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AD-RoadNet: An Auxiliary-Decoding Road
Extraction Network Improving Connectivity While

Preserving Multiscale Road Details
Ziqing Luo , Kailei Zhou , Yumin Tan , Xiaolu Wang , Rui Zhu , and Liqiang Zhang

Abstract—Obtaining Road information from high-resolution re-
mote sensing images is gaining attention in intelligent transporta-
tion systems. Existing road extraction methods tend to improve
road connectivity with graph convolution or global attention, how-
ever, ignore the damage of introduced excessive effective receptive
field (ERF) to multiscale road details. In this study, we propose an
auxiliary-decoding road extraction network named AD-RoadNet,
which decouples multiscale road representation and connectivity
improvement based on two modules; the hybrid receptive field
module (HRFM) and the topological feature representation module
(TFRM). The HRFM is introduced in the encoder to emphasize
target road features through adaptively matching the receptive field
(RF) size for various scale roads, thus, beneficial for multiscale road
representation. The TFRM is introduced in an auxiliary decoder
to represent topological features with the position information
encoded in the shared encoder and then helps the main decoder
reason occluded roads, thus improving connectivity. Between the
encoder and main decoder. The proposed model has a similar
parameter scale as HRNetV2 and outperforms the state-of-the-art
ResUnet, D-LinkNet, and HRNetV2 by 3.34%, 2.03%, and 1.53%
in the mean intersection of union on DeepGlobe road dataset.
Ablation analysis, inference size matter, and the robustness for
unseen occlusion scenarios, low-quality labels, and various quality
inference images are further presented to evaluate the proposed
AD-RoadNet.

Index Terms—Hybrid receptive field (RF), multiscale road
extraction, road connectivity, semantic segmentation, topological
feature.

I. INTRODUCTION

OBTAINING road information is vital in many applica-
tions, such as autonomous navigation [1], autonomous

driving [2], and intelligent transportation system [3]. High-
resolution remote sensing images (HRSI) are widely used in
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producing rich road information and provide probability [4].
However, the following difficulties are still an immense chal-
lenge to extract roads from HRSI: First, there are diverse road
scales and types, including urban trunk roads, urban overpasses,
and rural roads. Not just the wide main roads but also trails and
narrow rural roads are equally essential for road networks. Sec-
ond, different lanes or adjacent roads are commonly confused
due to the lack of clarity in lane marking and diverse median
strips in HRSI. Third, the road connectivity in HRSI is easily
affected by building shadows, green belts, trees, vehicles, etc. [5]

With the continuous development of deep learning tech-
nology, end-to-end semantic segmentation models have been
the mainstream to extract roads from HRSI and have made
remarkable achievements [6], [7]. The first attempt to use an
encoder–decoder structure for semantic segmentation was with
the fully convolutional network [8]. Then, a series of improve-
ments for common semantic segmentation were presented from
the classical models (Unet [9] and SegNet [10]) to the modern
models (DeepLab families [11], [12], [13], [14] and HRNetV2
[15]), then to the current transformer models (SegFormer [16],
UNetFormer [17]) designed for spatial information recovery,
high-resolution semantic segmentation, and high-shape bias se-
mantic segmentation, respectively. In addition, some domain
adaptation methods are used to improve the robustness of road
extraction models, such as [18].

To improve road connectivity based on these methods, road
extraction models frequently design elaborate modules with
graph convolution or global attention to encode more global
contextual features, such as spatial and interaction space graph
reasoning [19], global context-aware (GCA) block [20], spatial
intensifier (DULR module) [21], and separable graph convolu-
tional network (SGCN) [4]. However, these methods excessively
enlarge the effective receptive field (ERF) and damage the mul-
tiroad details while improving connectivity. Taking a two-lane
road as an example, a large ERF will blur the lane boundary and
result in the confusion of lanes, as shown in Fig. 1. Although
there are some few quality works taking their eyes to multiscale
road details, such as DDU-Net [22] and Richer U-net [23], giving
overall consideration on road connectivity and multiscale details
remain a big challenge.

To overcome this problem, an auxiliary-decoding road ex-
traction model termed AD-RoadNet is developed in this article
to improve road connectivity while preserving the multiscale
details. The essential ideas behind AD-RoadNet are as follows:
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Fig. 1. Base map is a picture of a two-lane road. The brighter areas indicate
the RFs. (a), (b), and (c) are feature maps with small, moderate, and large ERFs,
respectively. For the extraction of the road, the semantic feature of the road is
ambiguous on large-scale ERF, while is insufficient on small scale. (a) Small
ERF. (b) Suitable ERF. (c) Large ERF.

1) Adaptively matching the RF size for various scale roads
according to their surrounding features to optimize the
extraction for multiscale and multilane roads.

2) Modeling the spatial location relation among pixels with
the position information encoded through extensive zero-
padding.

3) Decoupling connectivity improvement and multiscale
road representation by adding an auxiliary decoder to help
the main decoder reason the occluded multiscale roads.

Compared to other research studies on road extraction that
focus on elaborate modules designed to learn long-range con-
textual information, our research contributions could be sum-
marized as follows.

1) A novel auxiliary-decoding road extraction network
named AD-RoadNet is proposed to give overall considera-
tion to road connectivity and multiscale details improving
the overall performance of road extractions, especially
for intersections and multilane roads. In the proposed
AD-RoadNet, an auxiliary decoder is embedded before
the main decoder to help connect fragmented segments.

