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Dual-Task Network for Road Extraction From
High-Resolution Remote Sensing Images

Yuzhun Lin , Fei Jin , Dandi Wang , Shuxiang Wang, and Xiao Liu

Abstract—In high-resolution remote sensing images, road scale
diversity and occlusions caused by shadows, buildings, and vegeta-
tion often pose challenges for road extraction. Currently, end-to-
end models constructed using deep convolutional neural networks
are widely used in road extraction and have significantly improved
the accuracy of this task. However, the connectivity and complete-
ness of their results require improvement. This article proposes a
dual task-driven deep convolutional neural network constructed by
combining road shape patterns and scale differences. The mainline
task is road-surface segmentation, the encoder of which employs
residual convolution for feature extraction. The decoder comprises
a multiscale and multidirection strip convolution module, the out-
put of which is the final extraction result. The splitting task is
road centerline extraction, the input features of which come from
the coding layer of the road-surface segmentation branches. The
intermediate features are incorporated into the decoder of the road-
surface segmentation branches, to fully exploit the road centerline
and thus improve the road-surface segmentation result connectiv-
ity. Implementation of the proposed method on the CHN6-CUG
and DeepGlobe datasets reveals superior performance to compar-
ative methods as regards quantitative evaluation metrics; evident
advantages for road coverings, road intersections, and low-scale
roads; greater model portability; and better small-sample learning
capability.

Index Terms—Convolutional neural network (CNN), deep
learning, remote sensing image, road centerline, road extraction.

I. INTRODUCTION

ROAD extraction is essential for map updating, autonomous
driving, urban planning, and vehicle navigation. Remote

sensing images, which are obtained through noncontact acquisi-
tion, enable procurement of a large range of surface details in a
short period of time. Hence, a road network can be displayed in a
flat visual image. Moreover, the spatial and temporal resolutions
of remote sensing images are continuously improving. There-
fore, remote sensing images can form an effective database for
road automation and real-time extraction.

Remote sensing-image road extraction techniques can be
classified as traditional and deep learning methods [1], based on
their development history. Traditional methods include template
matching [2], [3], knowledge-driven [4], [5], and object-oriented
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[6], [7] methods, and mainly rely on the shape, spectral, and tex-
ture features presented by roads on remote sensing images, along
with human-designed shallow combinations of such features.
However, with the continuously improving spatial resolution of
remote sensing images, their surface detail has been significantly
enhanced. Thus, the “same material, different spectra–same
spectra, different material” problem has become increasingly
prominent, as roads are often insufficiently aggregated in the
shallow feature space and intersect with other features. As a
result, such methods have poor applicability and stability.

With the ongoing development of convolutional neural net-
works (CNNs), and especially the introduction of typical seman-
tic segmentation networks such as fully convolutional networks
[8], UNet [9], SegNet [10], and the DeepLab series [11], [12],
[13], [14], CNN-based methods have recently been applied to
pixel-level intelligent interpretation of remote sensing images.
However, road extraction from remote sensing images is chal-
lenging, for the following reasons: 1) road width differences
are evident and, thus, a small- and large-target coexistence
phenomenon occurs; 2) buildings, trees, etc., shade the road
surface; and 3) problematic similarities between roads and other
targets (open spaces, ditches, etc.) exist. These difficulties often
cause errors, omissions, and fragmentation of road extraction re-
sults. Therefore, researchers have improved the existing methods
based on the typical “encoder-decoder” structure and the image
characteristics of the road. Early improvements focused on
two aspects of feature extraction and the supervisory principle.
Feature extraction mainly revolves around network depth and
convolutional field of view. For example, the residual module
[15] is used as the basic unit of the network [16] avoiding the
problem of network degradation during deep feature extraction.
The introduction of multiscale dilation convolution, atrous spa-
tial pyramid pooling [13] and nonlocal blocks [17] can enhance
the network’s ability to extract global and multiscale features
[18], [19], [20], [21]. In terms of supervised mechanism, road
extraction as a single element interpretation problem, focuses
on a small percentage of targets covered on remote sensing
images, which can cause the problem of positive and negative
sample ratio imbalance. Based on this, weighted cross-entropy
[22], balanced cross-entropy [23], focal loss [24], etc., have
been explored and applied. In the literature [25], the authors
provide a comparative analysis of the effectiveness of 12 loss
functions widely used in the field of image segmentation for
road extraction. Although the above-mentioned improvements
do not significantly increase the complexity of the network, they
mainly focus on the constituent units or supervisory units of
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the network and do not involve much information about the at-
tributes of the road and the overall framework of the network. To
further improve the road extraction effect, the research scholars
try to further realize the improvement by combining multiple
methods, optimizing the extraction strategy, introducing road
subsidiary information, and fusing multisource data. For ex-
ample, the work in [26] and [27] combine CNNs with graph
neural networks. In [28], an integrated reinforcement learning
convolutional neural decision network is constructed. Decoder
branches have also been added to the conventional framework to
yield a double-decoder structure, with the detailed-information
extraction performance being enhanced [29]. An extraction
framework operating from coarse to refined features has also
been constructed, with omissions and erroneous extractions in
the coarse extraction process being corrected using the refined
extraction results [30]. Taxi trajectories [31], geospatial data and
street-level images [32], and radar images [33] are fused with
remote sensing images to fully explore the dynamic patterns and
static features presented by roads in different forms of data. In the
above-mentioned methods, different perspectives on enhancing
the accuracy and stability of road extraction results have been
implemented. However, road shape patterns, scale differences,
and connectivity relationships for high-resolution remote sens-
ing images have not been simultaneously considered.

