (https://disc.gsfc.nasa.gov/datasets/
GLDAS_NOAH025_3H_2.1/). Additionally, the ESA and VU
continuously release new versions of CCI and GLEAM SM
products to achieve better precision. Gruber et al. [52] stated that
one of the goals of the ESA CCI SM merging algorithm devel-
opments was to improve the performance statistics. Therefore,
the single RS-source SM products need to be improved using
more in situ observations and high temporal-spatial resolution
simulated results (such as ParFlow-CLM) for evaluation and
calibration.

In summary, for Class 1 (indices representing the deviation),
CCI-C SM had the smallest SD value while GLEAM-A had
the smallest MBD value. The TS value of LPRM-X was the
smallest. The MAD, RMSE and U95 values of GLDAS SM were
quite minimum. In indicators of Class 2 (representing holistic
performance), the NSE, LCE, and WIA values of GLEAM-B
SM were the largest. The R-Person and R-Spearman values of
GLDAS SM were the largest while the CCI-A SM had the largest
SBF value. In indicators of Class 3 (representing distribution
conformity), LPRM-X SM had the smallest KSI and CPI values.
Lastly for the Class 4 (TCH-based RU results), GLDAS SM had
the smallest value.

2) Response of SM Products to I-ET: In addition to the
temporally compared results presented in Fig. 3(a), correlations
between SM and I-ET (infiltration - evapotranspiration) were
investigated with daily step simulations. As shown in Fig. 3(a),
ET varies significantly in the mHRB region, and the largest
ET values occur during the monsoon season (from June to
September). It was usually generated after precipitation events.
We found that almost all the RS time-series SM products respond
to variations in I-ET to different extents. Only LPRM-X and
LPRM-C SM showed poor agreements with I-ET.

Fig. 3(c) shows the correlations between ten SM products
and ParFlow-CLM I-ET simulation. JAXA had the highest
R-Pearson/R-Spearman (0.423/0.496) among all the validated
SM products, showing that it is the most sensitive to vertical
moisture changes. Although the statistical performance indica-
tors of JAXA showed poor agreement with ParFlow-CLM SM

https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/
https://disc.gsfc.nasa.gov/datasets/GLDAS_NOAH025_3H_2.1/
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Fig. 6. Deviance explained by LAI related to the TCH-based SM RU (relative uncertainties). (a) JAXA, SMOS and CCI-A. (b) CCI-P, CCI-C, GLEAM-A,
GLEAM-B, and GLDAS. Dark lines are GAM effect splines. Grey shadow portion represents the middle 90% (5%–95%) of all samples.

variations, they were relatively more linked to temporal I-ET
variability. Therefore, JAXA SM has strong application potential
in moisture memory calculations and drought identifications
[34], [88], such as a pulse-reserve indicator in the soil–plant
continuum water balance [89]. Both LPRM-C and LPRM-X SM
showed negative correlations with I-ET, meaning that LRPM
SM products need to be improved in capturing the dynamics
of vertical moisture movements. For the rest, all the merged
or assimilated SM products (namely, CCI-A, CCI-P, CCI-C,
GLEAM-A, GLEAM-B, and GLDAS) had a weak positive
correlation with I-ET, which met basic expectations [6]. In
summary, JAXA had high sensitivity to I-ET while LPRM-X
and LPRM-C failed to capture the dynamics of I-ET.

C. Impacts of Environmental Factors on SM Products

Ks and porosity play an important role in the propagation
of the head potential fluctuation in subsurface flow simulations
which strongly affect the SM [90]. The soil texture and organic
matter content factors are also sensitive to SM changes [81].
Meanwhile, the LAI and RA are significant vegetation factors
in SM retrievals and assimilations [83], [91]. To understand the
impact of each parameter on SM products, the spatial variations
in the eight environmental factors (i.e., DEM, sand, clay, Por, Ks,
OMC, LAI, and RA) were calculated, quantitatively estimated,
and qualitatively analyzed. Fig. 4 maps the spatial distribution
patterns of eight environmental factors. The null value was
neglected in calculating the variation coefficients.