2) HRFM is introduced in the encoder to adjust the RF size
for multiscale roads, which is beneficial for the detection
of lanes and rural roads. In the HRFM, feature maps of
branches with various RF sizes are obtained by stacking
basic convolutions, and the weights for these maps are
computed with respect to their surrounding features to
match the suitable branch.

3) TFRM is introduced in the auxiliary decoder to represent
topological information to help reason occluded roads.
This module utilizes the position information encoded in
the shared encoder to model spatial location correlation
among pixels and does not disturb the multiscale semantic
features fed from the encoder to the main decoder.

II. RELATED WORK

A. Road Network Extraction

Numerous techniques have been developed in other works
of the literature to extract road networks from remote sensing
data. Traditional methods improve road connectivity with proba-
bilistic models by incorporating contextual priors, such as spec-
tral features [22], [23], road geometry [26], and marked point
processes [27]. Song and Civco [24] used statistical spectral
and geometric information as classification criteria to segment
road pixels. Mena and Malpica [28] proposed a technique called
texture progressive analysis to extract road networks in rural and

semiurban areas. These methods utilized handcrafted features
and required complex optimization techniques [29].

In recent deep learning-based techniques, road extraction is
formulated as a segmentation problem [19], [30], [31], [32] us-
ing convolutional encoder–decoder structured models. Among
them, Mnih and Hinton [33] made the first attempt to apply a con-
volutional neural network (CNN) in classifying roads, operating
on the patches. Máttyus et al. [30] proposed an encoder–decoder
structure model and used shortest path algorithms to improve the
connectivity in the postprocessing step. Unet [9] and LinkNet
[34] are two well-known encoder–decoder structures. There are
many improvements based on these models. Zhang et al. [35]
proposed the ResUnet that combines the strengths of resid-
ual learning and U-Net. Chen et al. [36] proposed a recon-
struction bias U-Net, which increased the decoding branches
to obtain multilevel semantic information in the up-sampling.
Wang et al. [34] optimized the D-LinkNet with nonlocal blocks
and gained better performance, with less computational cost as
well as faster convergence. Zao and Shi [23] enhanced the U-Net
with an enhanced detail recovery structure and edge-focused loss
function to obtain complete and accurate results. The abovemen-
tioned methods perform well in segmentation, however, fail to
detect roads obscured by trees or other objects and produce a lot
of fragmented segments.

To improve road connectivity, one main idea is to enlarge the
receptive field (RF) using dilated convolution [11] and detect oc-
cluded roads with extra contextual information. Zhou et al. [37]
improved LinkNet with dilated convolution in DeepGlobe road
extraction subchallenge [38]. Tao et al. [39] designed a spatial
information inference structure to collect contextual information
without introducing invalid context. Another great idea is to
learn road orientation additionally, which was first proposed
by Batra et al. [40]. Yi et al. [5] proposed the Efficient UNet
multitask joint learning model, incorporating an orientation
learning decoding branch to solve the discontinuity problem
in road extraction. This idea shows commendable effectivity
but requires extra effort for road orientation ground-truth. Cur-
rently, due to the great ability for extracting dependencies over
distant regions of graph structure and attention mechanism, a
lot of works [4], [20], [21], [32] utilize them in the encoder
to improve road connectivity. Bandara et al. [19] introduced
graph convolution modeling dependencies between different
spatial regions and other contextual information to represent
road connectivity. Zhu et al. [20] designed the GCA block to the
encoder–decoder structure to effectively integrate global context
features. Zhou et al. [4] proposed a split depth-wise (DW) SGCN
to capture global contextual road information in channel and spa-
tial features and extracted covered roads. These methods show
their effectiveness in improving road connectivity. However, the
blindly introduced excessive ERF destroys the multiscale road
features and is not beneficial for multiscale and multilane roads
which require accurate ERF.

B. Receptive Field in ConvNets

RF is a term originally coined by [41] to describe an area
of the body surface where a stimulus can produce a reflex. For
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existing ConvNets, an RF can be described as a region of input
affecting the value of an output unit [42]. The RF size affects
the scope of extracted information as well as the expression of
semantic information. Generally, it can be calculated layer by
layer as

Rn = Rn−1 + (kn − 1)

n−1∏
i=1

Si (1)

where Rn and Rn−1 are the RF size of the nth and (n−1)th layers,
respectively; kn is the kernel size; Si is the stride size of the ith
layer.

Two common operations to increase RF size are stacking
more convolutional layers and subsampling. For large-scale
image classification, a larger RF size means more effectiveness,
which has been proven by a huge improvement from AlexNet
[43], VGG [44] to ResNet [45]. For semantic segmentation
(also called classification on pixel level), one extra requirement
is preserving spatial information while enlarging the RF size.
Atrous convolution [11], multilevel feature structured models,
such as Unet [9], high-resolution models, such as HRNetV2
[15], and transformer models, such as SegFormer [16], were
developed to deal with this problem. Another problem is the RF
imbalance [46], [47], which means multiscale and multilevel
architectures widely used [21], [23] provided unsuitable RF for
some objects, negatively impacting the segmentation of objects
of varying sizes. For this problem, Liu et al. [48] designed the
scale-layer attention module and scale-feature attention module
to weigh useful information after Atrous spatial pyramid pooling
(ASPP) and skip connection, respectively. Li et al. [49] proposed
an adaptive multiscale deep fusion residual network using the
adaptive feature fusion module to emphasize useful information
and suppress useless information during the multilevel feature
fusion (MLFF). Wang et al. [50] designed the adaptive mul-
tiscale feature extraction module setting the RF according to
feature map size to avoid introducing invalid information. These
methods provide solutions from various perspectives but do not
consider the impact of surrounding features on the required RF
of target roads.