In this article, we propose a dual task-driven deep CNN
that combines road shape patterns and scale differences. The
contributions are as follows.

1) A multiscale and multidirectional strip convolution mod-
ule (MSMD-SCM) is proposed to handle the strip-like
characteristics of road shapes and the scale differences of
different road classes.

2) Taking road-surface segmentation (RSS) as the basic
framework, road centerline extraction (RCE) is introduced
as a supplement to form a dual-task network structure.

3) In addition to the traditional accuracy comparison and
ablation experiments, a detailed analysis is performed,
which focuses on the method portability and road extrac-
tion capability in a small-sample environment.

II. RELATED WORK

A. Multiscale and Multidirectional Strip Convolution Module

When road extraction tasks are performed on remote sensing
images, roads of different scales must be handled. Unlike terrain
elements such as buildings, vegetation, and lakes, roads often
appear as strips. Thus, the feature space of concern is a key
focus. In this context, the improvement proposed herein mainly
involves two aspects: the convolutional kernel and supervision
level. Relevant research on these two aspects is summarized in
the following.

Regarding the convolution kernel, scale variability is gen-
erally achieved by setting different convolution kernel sizes,
expansion rate sizes, and the location of the superimposed
presence for feature extraction of differently sized percep-
tual fields. In [34], multiscale convolution attention was intro-
duced, with three sets of horizontal and vertical strip convolu-
tions of different scales being combined for multiscale feature

extraction. In a similar study [35], channel separation was per-
formed after the 1 × 1 convolution kernel, with a 3 × 3 convo-
lution then being performed sequentially. As the superimposed
3 × 3 convolution expanded the perceptual field, feature extrac-
tion at different scales was achieved. In addition, atrous spatial
pyramid pooling and multiscale feature aggregation modules
[36] are also effective for extracting image features at different
scales. With respect to the direction regularity, the main con-
straint on the feature-extraction direction is tuned by changing
the shape of the convolution kernel. In various studies [37],
[38], [39], a striped convolutional kernel that fit the road shape
better than a square convolutional kernel was designed from the
perspective of shape matching, that is, a striped convolutional
kernel with four directions of 0°, 45°, 90°, and 135° was used
for feature extraction.

Regarding the supervision level, the key technique in terms
of scale variability is the simultaneous supervision of outputs
at different scales using labeled data from RSS. In [30], [40],
and [41], the results of each up-sampling process were output
in the decoder process. As the output size varied with the level,
the weights of roads at different scales (as foreground targets
in the feature map) also varied. In other words, roads at differ-
ent scales were awarded attention in a hierarchical manner in
the supervision process. The direction regularity was primarily
based on the existing road label for the road target, to provide
the corresponding directional properties. In [42], [43], and [44],
the concept of “direction learning” was applied; i.e., each road
point in the image was assigned a direction label corresponding
to the true direction. Hence, the road trend was constrained in
the prediction process.

All the afore-described methods addressed road scale dif-
ferences and shape patterns. However, most considered those
aspects individually. However, road shape and scale features
exist in random combinations in images. Therefore, the integra-
tion of multiscale feature-extraction capability to the strip target
extraction process is more suitable for application to the actual
road conditions contained in remote sensing images.

B. Connectivity Module

As roads are an important transportation facility, correct con-
nectivity corresponds to a correct route. Importantly, an incorrect
route can result in longer driving time, entry to restricted areas,
or even problems such as traffic accidents. Therefore, road
extraction result connectivity relations, and particularly their
correctness and completeness, are attracting increasing research
attention. Current research on this topic is focusing on three
main aspects: supervised data, task form, and loss function.