Fig. 5 presents the CVs of SM and environmental factors (b),
together with the biases of SM products against ParFlow-CLM
SM (a). Here, the term “Max|10bias|” denotes the maximum
value of the absolute bias of ten SM products. This value is plot-
ted to better detect the connections between the environmental
variable heterogeneities and SM biases. Overall, the largest bias
of the ten SM products against the ParFlow-CLM SM occurs
in grids 2 and 5 [Fig. 5(a)]. Additionally, the greatest values of
CVs in SM are generated in grids 2 and 5, indicating that the
spatial variation is a nonnegligible element in RS SM.

Specifically, the CVs of Sand and Clay are relatively low
(<0.9) and have small influences on SM variations. The CV
of the DEM shows a one-way correlation with the CV of SM.
That is, grids with large DEM CV values also have high SM CV
values, indicating that DEM CV is an unnecessary but sufficient
condition for SM CV. Por, OMC, and RA also have similar
impacts as DEM on SM CV. Most importantly, the CVs of Ks
and LAI have a strong correlation and consistency with SM
CV. This indicates that Ks and LAI are dominant factors in SM
spatial variations, which can represent the largest contributions
of soil physical properties and overlying vegetation properties.
Especially for Ks, the Ks CV values not only have a strong
correlation with SM CV but also show consistency with the
Max|10bias| values.

Overall, according to the impact patterns, we can classify
the environmental factors into three categories (ranking from
lowest to highest): 1) unnecessary and insufficient conditions,
such as sand and clay; 2) unnecessary but sufficient conditions,
such as DEM, Por, OMC, and RA; and 3) necessary and suf-
ficient conditions, such as Ks and LAI. Previous studies (e.g.,
[82] and [84]) declared that the impacts of vegetation-related
indices are generally larger than those of soil texture and that
terrain complexity has an intervening impact. We expanded the
involved environmental factors and provided their connections
with SM products. Here we found that the variation coefficients
of Ks and LAI had a strong correlation and consistency with
the SM variation coefficient. This indicated that Ks and LAI,
representing the contributions of soil physical properties and
overlying vegetation properties, were dominant factors in SM
spatial variations.

V. DISCUSSION

A. Relationship Between SM RU and Environmental Factors

In this study, we provide a comprehensive validation of ten
multisource SM products against ParFlow-CLM simulations.
A set of fifteen direct statistical performance indicators along
with the TCH-based RU were utilized for the evaluations. These
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Fig. 7. Scatter plots of TCH-based relative uncertainties (RU) and fourteen other statistical indicators. Lines are fitting curves using linear (for MAD, −MBD,
RMSE, SD, U95, TS, SBF, NSE, LCE, WIA) and nonlinear (for R-Pearson, R-Spearman, KSI, CPI) fitting functions. Error bars represent the standard deviations
of RU against other statistical indicators and plotted in vertical extension of each point. Fitting degree parameters with values of P-Person ≥ 0.8 and R2 ≥ 0.6 are
considered strong correlation relationships, and therefore corresponding parameters are marked in bold.

indicators have been commonly used in RS SM assessments
during the past decades (e.g., [17], [20], [92], [93], [94], and
[95]). However, the relative uncertainties were newly introduced
to RS SM assessments [33], [96], [97], [98]. Subsequently, the
key drivers for spatial variations of RS SM estimations were
explored. Moreover, the linkages between SM RUs and other
statistical performance indicators were discussed.

The drivers of eight environmental factors for TCH-based RU
were explored using the GAM models. First, for a better balance
in quantifying environmental factors, the relative elevation was

picked by subtracting the minimum value of elevation. Then,
the SM products were spatially resampled to obtain an SM RU
matrix in ParFlow-CLM. Several screening procedures were
conducted because the effects of sample size and data continuity
must be carefully treated [31], [75]. The statistics of the first and
second maximum contributing environmental factors are shown
in Table IV. The GAM model was used to carry out the deviance
explanation, which is related to ten SM relative uncertainties.
The adjusted R2 in each GAM model is also shown in Table IV.
Both LPRM SM products are not included due to their adjusted
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TABLE IV
STATISTICS OF THE FIRST AND SECOND MAXIMUM CONTRIBUTING ENVIRONMENTAL FACTORS (TO TCH-BASED SM RELATIVE UNCERTAINTIES) AND THEIR

CONTRIBUTION FRACTIONS

R2 values being lower than 0.3. Results showed that LAI and
RA had a decisive influence on SM RU. In particular, the LAI
was the first dominant factor in almost all the SM products.