III. METHODOLOGY

To improve road connectivity while preserving great mul-
tiscale details, we propose an AD-RoadNet, which will be
thoroughly introduced in this section. Specifically, we first il-
lustrate the overview of AD-RoadNet for road extraction from
HRSI. Then, the two designed modules, HRFM and TFRM, are
introduced sequentially.

A. Pipelines of Proposed Model

The proposed AD-RoadNet comprises of the following four
parts; an encoder, an auxiliary decoder, and the main decoder,
our pipelines are shown in Fig. 2.

The encoder was designed for extracting multiscale semantic
features with hybrid RFs. Specifically, each intermediate fea-
ture map is followed with a basic residual block [as shown
in Fig. 3(a)] to provide a basic RF size. Where output_stride

Fig. 2. Pipeline of the proposed networks. The HRFM is introduced in the
encoder to adjust the RF size for target roads according to their surrounding
features, while the TFRM is used in the auxiliary decoder to represent topological
feature and the high-resolution feature is preserved.

Fig. 3. Diagram of basic residual block and parallel down-sampling. (a) Basic
residual block. (b) Parallel down-sampling.

[10]> = 4, an HRFM is extra arranged in front of the residual
block to guarantee the flexibility of RF size. This combination
goes deeper with 1:2:4 to extract the superior road information.
The ratio is determined experimentally, and the output_stride
of the final feature map is 16, similar to the common semantic
segmentation networks [50], [51]. In addition, we experimen-
tally observe that two subsampling operations, max-pooling,
and convolution with a stride of 2, have their own advantages
in filtering invalid textures and refining road edges. We shall
be combining the two operations using a parallel method to
subsample the feature map, as shown in Fig. 3(b).

The auxiliary decoder utilizes TFRM to represent road topo-
logical information, using the deep and various levels feature
maps as input. This part allows extracting multilevel topological
features without disturbing the multiscale semantic features fed
to the main decoder.

We repeated residual blocks four times to replace the skip
connection between high-resolution feature maps. With this
connection, we optimize the extracted road details without the
common MLFF to reduce the introduced invalid context infor-
mation [48].
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Fig. 4. (a) Diagram of HRFM. (b) Diagram of RFWL. (c) Diagram of channel
attention. The lower figure (a) annotation of the upper figure (a). Conv[3 × 3,
N−d] denotes a convolution operation with the filter size of 3 × 3 and the output
channel of d. Similarly, the Conv[1× 1, N−d], Conv[1× 1, N/2−d], Conv[1× 1,
3N/4−d] change the filter size and output channel to corresponding number.

The main decoder receives the following three features; the
multiscale semantic feature, the multilevel topological feature,
and the high-resolution feature, which are received from the
encoder, auxiliary decoder, and high-resolution feature to cor-
porately extract satisfactory results.

In terms of loss functions, we use a combination of binary
cross entropy loss and dice loss, as shown in (2). Binary cross
entropy is a common loss function for semantic segmentation,
while the dice coefficient is widely used to highlight the fore-
ground class (here is the road) [52]

Loss = − 1

N

N∑
i=1

y(i) log ŷi +
(
1− y(i)

)
log

(
1− ŷi

)

+

(
1− 2 |X ∩ Y |+ smooth

|X|+ |Y |+ smooth

)
(2)

where N is the number of pixels; y(i) is the probability of
predicting the pixel as road; ŷi is the ground truth; X denotes
a set of pixels predicted as roads; Y denotes a set of roads pixels;
smooth is used to smooth the loss curve, here we set it as 1.

B. Hybrid RF Module

The HRFM matches the target roads’ suitable RF size ac-
cording to their surrounding features for extracting multiscale
details. Compared to other multiscale techniques, such as spatial
pyramid pooling (SPP) [53] and ASPP [13], HRFM produces
no feature maps at an unsuitable scale, and each pixel in a
feature map owns its customized RF. Fig. 4(a) illustrates its
diagram. Given an intermediate feature map x�RC×H×W as
input, the HRFM feeds it to three branches simultaneously,

which provide different RF sizes by varying the number of
convolution stacks. Based on the surrounding features of each
pixel in three output feature maps Fi�RC×H×W (i = 1,2,3), a
receptive field weighting learner (RFWL) is utilized to generate
a weight vector W�R3×1×H×W, which represents the weights
of three RF sizes for each pixel. Then, we conduct dot product
with the two vectors F�R3×C×H×W and W�R3×1×H×W to mix
the extracted features from three branches while using residual
connection to avoid gradient vanishing [45]. Moreover, since
each channel of feature maps could be considered as a feature
detector [54], to avoid the mixed feature detector missing its
focus, we then use a basic residual block with channel attention
[55] to capture meaningful information. In short, the overall
process of HRFM can be summarized as

Vector F = (F1(x), F2(x), F3(x)) (3)

Vector W = RFWL(F) (4)

FO = fC (F ·W + x) (5)

where x is the input feature map; F consists of the output feature
maps Fi�RC×H×W (i = 1,2,3) from three branches; W is the
output from RFWL using F as input; · denotes dot product;
fc denotes the basic residual block with channel attention. The
following describes the details of RFWL and channel attention.