In terms of supervised data, connected labels are mainly
constructed based on the true road value at the pixel level. In [38],
a road connectivity label of the same size as the original image
was generated, and a channel number of eight was assigned by
determining whether the current point and the neighboring point
in the specified direction were roads. A similar connected-label
generation strategy was adopted in [45], with the difference
that the label values represented the total number of pixels
belonging to the road in the eight-neighborhood space. Thus, the
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Fig. 1. Architecture of proposed method.

classification problem was converted to a regression problem.
This type of method directly exploits the connectivity of the
road itself. However, determination of the neighborhood space
size often requires human empirical intervention.

As regards the task form, the main purpose is to build a
multitask-driven road extraction network by combining road
edges, centerlines, intersections, etc. This strategy was adopted
in [41], [46], and [47]. Taking [41] as an example, following
RSS, the output was combined with the original image and the
combination was used as the input of the road edge and cen-
terline networks. Thus, the RSS, road edge detection, and RCE
processes were combined as a unified training network. This
type of method fully exploits various road features. However,
further research is needed to balance accuracy and efficiency.

Finally, in terms of loss functions, conventional calculations
tend to be based on pixel-level differences and are insensitive
to road topological changes. In [48] and [49], calculations were
performed from the perspective of loss functions, so that the
computational results would be more sensitive to road connec-
tivity errors or omissions. For example, in [48], a pretrained
VGG19 CNN [50] was used for deep feature extraction of
prediction results and road labels. A loss function calculation
based on the deep features was then performed. This method
class can be seamlessly connected to existing network models.
However, the image features of the roads themselves are not
explored further.

III. METHOD

In this section, the framework of the dual task-driven road
extraction method is described in detail. RSS and RCE form the
two branches of the framework, which performs simultaneous
supervised learning using the corresponding labeled data. The
RSS branch is the base and the output data are the final extraction
result. The RCE branch is the supplement, the input features of
which come from the RSS-branch encoder. The intermediate
features are passed to the RSS-branch decoder to enhance
the connectivity of the road extraction result, and the output
data are the road centerline results (the auxiliary results). In
addition, the proposed MSMD-SCM enhances the road feature
capture capability in specified directions and at multiple scales,
considering the road shape patterns and scale differences. The
overall flow of the proposed framework is shown in Fig. 1.

A. Network Structure

The network structure has a dual-task form and combines
RSS and RCE. The training process is supervised based on the

respective labeled data. Thus, the parameters of the two task
lines are continuously updated during the backward propagation
process to gradually improve the road prediction capability of
the network model. The detailed structure of the network model
is shown in Fig. 2.

1) RSS Branch Network Structure: This branch includes the
encoder and decoder, the input and output data of which are the
original images and the predicted RSS results, respectively. We
employ ResNet34 [15] pretrained on ImageNet [51] as the en-
coder. Specifically, shallow feature extraction is first performed
using 7 × 7 convolutional kernels and a 3 × 3 maximum
pooling layer. Deep feature mining is then performed using
four residual convolutional blocks with numbers 3, 4, 6, and
3; the final output feature-map size is 1/32 times the original
image and the channel number is 512. In the decoder, four
MSMD-SCMs are utilized for line feature extraction of roads
at different scales, and to up-sample the feature maps to the
appropriate size. Simultaneously, to alleviate the information
loss that occurs during up-sampling, the output features of each
of the four MSMD-SCMs are summed with the corresponding
encoder feature maps. In addition, to enhance the connectivity
of the road extraction results, the output features of the final
MSMD-SCM are fused with the intermediate RCE results in
the form of channel superposition. In the final decoder stage,
RSS predictions consistent with the original image dimensions
are obtained using operations such as up-sampling, convolution,
and sigmoid activation.

2) RCE Branch Network Structure: The road centerline can
visually reflect the road topology and directly promote road
connectivity. Therefore, the RCE branch takes the design idea in
[46] as a reference. The RCE branch is introduced as a supple-
ment to the RSS branch to improve the RSS-result connectivity.
The overall framework of the proposed network in this article
differs from [46] in that the edge detection part is discarded.
This is because the road edges are more likely to be obscured by
other features on the remote sensing images, which can cause
the remote sensing images to present the spectral information
of other features at the road edge locations. In addition, the
introduction of road edge detection will inevitably increase
the workload of data preprocessing and the complexity of the
network, influencing the overall efficiency of the method. In
summary, only the RCE branch is retained in this article. The
structure of the RCE branch is relatively simple compared to that
of the RSS branch, and the output data are the road centerline
prediction results, the corresponding truth values of which are
obtained from the labeled data of the RSS results through the
morphological thinning process. Considering the topological
similarity between the road centerline and road surface, and the
overall method complexity, the multiscale features in the RSS
encoder are directly used as input data in this branch. Then,
channel and scale unification are performed successively using
3 × 3 convolution and up-sampling. Channel superposition is
performed on the feature maps of each scale on this basis. The
superimposed fused feature-map size is 256 × 256 pixels, and
the channel number is 64. After the above-mentioned processing,
the obtained feature maps are further enhanced along two routes:
Superimposition of the fusion results with the RSS decoder to
enhance the RSS-result connectivity without over-suppressing



LIN et al.: DUAL-TASK NETWORK FOR ROAD EXTRACTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES 69

Fig. 2. Details of proposed network model.

the noncenterline regions of the road. The fusion results are
up-sampled, convolved and sigmoid activated to obtain road cen-
terline prediction results of the same size as the original image.