We find that the upper vegetation conditions, which include
LAI and RA, have a decisive influence on SM RU accuracy.
Almost all the merged and assimilated SM products are mainly
impacted by LAI, possibly due to the anthropogenic influences,
which include grain production, plantations, and wetland park
development. All these human activities can strongly change
LAI and therefore perturb SM variables. Therefore, in-depth
analysis is needed to further explore the quantitative impacts of
LAI on the TCH-based SM RU.

Fig. 6 displays the impacts of LAI on the TCH-based SM RUs,
(a) for single RS-source SM products and (b) for merged SM and
assimilated SM products. Specifically, the RU of JAXA initially
decreased slightly and then exhibited an undulating increase
until LAI reached 0.6. The RU of SMOS showed a decreasing
trend before LAI reached 0.2, followed by a continuous increase
thereafter. The RU of CCI-A exhibited a slight decrease and then
remained constant, while the RU of CCI-P displayed a sharp
decrease before starting to increase from LAI = 0.5. For CCI-C,
the change pattern was similar to CCI-P with smaller magni-
tudes. In contrast, for assimilated SM products [GLEAM-A in
blue, GLEAM-B green, GLDAS in pink in Fig. 6(b)], the RUs
exhibited a monotonic decrease as LAI increased. This indicated
that the impacts of LAI on these SM products were weaker
than those of single RS-source SM products. This conclusion
was similar to that of Liu et al. [31], which was obtained over
the Qinghai–Tibet Plateau. Therefore, we can conclude that the
impacts of upper vegetation layers on assimilated SM products
are small. However, we can see that the RUs of GLEAM-A and
GLEAM-B are larger than 10% when the LAI was smaller than
0.1 (under sparse vegetation or bare land).

B. Linkage Between SM RU and Other Statistical
Performance Indicators

Liu et al. [31] reported that the RUs and RMSE indices had
good consistencies, which showed that the RUs share some
mathematical connections with statistical performance indica-
tors. Here, we performed a comprehensive analysis to find the
precise relationships between the relative uncertainties and other
statistical performance indicators.

Fig. 7 maps the comparisons of indicators of Class 1, Class 2,
Class 3, and RU. Scatter plots of TCH-based RU and fourteen
other statistical indicators of ten SM products, which were
obtained in performance validation, are used here to draw the
panels. Here, we define P-Person≥ 0.8 or R2 ≥ 0.6 as an intrinsic
strong correlation relationship. As shown in Fig. 7, MAD, U95,
NSE, and CPI showed different types consistent with TCH-
based RU. The MAD and U95 displayed a strong positive linear
correlation with RU, while the NSE showed a strong negative
linear correlation. Furthermore, the CPI exhibited a nonlinear
correlation relationship with RU with polynomial fitting. This
indicates that in a statistical sense, MAD, U95, NSE, and CPI
can be utilized as substitutes for quantifying the SM RU.

VI. CONCLUSION

This study aimed to perform a comprehensive validation of ten
SM products (namely, JAXA, LPRM-C, LPRM-X, SMOS-IC,
CCI-A, CCI-P, CCI-C, GLEAM-A, GLEAM-B, and GLDAS)
using a set of statistical performance indicators in the middle
reaches of the HRB. Forced by hydrometeorological and agri-
cultural water use reanalysis data (including both surface water
and groundwater irrigations), an integrated hydrologic model
(ParFlow-CLM) was built to provide the reference SM data
because of its superior performance in simulating SM [28], [99],
[100]. Ten SM products were evaluated against the ParFlow-
CLM simulations by a comprehensive evaluation framework
composed of fifteen statistical performance indicators, which
was classified into four categories as indicators of dispersion,
overall performance, distribution similitude, and RU. Moreover,
eight environmental factors (DEM, clay content, sand content,
porosity, saturated hydraulic conductivity, organic matter con-
tent, leaf area index, and root abundance) were utilized to explore
the drivers for spatial variations of these SM products. The
precise correlations between the relative uncertainties and other
statistical performance indicators were also investigated. The
main findings are summarized as follows:

1) The ParFlow-CLM simulation and SM observations were
observed to be in reasonable agreement for a holistic
performance. The R-Person values were 0.83 and 0.93,
while the R-Spearman values were 0.73 and 0.87 against
TDRP and CRNPs, respectively, indicating that the sim-
ulation and observations match well with the magnitude
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of the SM variations. Moreover, compared with TDRP
SM time series, ParFlow-CLM SM was closer to that of
CRNP, owing to different spatial scales. This indicated that
ParFlow-CLM SM simulation can capture SM variations
at spatial scale and is a better reference data for validating
SM products.

2) For Class 1 (indices representing the deviation), CCI-C
SM had the smallest SD value while GLEAM-A had the
smallest MBD value. The TS value of LPRM-X was the
smallest. The MAD, RMSE and U95 values of GLDAS
SM were quite minimum. In indicators of Class 2 (rep-
resenting holistic performance), the NSE, LCE, and WIA
values of GLEAM-B SM were the largest. The R-Person
and R-Spearman values of GLDAS SM were the largest
while the CCI-A SM had the largest SBF value. In indi-
cators of Class 3 (representing distribution conformity),
LPRM-X SM had the smallest KSI and CPI values. Lastly
for the Class 4 (TCH-based RU results), GLDAS SM had
the smallest value.

3) In general, merged SM and assimilated SM outperform
single-source RS SM products. JAXA SM had a very
low dynamic range, while SMOS-IC SM had the largest
variations. The accuracy of LPRM-X SM was higher than
that of LPRM-C SM. The CCI-A, CCI-C, GLEAM-A,
GLEAM-B, and GLDAS SM products reflect the seasonal
variations in the mHRB very well with comparably high
temporal correlations over the dense vegetated regions.
Overall, the single RS-source SM products need to be im-
proved using more in situ observations and high temporal-
spatial resolution simulated results for evaluation and
calibration.

4) JAXA has the highest R-Pearson/R-Spearman (0.423/
0.496) among all the validated SM products, showing
that it is the most sensitive to vertical moisture changes.
Although the statistical performance indicators of JAXA
show poor agreement with ParFlow-CLM SM variations,
they are relatively more linked to temporal infiltration-ET
variability. Therefore, JAXA SM has strong application
potential in moisture memory calculations and drought
identifications.

5) The variation coefficients of saturated hydraulic conduc-
tivity (Ks) and leaf area index (LAI) have a strong cor-
relation and consistency with SM variation coefficient.
This indicates that Ks and LAI, representing the contribu-
tions of soil physical properties and overlying vegetation
properties, are dominant factors in SM spatial variations.
In particular, based on the GAM, the LAI is the most
dominant factor with the largest contribution fraction to
SM RU, possibly due to the anthropogenic influences.
Moreover, deviances explained by LAI related to SM
relative uncertainties in merged SM and assimilated SM
are relatively small, demonstrating that the single-source
RS SM products need to be improved over dense vegetated
regions.

6) Comparisons of indicators of Class 1 (representing the
deviation), Class 2 (representing holistic performance),
Class 3 (representing distribution conformity), and SM

RU show that the MAD and U95 have strong positive
linear correlations with RU, while the NSE shows a strong
negative linear correlation. Additionally, the CPI depicts
a nonlinear correlation relationship with RU with polyno-
mial fitting. In total and in a statistical sense, MAD, U95,
NSE, and CPI can be utilized as substitutes for quantifying
the SM RU.

The study domain (mHRB) was a small-sized, semiarid sub-
basin, with an alluvial aquifer that serves as a representative
example of other arid and semiarid basins. Although the current
study might be transferable to other regions, future work is
essential to simulate larger climatic and hydrologic areas to
better understand the performances of SM products. Future
simulations of enlarged domains would also facilitate further
analysis of the impacts of soil and vegetation factors on SM
products as well as the linkage between SM RU and other
statistical performance indicators.
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