1) RFWL: Based on the distribution of each pixel in different
branches of the surrounding features, we generate the weight
maps of three RF sizes. Specifically, for each input Fi�RC×H×W

(i = 1,2,3), since applying pooling operations along the channel
axis is proved to be effective in highlighting information [44],
[56], we first aggregate feature information by using average-
pooling and max-pooling operations along the channel axis and
then utilize a 7×7 convolution layer to represent the surrounding
feature of each pixel, generating an efficient feature descriptor
Di�R1×H×W (i = 1,2,3). To learn the most suitable RF size for
each pixel, three feature descriptors are then concatenated and
subsequently feed to a bottleneck block containing two basic
convolutions, producing the weight map vector W�R3∗1∗H∗W.
The computation process could be summarized as follows, and
Fig. 4(b) shows the whole abovementioned process

Di = f7×7
1 ([AvgPool(Fi),MaxPool(Fi)]) (6)

Vector W = Reshape
(
σ
(
f3×3
3

(
f3×3
3∗ex(D1, D2, D3)

)))
(7)

where σ denotes the softmax activation function; ex is an expan-
sion ratio, here we set it as 16; f17×7 represents a convolution
operation with the filter size of 7 × 7 and the output channel
of 1; Similarly, f33×3 represents a convolution operation with
the filter size of 3 × 3 and the output channel of 3; f3×ex

3×3

represents a convolution operation with the filter size of 3 × 3
and the output channel of 3 × ex.

2) Channel Attention: The channel attention is proposed
originally by [55] to capture meaningful information in the chan-
nel dimension. The processing process of channel attention is
illustrated in Fig. 4(c). Specifically, after two basic convolutions,
we aggregate spatial information of a feature map by using
both average-pooling and max-pooling operations, generating
two spatial information descriptors. Both descriptors are then
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fed to a shared multilayer perceptron with one hidden layer to
produce the attention map [55]. The computation process could
be summarized as follows:

Fm = σ
(
f3×3
C (f3×3

C (Fin))
)

(8)

Fout = Fin ⊗ (σ′(MLP(AvgPool(Fm))

+ MLP(MaxPool(Fm)))) (9)

where Fin is the input feature map; fC3×3 represents a convolu-
tion operation with the filter size of 3 × 3 and the output channel
of C; σ denotes the ReLU activation function; σ‘ denotes the
sigmoid function; ⊗denotes element-wise multiplication; Fout

is the output feature map.

C. Topological Feature Representation Module

Based on the shared encoder, the TFRM models the spatial
location correlation among pixels to represent road topological
information and help reason the occluded roads.

This module could be explained as follows: suppose
F1�RC×H×W is the final output from the encoder, and
Fe�RC’×H’ ×W’ is the final feature map in a certain level. Given
the extensive use of zero-padding, F1 and Fe are proved to have
encoded the position information of pixels [57]. xi�R1×C’ is a
1-D vector representing pixel i from Fe, which could be regarded
as a feature descriptor [54]. We use (10) to model the global
spatial location correlation (GSLC) on pixel i

xnew
i = f(θ(xi), γ(F1)) (10)

where θ and γ denote projection functions embedding xi and F1

to topological space; f is a function for relationship calculation;
xinew is the generated feature descriptor, which represents the
GSLC on pixel i.

To convert the abovementioned equation into a computable
neural network module, the functions θ, γ, and f need to be
instantiated. Naturally, we set θ and γ as simple point-wise
convolutions since linear transformations are enough. As for
function f, the dot product is a common operation to represent
the relation of vectors. Then, (10) can be written as

xnew
i = Conv1×1

C ′ (xi) • Conv1×1
C ′ (F1) (11)

where Conv1×1
C ′ (xi) represents a convolution operation with the

filter size of 1 × 1 and the output channel of C’; • denotes
dot product; xinew is the generated feature descriptor, which
represents the GSLC on pixel i.

For all pixels in Fe, we repeat the process to model their
GSLCs. In practice, we compute all pixels simultaneously by
matrix multiplication and finally generate a new feature map
FS�R(H×W) ×(H’ ×W’).

After modeling GSLC on all pixels, we utilize a bottleneck
block to represent the topological relationship among pixels.
Specifically, our bottleneck block first uses a 1 × 1 convolution
to reduce the channels of new feature maps to C’ as same as
Fe, then two basic convolutions are used to extract topological
features on each pixel. Moreover, to avoid gradient vanishing,
here residual connection [45] is used. Fig. 5 shows the whole
abovementioned process in TFRM.

Fig. 5. Diagram of TFRM. Matrix multiplication is introduced to model the
GSC on all pixels.