B. MSMD-SCM

Roads have strict grade standards for both transportation and
mapping, and different grades often correspond to different
widths, which are expressed as different scales in remote sensing
images. Therefore, when a dense prediction task such as RSS is
performed, targets of different scales are encountered. If a fixed-
size window is used for convolution, the target scale variability
is often neglected. In addition, unlike terrain elements such as
buildings, vegetation, and lakes, road shapes are often striped.
Therefore, traditional square convolutional kernels inevitably
capture more irrelevant information. In contrast, striped con-
volutional kernels can perform feature extraction in a specified
direction, and their attention scopes are more congruent with
road shape patterns.

On the basis of the afore-described analysis, we propose
MSMD-SCM, which is based on a strip convolution module
(the specific structure is shown in Fig. 3). In other words, the
line features are extracted by using strip convolution kernels in
the 0°, 45°, 90°, and 135° directions, and the feature-extraction
results in each direction are fused using successive channel
superposition, bilinear up-sampling, 1 × 1 convolution, and
channel superposition.

The strip convolution in each direction contains multiple
scales, and the specific multiscale fusion form is expressed as
follows:

Y = Concat(X ∗Wscalei) i = 1, . . . , k (1)

where X and Y denote the input and output features, respec-
tively; Concat is the channel superposition operation; Wscalei

is the linear convolution kernel at scale i; k is the scale number;
and ∗ denotes the convolution operation.

C. Loss Function

The proposed network model has two branches that use RSS
labels and road centerline labels for loss function calculation.
The overall loss function is expressed as follows:

Loss = Lossseg + Losscen (2)

where Loss, Lossseg , and Losscen denote the total loss, RSS-
branch loss, and RCE-branch loss, respectively. As the labels
of both branches are dichotomous and an imbalance problem
exists between the positive and negative samples, the sum of
the binary cross-entropy (BCE) loss and dice coefficient loss
are taken as the loss of each branch. The BCE loss treats
each pixel equally. When the positive samples are small, the
network is dominated by negative samples. Thus, the positive
sample recognition is degraded. Dice coefficient loss focuses on
information mining of positive samples (foreground region) and,
thus, can better overcome the problem of positive and negative
sample imbalance. However, the training loss easily becomes
unstable. Therefore, a combination of these two losses can yield
better results. The formulas for calculating the BCE loss and
dice coefficient loss are given in (3) and (4), respectively.

LossBCE(P, Y )

= −
W∑

i=1

H∑

j=1

[yij × log pij(1− yij)× log(1− pij)] (3)
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Fig. 3. MSMD-SCM flowchart.

LossDCL(P, Y ) = 1− 2× |P ∩ Y |
|P |+ |Y | (4)

where P and Y denote the prediction result and labeled data,
respectively; W and H are the image width and height, respec-
tively; and pij and yij are the prediction and label of position
(i, j) in the image, respectively.

IV. EXPERIMENTS

A. Datasets

1) CHN6-CUG Dataset [52]: This dataset is sourced from
Google Earth and includes highways, urban roads, and rural
roads in Beijing, Wuhan, Shenzhen, Shanghai, Hong Kong, and
Macau. There are 4511 labeled images in total, 3608 of which
are for training while the remaining 903 are for testing. The
ground sampling distance (GSD) for this dataset is 0.5 m per
pixel. Each image has a size of 512 × 512 pixels.

2) DeepGlobe Dataset [53]: This dataset includes urban,
suburban, and rural areas in Thailand, India, and Indonesia. A
total of 6226 images are open access, with ground truth data. The
GSD of this dataset is 0.5 m per pixel and each image has a size of
1024 ×1024 pixels. To improve the model training efficiency,
we divided the original image and the corresponding labeled
data in both the width and height directions synchronously, to
generate a dataset with images of 512 × 512 pixels. We divided
the training and test data according to a 3:1 ratio to obtain 18 784
training images and 6120 test images.

B. Evaluation Metrics

1) Pixel-level Evaluation Metrics: To evaluate the perfor-
mance of the proposed method with regard to RSS, we used
the precision (P ), recall (R), F1 score, overall accuracy (OA),
and intersection over union (IoU ) metrics. The formulas are as
follows:

P =
TP

TP + FP
,R =

TP

TP + FN
(5)

F1 = 2× P ×R

P +R
, OA =

TP + TN

TP + FP + TN + FN
(6)

IoU =
TP

TP + FP + FN
(7)

where TP , FP , TN , and FN represent the number of true
positive, false positive, true negative, and false negative results,
respectively.

2) Connectivity Evaluation Metrics: To verify the connec-
tivity of the road extraction results, two evaluation metrics for
specific measurements were designed: the completeness rate
(Com) and error rate (Eor). In Fig. 4(a), the dark-colored buffer
indicates the prediction result. The light-colored and red line
segments are the morphological refinements of the labeled-data
results, where the light-colored line segment is located inside the
prediction result buffer with length l1, and the red line segment
is located outside the prediction result buffer with length l2. In
Fig. 4(b), the light-colored buffer represents the labeled data.
The dark-colored and blue line segments are the morphological
refinements of the predicted results, where the dark-colored line
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Fig. 4. Schematics of connectivity evaluation metrics. (a) Com. (b) Eor.

segment is located inside the labeled-data buffer with length l3,
and the blue line segment is located outside the labeled-data
buffer with length l4. The formulas for Com and Eor are as
follows:

Com =
l1

l1 + l2
, Eor =

l4
l3 + l4

. (8)

C. Implementation Details

The experiments were implemented on 2 NVIDIA Tesla V100
GPUs with 64 GB memory. The Adam optimizer [54] with a
batch size of 32 was adopted. The learning rate was initially
set to 2e–4 and then reduced by a factor of 5 three times; the
training loss was observed to decrease slowly. In all training
experiments, the networks were trained for 150 epochs. In
addition, for sample enhancement, vertical, horizontal, diagonal
flip, and radial transformations were randomly applied to the
training data (50%).

D. Experiment Results

1) Method Comparison: In this stage of the experiment,
the proposed method was applied to the above-mentioned two
experimental datasets, and the extraction results and accuracy
were compared with those given by seven typical semantic
segmentation methods, namely UNet (2015) [9], D-LinkNet
(2018) [19], DeepLabv3+ (2018) [14], ASPP-UNet (2019) [18],
RoadNet (2018) [41], SGCN (2022) [26], and CoANet (2021)
[38] when applied to the same datasets.

Fig. 5 shows RSS results for selected test images in the CHN6-
CUG dataset. The five selected images are of different cities
and scenes, and their features span those challenging for road
extraction. Therefore, the comparative analysis is somewhat
representative. The road in the lower right corner of Fig. 5(a)
shows a heavily vegetated area; the overall road width is narrow
and some sections are covered by vegetation. The extraction
results show that U-Net, D-LinkNet, ASPP-UNet, RoadNet,
and SGCN failed to extract this small section. DeepLabv3+
extracted a small portion. However, its road extraction results are
evidently incomplete owing to the vegetation cover. In contrast,
CoANet and the proposed method fully extracted the road sec-
tion. However, it misidentified some of the nearby open spaces
as roads. This problem must be addressed in future refinements
of the proposed method. Fig. 5(b) shows a tall residential area in
an urban area, and there is a large amount of shadow coverage
on the road. The shadow has a darker shade. Thus, the spectral
characteristics of the road surface itself do not correspond to

the actual features. For example, the east–west road is heavily
covered by building shadows. The extraction results of the seven
comparison methods exhibited serious deficiencies in integrity
for this section. However, the proposed method adapted to
the shadow coverage phenomenon and effectively solves the
problem of missed extraction. Fig. 5(c) shows an intersection
of multiple roads, some of which have large widths, along with
features such as parking lots with spectral characteristics close
to those of the roads. The extraction results show that UNet,
D-LinkNet, DeepLabv3+, and SGCN had serious omission ex-
traction problems. The mis-extraction problems of ASPP-UNet
and RoadNet were significant. The extraction results of CoANet
and the proposed method were relatively positive. In Fig. 5(d),
part of the east–west section is obscured by shadows, with evi-
dent interference from moving vehicles. The U-Net and Road-
Net extraction results were almost blank for this road section.
Although those of D-LinkNet, DeepLabv3+, and ASPP-UNet
were slightly better, parts with continuous missed extractions
were apparent. Thus, there were errors in road connectivity. In
contrast, SGCN, CoANet, and the proposed method completely
restored the road condition. Fig. 5(e) has an overall darker tone
because of the building shadow, the acquisition environment,
and large water and vegetation proportions. For this image,
the extraction results of UNet, DeepLabv3+, ASPP-UNet, and
RoadNet had obvious intermittent problems. D-LinkNet, SGCN,
CoANet, and the proposed method completely restored the
topology of the road. However, D-LinkNet, SGCN, and the
proposed method had some mis-extraction, and CoANet had
some missed extraction in the road edge part.