IV. EXPERIMENTS

The proposed model is evaluated on two datasets: the Mas-
sachusetts road dataset [58] and the DeepGlobe road dataset
[38]. In this part, the two datasets are first introduced, and
then implementation details and evaluation metrics are given.
Finally, a performance comparison between the proposed net-
work with some state-of-the-art networks (SegNet [10], Unet
[9], HRNetV2 [15], D-LinkNet [37], Residual Unet [35], DDU-
Net [22], GAMSNet [59]) is made. Note that although the
transformer-based models like UNetFormer [17] show excited
performance, the high requirement for the memory of the graphic
processing unit (GPU) limits their applications in many situa-
tions (In fact, there are some comparisons of calculated costs be-
tween the CNN-based model and the transformer based model,
such as in [60], [61], and [62]), hence, the transformer families
are not our competitive objects. We also make a brief comparison
of model efficiency in Section V-A.

A. Dataset

1) The Massachusetts Road Dataset: The dataset consists
of training, validation, and test sets with 1108, 14, and 49
images, respectively. There are a wide variety of road features
in rural, suburban, and urban features in the dataset. The spatial
resolution of these RGB images is 1 m. The annotations are
road centerlines obtained from the OpenStreetMap, and all
centerlines are converted to raster with a line thickness of 7 pixels
[51]. The original image size is 1500 × 1500 pixels. Before
feeding them to the segmentation model, images are cropped
to a 512 × 512 pixel size with an overlap of 18. Moreover,
we filter the images with heavily abnormal occlusion, since it
could seriously disturb the performance of the network. After
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the abovementioned operations, the Massachusetts road dataset
now contains 6856, 126, and 441 images of size 512 × 512
pixels, corresponding to the training, validation, and test set
respectively.

2) The DeepGlobe Road Dataset: The DeepGlobe dataset
consists of 6226 satellite images with a paired mask for road
labels. These images have a size of 1024 × 1024 pixels and a
spatial resolution of 50 cm/pixel [39]. Like in the Massachusetts
road dataset, we crop these images to 512 × 512 pixels without
overlaps before feeding them to the test network. Since the
background (nonroad) pixels are much more than the road
pixels in the satellite image, as the same as Tao et al. [39], we
remove some images with an extremely small foreground ratio
to alleviate the problem of class imbalance during optimization.
After these preprocessing operations, a total of 11 350 images
are obtained and divided into training, validation, and test sets
with 9500, 350, and 1500 images, respectively.

B. Training Details

1) Avoid Overfitting: Given the relatively small size of the
processed training data, we utilize several techniques to avoid
overfitting, including online data augmentation, batch normal-
ization [63], L2 regularization, and early stopping (to evaluate
the model with validating dataset at every 200 iterations). Con-
cretely, random flip, random rotate (by 90°), and random crop
and resize are used as data augmentation.

2) Configuration of Hyperparameters: All models are
trained with the same parameter settings and in the same en-
vironment. Specifically, we conduct all experiments with the
Pytorch [64] tool and train the models using the AdamW [65]
optimizer with one RTX3060 (memory 12 GB) that allows a
batch size of 4 images. The weight decaying is set to 5e−4. We
use a cosine annealing learning rate scheduler [66] with an initial
learning rate of 0.001, while the warm-up and restart strategies
are applied to avoid premature convergence. Concretely, 126
epochs are trained, in which the first epoch is used for warming
up, and after 50 epochs with an initial learning rate of 0.001, the
final learning rate is then reset to 0.0005 for another 75 epochs.

C. Evaluation Metrics

To quantitatively evaluate the performance of the proposed
network architecture, five common and widely accepted metrics
are utilized here, including Precision, Recall, F1 score[67], [68],
intersection of union (IoU) [20], and mean IoU (mIoU) [39],
[69]. Before introducing the definitions of these metrics, it is
necessary to define the following four initials; TP, FP, TN, and
FN, where TP represents the number of correctly classified
foreground pixels, FP, TN, and FN represent the number of false
positives, true negatives, and false negatives, respectively [48].

With these initials, precision and recall can be determined as
shown in (12) and (13), respectively

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
. (13)

F1 score is the harmonic mean of precision (P) and recall (R),
and it can be calculated by the following equation:

F1 = 2× P ×R

P +R
. (14)

The IoU evaluates the ratio of the intersection value (TP) and
the union value [the sum of FP, FN, and TP, as shown in (15)].
The mIoU is the average ratio of the correctly classified pixels in
a class to the union of predicted pixels of this class and ground
truth, and it can be calculated by (16)

IoU =
TP

TP + FN+ FP
(15)

mIoU =
1

2
×
(

TP
TP + FN+ FP

+
FN

TF + FN+ FP

)
. (16)

D. Results

In this section, performance comparisons between the pro-
posed network AD-RoadNet and some state-of-the-art (SegNet
[10], Unet [9], HRNetV2 [15], D-LinkNet [37], Residual Unet
[35], DDU-Net [22], and GAMSNet [59]) networks are con-
ducted quantitatively and qualitatively on the abovementioned
datasets.

Table I lists the accuracy assessment results on Massachusetts
road dataset. All six methods present a good performance in road
extraction. The SegNet [10] presents the lowest accuracy among
all the six networks, while the proposed AD-RoadNet performs
best with an IoU 1.02%–3.13% higher than the other methods. In
addition, the rare improvement (from 77–78 to 79.44) on recall
indicates the effectiveness of our HRFM and TFRM.