Fig. 6 shows surface segmentation results for test images from
the DeepGlobe dataset, similar to those of Fig. 5. To achieve a
representative comparative analysis, test images that featured
current challenges for road extraction were selected. Fig. 6(a)
shows farmland and contains rural-grade roads. Therefore, the
road scale is small and some sections are covered by vegetation.
For this image, D-LinkNet, DeepLabv3+, RoadNet, and SGCN
extracted almost zero road sections. U-Net, ASPP-UNet, and
CoANet extracted some of the road sections. However, the
results were incomplete because of the effects of the vegeta-
tion cover. The proposed method overcame these difficulties
and produced extraction results with superior completeness and
correctness. In Fig. 6(b), the spectral features of the open space
in the yard are essentially the same as those of the roads, and
only small sections of some roads are included in the image.
From the final extraction results, it can be seen that all meth-
ods exhibited different degrees of missed extraction. RoadNet,
SGCN, CoANet, and the proposed method had relatively good
performance. However, its extraction ability must be improved
for fine roads with relatively short sections overall. Fig. 6(c)
shows farmland. The overall tone is dark. However, the road
running north–south is highlighted and has high contrast with
other roads in the area. U-Net and CoANet defined this road
as background. D-LinkNet, DeepLabv3+, and RoadNet recog-
nized some road sections. SGCN recognized most road sections.
However, the missed extraction problem was prominent. In
contrast, the extraction results of ASPP-UNet and the proposed
method had a high degree of completeness, with no evident
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Fig. 5. Sample RSS results given by different methods (CHN6-CUG dataset).

Fig. 6. Sample RSS results given by different methods (DeepGlobe dataset).

missed extractions. Fig. 6(d) contains two roads intersecting in
both directions. Because a barrier is present, the intersection
is a combination of an “L” intersection and a “T” intersection.
UNet, D-LinkNet, DeepLabv3+, ASPP-UNet, and SGCN failed
to correctly restore the actual characteristics of the road inter-
section. However, RoadNet, CoANet, and the proposed method
effectively distinguished the road, the barrier, and other features.
Fig. 6(e) is of a densely populated area with a highly com-
plex road network environment. Buildings, vegetation, shad-
ows, and even moving carriers all generate occlusions on the
road surface, making correct road extraction difficult. From the
extraction results, U-Net, D-LinkNet, DeepLabv3+, RoadNet,

and SGCN had omission extraction problem. DeepLabv3+,
ASPP-UNet, and CoANet incorrectly identified some other
objects as roads. Overall, the proposed method had the
best performance in recovering the connectivity of the road
network.

In addition to the above-mentioned analysis of extraction
performance for a typical sample image, the extraction capability
of each method was further quantified comprehensively via a
specific analysis using seven evaluation metrics, based on the
road extraction difficulty. The values of each evaluation metric
were the averages of those for all test images in the CHN6-CUG
and DeepGlobe datasets.
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TABLE I
COMPARISON OF RSS RESULT ACCURACY FOR DIFFERENT METHODS

Here, P, R, F1, OA, and IoU reflected pixel-level accuracy
evaluations of the road extraction results. Larger P indicated a
higher accuracy rate and larger R indicated a higher percentage
of real roads extracted. Further, F1, OA, and IoU were com-
prehensive evaluation indexes combining positive and negative
sample extraction results. Finally, larger Com indicated greater
completeness of the road connectivity extraction and smaller
Eor indicated a lower road connectivity extraction error rate.

Table I lists the results, from which the following conclusions
can be drawn. 1) Most accuracy metrics of all methods in
the DeepGlobe dataset were better than those in the CHN6-
CUG dataset, and the specific metric values were closer in
the DeepGlobe dataset. 2) The proposed method had the best
metrics for both road datasets compared with U-Net, D-LinkNet,
DeepLabv3+, and RoadNet. 3) Compared with ASPP-UNet, the
proposed method had evident advantages when applied to the
CHN6-CUG dataset. However, in the DeepGlobe dataset, the
proposed method was better in most of the metrics, and only
two metrics, R and Com, were slightly lower. It indicated that
the completeness of the road extraction results of ASPP-UNet
and the proposed method were close, but the error rates of
ASPP-UNet were higher. 4) Compared with SGCN, the pro-
posed method had evident advantages in most of the metrics, and
only two metrics, P and Eor, were slightly worse. It indicated
that the error rates of SGCN were lower, but the completeness of
the road extraction results of the proposed method were slightly
better. 5) Compared with CoANet, the proposed method had

certain advantages in the CHN6-CUG dataset, while CoANet
had slightly higher accuracy index in the DeepGlobe dataset,
which proves that the proposed method had more outstanding
ability to extract roads in remote sensing images of urban areas
with smaller sample size and more complex environment. 6)
Overall, the accuracy indexes of CoANet and the proposed
method were higher, which also coincides with the final road
extraction performance results shown in Figs. 5 and 6.

2) Ablation Study: In this section, the CHN6-CUG dataset
was used as an example, and the dual-task form and MSMD-
SCM were experimentally examined. Four specific cases, Situ-
ations 1–4 (S1–S4, respectively) were considered. In S1 and S3,
the method contained the RSS branch only; in S1, MSMD-SCM
in the decoder process was replaced with a 3 × 3 convolution
kernel. S2 was based on S1 but the RCE branch was added, and
S4 corresponded to the proposed method. The accuracy statistics
for the four scenarios are listed in Table II.

From Table II, both the RCE branch and MSMC-SCM con-
tributed significantly to the road extraction results. Specifically,
comparing S1 and S3, and S2 and S4, we found that the addition
of MSMD-SCM improved the metrics in the pixel-level eval-
uation. The improvement in R was particularly significant; this
demonstrates that the module can extract road information more
fully and completely and reduce the road extraction omission
problem. This outcome also significantly improved the Com
result of the connectivity evaluation index. Comparison of S1
and S2, and S3 and S4 revealed that the addition of the RCE
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Fig. 7. Intermediate feature visualization results for various networks. (a)–(c) Baseline, baseline + MSMD-SCM, and baseline + MSMD-SCM + RCE,
respectively.

TABLE II
ABLATION STUDY ACCURACY STATISTICS

branch yielded improvements in most metrics (except for P and
Eor in S3 and S4). The improvement in the Com result was
particularly evident. This outcome proves that the RCE branch
can improve the connectivity of the road extraction results and
effectively suppress the problem of false extraction of negative
samples.

In addition to the above-mentioned accuracy analysis, the out-
put features of the first four decoder modules (block1–block4)
were visualized to obtain a more intuitive representation of the
role of MSMD-SCM and RCE in road extraction, as shown
in Fig. 7. In the figure, “baseline” denotes the basic network
framework of the proposed method, with MSMD-SCM and RCE
excluded, and +MSMD-SCM and +RCE indicate addition of
the corresponding module and branch, respectively.

From Fig. 7, the visualization results under all three conditions
became closer to the actual road characteristics as the block1–
block4 calculation progressed. In addition, the north–south road
was more prominent following addition of MSMD-SCM, and
the surrounding small, faceted buildings were somewhat sup-
pressed in block4. Following further addition of RCE, the road
feature separation from the other features was significantly
accelerated, based on comparison of the block3 results. The
highlighted features in block4 were essentially only roads, with
interference from the other features further excluded. In sum-
mary, MSMD-SCM and RCE help improve the efficiency and
accuracy of road separation from other objects in a feature space.
Hence, the final road extraction results are optimized.

V. DISCUSSION

A. Evaluation of Model Transferability Performance

At present, the main factor restricting the full-scale applica-
tion of deep learning is a limited supply of samples. However,
the powerful portability of network models can provide a basic
learning framework for migration learning, etc., thus reducing
the dependence on samples and improving the reliability of
“cross-domain supervision.” Therefore, this subsection analyzes
the portability of each method using the training data selected
from the DeepGlobe dataset. Two experiments are conducted.
In Experiment 1, the test data are from the Massachusetts road
dataset [55], and in Experiment 2, the test data are from the
CHN6-CUG dataset. As large differences in ground rules and
background characteristics existed between the training and test
data, the test results could be used as evaluation criteria for
the model portability. To visually and comprehensively evaluate
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Fig. 8. Model portability experiment results for (a) and (b) experiments 1 and 2, respectively.

the model portability, the comprehensive pixel-level evaluation
metrics F1 and IoU, and the connectivity evaluation metrics Com
and Eor, were selected. The results are shown in Fig. 8.