Fig. 6 displays the extracted road features on the Mas-
sachusetts road dataset. Overall, all methods can detect road
features with relatively high accuracy, but the results differ when
HRSI contains complex road structures and intersections. AD-
RoadNet presents superiority over the other methods used in the
extraction of multiscale roads and obscured roads, which require
the ability to obtain road feature details and connection informa-
tion. To further illustrate the advantages of AD-RoadNet, five
typical scenes, which include trails close to main roads, urban
overpasses, adjacent roads, a two-lane road covered by trees, and
roads covered by shadows and vehicles, are selected as shown
in Fig. 6.

To further verify the advantages of the proposed network
AD-RoadNet, another comparison with the same five networks,
including SegNet, Unet, Residual Unet, D-LinkNet, and HR-
NetV2 is conducted on the DeepGlobe dataset. The quantitative
results are shown in Table II. The ground truth on the DeepGlobe
dataset has true width, and scenes in the dataset are more com-
prehensive and complex. Results show that the proposed AD-
RoadNet significantly outperforms others. Specifically, AD-
RoadNet achieves the best results with an IoU 2.46%–6.03%
higher than the other methods, and also gains a 1.61%–4.25%
improvement on the F1 score.

Fig. 7 displays road extraction details from the DeepGlobe
road dataset with the abovementioned networks. It could be seen
that the proposed AD-RoadNet performs fairly well in dealing
with multiscale road extraction of very complex satellite images.
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TABLE I
ROAD EXTRACTION RESULTS OF APPROACHES ON THE MASSACHUSETTS ROAD DATASET

Fig. 6. Partial visualization of results on the Massachusetts road dataset. (a) Raw images. (b) Ground truth. (c) SegNet. (d) Unet. (e) D-linkNet. (f) HRNetV2.
(g) Proposed AD-RoadNet.

TABLE II
ROAD EXTRACTION RESULTS OF APPROACHES USING THE DEEPGLOBE DATASET



8056 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 7. Partial visualization of results on the DeepGlobe dataset. (a) Raw images. (b) Ground truth. (c) SegNet. (d) Unet. (e) D-linkNet. (f) HRNetV2. (g) Proposed
AD-RoadNet.

To illustrate the effectiveness of AD-RoadNet on the DeepGlobe
road dataset, four typical scenes, which include expressways
with vehicles, median strips as well as lane markings, multiscale
rural roads, roads obscured by trees, and intersections connect-
ing roads of various types, are selected, as shown in Fig. 7.

V. ANALYSIS

The abovementioned comparison experiments have demon-
strated the effectiveness of the proposed AD-RoadNet for mul-
tiscale road extraction in HRSI. The results of the experiment
can be interpreted based on the structure of AD-RoadNet. The
encoder with hybrid RFs makes feature extraction achievable
while still preserving road details, such as trails and lanes.
While the main decoder decodes roads from extracted mul-
tiscale semantic features, TFRM in the auxiliary decoder is
utilized to represent topological information, and help reason
obscured roads. Moreover, the high-resolution feature prevents
the disappearance of very narrow roads in the subsampling. The
combination of these features guarantees rich multiscale road
details as well as connectivity improvement.

This section further evaluates the proposed method in the
following four parts. Section V-A analyzes the complexity of
our model, Section V-B performs comprehensive ablation to
validate proposed modules, Section V-C discusses the matter of
inference patch size, and Section V-D evaluates the robustness
of the proposed AD-RoadNet.

A. Parameter Scales and Model Complexity

The parameter scales, floating point operations (FLOPs), and
inference time are widely used in evaluation of model complex-
ity. The params and FLOPs are provided in articles [10], [15],

TABLE III
COMPARISON OF CALCULATION AND PARAMETER QUANTITIES

[35] or calculated from Pytorch [64]. The FPS (inference time)
are tested and calculated on our hardware platform.

Fig. 8 shows the parameter scales and performances of meth-
ods. From Fig. 8, we can see the parameters of our model
are similar to HRNetV2, while the performance achieves a
remarkable improvement.

We also compare the efficiency of several models under our
hardware (RTX3060 and i9-10900) and explain why we exclude
the Transformer-based model from our analysis. Table III shows
the approximate number of parameters, FLOPs, and FPS (infer-
ence times) for each model with an input size of 512 × 512.

We can see that the transformer-based model, Segformer (B4),
which is a segmentation model based on transformers, has the
longest inference time (lowest FPS) among all the models. Due
to its larger epoch requirement and longer inference time, the
Transformer-based model takes longer to train; this explains why
we do not include it in our comparison.

B. Model Analysis

We perform comprehensive ablations to discuss the effectivity
of the proposed HRFM and TFRM. Concretely, first train a
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TABLE IV
QUANTITATIVE COMPARISONS (%) AMONG ABLATION STUDIES ABOUT PROPOSED MODULES ON MASSACHUSETTS DATASET AND DEEPGLOBE DATASET

Fig. 8. Performance versus model params on (a) Massachusetts roads dataset
and (b) DeepGlobe dataset. With a slightly higher params than HRNetV2, AD-
RoadNet achieves the best 81.97% and 83.04% mIoU on two datasets.

baseline whose pipeline is the same as AD-RoadNet except
without HRFM and TFRM, next gradually add HRFM and
TFRM, then conduct experiments on the two datasets and finally
report the performance via F1 score and mIoU.

Table IV lists all experimental results, where H is the abbrevi-
ation for HRFM and T is for TFRM. Compared to the baseline,
HRFM helps the model increase the F1 and mIoU by 0.63%
and 0.45% on the Massachusetts dataset, respectively, while the
results achieved on the DeepGlobe dataset are 0.9% and 0.63%,
respectively. Besides, TFRM helps improve the baseline’s per-
formance with 0.9% F1 and 0.59% mIoU on the Massachusetts

dataset, while achieving a 1.01% F1 and 0.7% mIoU result on
the DeepGlobe dataset. This indicates that when HRFM and
TFRM are interpolated to the baseline independently, there is
a limited improvement on performance. This is because if only
HRFM is used, while various visible roads may be extracted, the
overaccurate RF size for the target road weakens the network’s
robustness to obscured roads with large RF, which is commonly
shown to be effective [19], [37], as shown in Fig. 9(a)–(c). On
the other hand, if TRFM is used independently, the encoder
with a unified RF size will not be good at extracting multiscale
roads in an HRSI. Many feature details are missed, such as
narrow roads and lane markings, resulting in incomplete and
inaccurate extraction results, as shown in Fig. 9(d) and (e).
Overall, HRFM and TRFM complement each other in the road
extraction process, and the best accuracy achieved is with a
complete AD-RoadNet (baseline+H+T), which further proves
our hypothesis to some degree.

Table V lists experimental results of our model with different
effective receptive filed in RFWL module. This experiment is to
illustrate the effectivity of RFWL module. We force the three
branch channels of the RFWL module to use the same size
pooling operations; and in this way, we could control the size of
the ERF of perception.

C. Inference Size Matters

In practical applications, roads need to be extracted in a large
extensive region to indicate the overall distribution. However,
limited to the memory of GPU, it is not feasible to directly
infer such a big remote sensing image. Now we commonly crop
the image into patches and merge them after inference. Various
patch sizes for inference impact the performance [13], [48].
Thus, we discuss the optimal patch size by cropping patches
with different sizes.

Fig. 10 displays the performance trend as inference patch size
varies. We can see that precision shows an upward trend in the
range of 128–768 and a backward trend in the range of 768–1532
while Recall shows a contrasting trend. The best performance
(the highest value of IoU) occurs when the input size is 768,
reaching 66.22%. This phenomenon may imply that when the
input size is small, the road feature in the image is insufficient.
Thus, distinguishing roads from objects with similar textures,
such as parking lots, cement ground, and so on is difficult,
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Fig. 9. Visualization of results for different combinations. From left to right are raw images, ground truth, the model only HRFM is interpolated, the model only
TFRM is interpolated and complete AD-RoadNet. We can see that the HRFM is better at detecting narrow roads, as (d), (e), while the TFRM has advantages in the
obscured roads, as (a), (b), (c), but they are all limited. The complete AD-RoadNet makes full use of their advantages.

TABLE V
QUANTITATIVE COMPARISONS (%) AMONG ABLATION STUDIES ABOUT ERF IN RFWL MODULE ON THE MASSACHUSETTS ROAD DATASET

resulting in a low precision. On the other hand, a small input
size also decreases the variance of the widths of roads. Detecting
roads with this input becomes easier, resulting in a high recall.
When the input size is larger than 768, the road features the
model could extract achieve saturation, while the more severe
scale problem begins to degrade the detecting precision of
our model. However, the long-range contextual information
introduced proceeds a higher Recall. When the input size is
768, the road feature, scale problem, and long-range contextual
information reach the best tradeoff.

D. Robustness of AD-RoadNet

We discuss the robustness of the proposed AD-RoadNet in the
following three aspects: unseen occlusion scenarios, low-quality
labels, and various quality of inference images.

1) Robustness Analysis in Unseen Occlusion Scenarios: To
assess the robustness of AD-RoadNet and avoid just memo-
rizing similar occlusion scenes from the trained samples, we
manually attach some occlusions and test the robustness by
strengthening them slowly. Specifically, three occlusion levels;
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Fig. 10. Performance changes on Massachusetts road dataset as inference
patch size grows up. The best performance (the highest value of IoU) occurs
when the input size is 768, reaching 66.22%.

Fig. 11. Performance changes of all methods as the occlusion level grows up.
(a) Changing trend of five methods. (b) Visually displays the obtained mIoU
in each situation. Road extraction with proposed AD-RoadNet shows great
robustness to the unseen occlusion.

the raw road image, road image with weak occlusion, and
road image with strong occlusion are set in this part, and the
performance changes of all methods are shown in Fig. 11. The
visualization road extraction results are shown in Fig. 12, in
which rows correspond to occlusion levels and the columns
correspond to applied models. All five methods infer relatively
high accurate results in the first row, while SegNet, Unet, and
D-LinkNet are slightly disturbed with weak occlusion. Under
the third occlusion level, the extraction results are all impacted

greatly, but the one from AD-RoadNet still reserves basic road
elements and their connectivity, which indicates its robustness.