From Fig. 8, based on the pixel-level evaluation metrics, the
proposed method yielded optimal results in both Experiments
1 and 2. As regards the connectivity evaluation metrics, the
proposed method was in the top 3. The Eor metrics of the
proposed method were higher than RoadNet and SGCN in
Experiment 1, and higher than SGCN and CoANet in Exper-
iment 2. However, the compared methods had lower F1, IoU,
and Com in the corresponding experiments, indicating that the
combined effect of road extraction results was worse, especially
the topology integrity was low. Therefore, the lower Eor does
not represent the advantage of extraction ability. Moreover, the
proposed method achieved the best Com metrics in Experiment
2. However, for Experiment 1, this result was slightly poorer
than those for D-LinkNet and DeepLabv3+. This outcome
may have been related to the poorer representation of feature
details (lower spatial resolution) and the relatively concentrated
regional focus of the Massachusetts road dataset. In summary,
the proposed method had the best portability when there were
significant differences between the training and test data. Thus,
the proposed deep learning network can provide a more reliable
model framework with better generalization ability for migration
learning than those of the comparison methods.

B. Evaluation of Small-Sample Performance

Similar to improved model portability, the use of small sam-
ples as a form of weakly supervised learning can effectively
alleviate the need for deep learning samples, thus enhancing the
automation and intelligence of the entire process. This subsec-
tion reports an analysis of the accuracy and stability of each
method for different sample sizes, using the DeepGlobe dataset
as an example. The results are shown in Fig. 9, in which the term
“original training sets (OTS)” indicates that the training and test
data reported in Section IV-A were used in the experiments.
Further, 8000, 6000, 4000, 2000, and 1000 denote the number
of samples randomly drawn from the OTS training data (the
test data were the same as the OTS). Because the experimental

Fig. 9. Statistical charts of precision results for different sample sizes. (a)–(d)
F1, IoU, Com, and Eor, respectively.

variables of this analysis were the method and sample number
only, the road extraction ability of each method for different sam-
ple sizes could be measured directly, and the selected evaluation
indexes were consistent with those of Section V-A.

From Fig. 9, F1, IoU, and Com gradually decreased with
decreasing sample size, whereas Eor exhibited an increasing
trend. In terms of the change degree, U-Net exhibited the largest
changes in the four evaluation metrics. The flattest change trends
were observed for CoANet and the proposed method. Therefore,
these methods had the strongest ability to maintain road extrac-
tion efficiency as the sample size decreased. In addition, the
gaps between the values of the four evaluation indexes for the
proposed method and other six comparison methods showed a
widening trend from OTS to the sample sizes of 8000, 6000,
4000, 2000, and 1000. In particular, when the sample size was
1000, CoANet and the proposed method had a clear advantage.
In summary, CoANet and the proposed method have better
extraction ability than other comparison methods when there
are fewer samples.

As the key concept of the proposed method is the dual-task
form, outstanding efficiency is not obtained under the same



76 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE III
TRAINING EFFICIENCY COMPARISON TABLE

training conditions. However, when small-sample analysis re-
sults are considered, the proposed method has efficiency ad-
vantages when obtaining extraction results with approximately
the same accuracy. Table III presents training efficiency results.
In Table III, Num denotes the number of training-set samples
and Time is the average training time for each epoch in the
corresponding training set. (The experimental environment can-
not support SGCN and CoANet to run at a batch size of 32.
Therefore, the batch size of the method in the experiment was
16.) The seven methods achieved almost the same accuracy for
the selected number of samples (based on IoU). However, the
proposed method had roughly the same training time as D-
LinkNet, but outperformed UNet, DeepLabv3+, ASPP-UNet,
RoadNet, SGCN, and CoANet. In addition, in order to accurately
compare the efficiency of the proposed method with SGCN and
CoANet, the batch size of the proposed method was set to 16
for training, and the results show that the average training time
for each epoch of the proposed method under this condition
is 77.48 s, so the proposed method is better than SGCN and
CoANet in terms of efficiency. Therefore, from a comprehensive
perspective, the proposed method can balance accuracy and
efficiency with higher practical value.

VI. CONCLUSION

As important topographic elements, roads have their own
shape and scale irregularities, and road image features can be
extracted accurately and with good detail from high-resolution
remote sensing images using established rules. In addition,
as roads form the basic transportation framework of a given
location, the connectivity relationships constructed from road
extraction results directly reflect the topology of the targeted
transportation network. Thus, these relationships are important
for practical applications of extracted data to transportation.
Here, a targeted study of road extraction was performed con-
sidering road shape patterns and scale differences, as well as
connectivity, and a dual task-driven road extraction method was
proposed. In this approach, the newly developed MSMD-SCM
was added and the extraction strategies were improved, with
end-to-end networks being used as the basic framework. Hence,
the proposed method was shown to have superior performance to
comparable typical networks in terms of quantitative evaluation
metrics, model portability, and small-scale learning capability.
However, as road extraction is an intensive prediction task,
the generation of appropriate training data requires excessive
human intervention. Therefore, future research should focus on

the introduction of multiple data sources (OpenStreetMap data,
trajectory data, etc.) for automatic sample collection, along with
weakly supervised learning.
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