2) Robustness Analysis for Low Quality Labels: Using cor-
rect ground truth to train and optimize road extraction networks
could definitely release all their potential. However, it is not
feasible since labeling images are error-prone and frequently has
different standards for ambiguous situations. Moreover, recent
research using open spatial vector data to create training datasets
further introduced labelling errors [70]. Therefore, it is necessary
to evaluate the robustness of the proposed model for low quality
labels. In the road extraction dataset, most of incorrect labels
mislabel the road as background, while there is almost no
case where the background has been mislabeled as road. We
randomly select some images with obvious labelling mistakes
from our training dataset, and then predict the images again to
test if the mistakes can be relabeled correctly. Fig. 13 shows these
images and our corresponding prediction results. We can see
that for the patterns, which have been labeled correctly in many
samples, such as main roads, our AD-RoadNet could sufficiently
correct the raw error mask as shown in the red box. However,
for patterns that are often labeled incorrectly, such as the short
roads in front of houses, the prediction results prefer to keep the
incorrect label, as shown in the magenta box. The result implies
that although the proposed model allows mislabeling, we could
better ensure certain amount of correct labeling for each possible
pattern, so as to get a great extraction result.

3) Robustness Analysis for Quality of Inference Images::
There are many data sources for HRSI, such as unmanned
aerial vehicles, Google Earth, WorldView-4, and so on. Various
acquisition conditions or equipment performance enlarge the
variance of HRSI quality. To test the inference image quality
robustness of our AD-RoadNet, we manually adjust an inference
image quality by adding noise or perturbations in multidegrees.
Specifically, we test 5 severities for 3 kinds of noise, Gaussian
Blur, Pepper Noise and Contrast, and compare the performance
of AD-RoadNet with D-LinkNet and HRNetV2. The perfor-
mance changes are shown in Fig. 14. Overall, the compared
three methods are at the same level in the robustness for the
quality of inference images. But for the images with Gaussian
Blur, the proposed AD-RoadNet suffers a relative degradation,
getting a much lower performance than HRNetV2. This may
be explained by the structure of HRFM. As the weights of
various RF sizes for the target road are designed to consider
its surrounding features, the Gaussian Blur smoothens the target
and surrounding objects and passes a wrong message for RF
size matching, thus resulting in weak feature extraction. The
hypothesis could be proved to some degree by the similar
performance changes between AD-RoadNet and baseline+H
and the relatively better robustness of baseline+T, as shown in
Fig. 14(d). From the perspective of training, it can be regarded
as an overfit for the almost invariable ground sample distance
(GSD). With this consideration, we retrain the AD-RoadNet with
the same configures but stronger data augmentation adding a
random blur. After that, the performance changes in 5 severities
of Gaussian Blur as shown in Fig. 14(e). The AD-RoadNet
with stronger data augmentation (AD-RoadNet-Aug) gets a
significant improvement in its robustness for Gaussian Blur
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Fig. 12. Road extraction results with artificial occlusions (red circles). (a) Raw images. (b) Ground truth. (c) SegNet. (d) Unet. (e) D-linkNet. (f) HRNetV2.
(g) Our AD-RoadNet. From top to down are raw scene, weak occlusion, and strong occlusion.

Fig. 13. Road extraction results for the mislabeled images. From first to third
rows are image, raw label, and prediction result, respectively. The red box
indicates the roads relabeled correctly with our model, while the magenta box
indicates the roads fail to relabeled.

while retaining its initial performance. The abovementioned
analysis may imply that since the HRFM dynamically adjusts
target road RF size according to its surrounding features, there
is a risk behind more targeted feature extraction, that is, the
model only remembers the distribution of surrounding objects
but does not recognize the corresponding pattern, thus resulting
in an overfit for a certain GSD. Data augmentation techniques,
which could change the GSD, such as Random Resized Crop
and Random Blur, are essential to improve the robustness of
proposed AD-RoadNet.

Fig. 14. Robustness analysis of AD-RoadNet for inference image quality.
(a)–(c) Performance changes in various inference image qualities among HR-
NetV2, D-LinkNet, and AD-RoadNet. (d) Performance trend in Gaussian
Blur among baseline+H, baseline+T, and the complete AD-RoadNet. H is
the abbreviation of HRFM and T is TFRM. (e) Performance changes in
Gaussion Blur among HRNetV2, D-LinkNet, AD-RoadNet, and AD-RoadNet-
Aug. AD-RoadNet-Aug represents the model retrained with stronger data
augmentation.
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VI. CONCLUSION

In this article, to decouple and give an overall consideration
to the representation and connectivity improvement of multi-
scale road details, the proposed AD-RoadNet performs well by
introducing HRFM in the encoder to adaptively provide each
unit with suitable RF size, high-resolution feature information
is preserved by residual blocks to detect very narrow roads, and
compared to some previous research works in multiscale road
feature extraction (see [17], [21], [35], [69]), this study intro-
duces a topological feature module (TFRM) that encodes the
connectivity and directionality of roads as additional features,
and experiment results demonstrate that the TFRM could im-
prove the performance of the network by reducing false positives
and enhancing the continuity and smoothness of extracted roads.

The proposed network has achieved state-of-the-art perfor-
mance on two benchmark datasets, outperforming existing
methods in terms of recall and IOU. The effectiveness of the pro-
posed network is proven with solid experiments and achieves the
SOTA performance. For future research, we suggest exploring
more topological features that could enhance the road extraction
performance, such as curvature, width, or intersection angles.
We also recommend testing our network on different types of
HRSI with varying spectral, spatial, and temporal resolutions
to evaluate its adaptability and robustness. Furthermore, we
would propose developing a more interpretable representation
of topological features that could provide insights into how they
affect the network’s decision-making process.
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