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A Relative Radiometric Normalization Method for
Enhancing Radiometric Consistency of Landsat

Time-Series Imageries
Hanzeyu Xu , Yuyu Zhou , Yuchun Wei , Chong Liu , Xiao Li , and Wei Chen

Abstract—Radiometric consistency of multitemporal satellite
observations is affected by sensor stability and scene related issues.
Relative radiometric normalization (RRN) is a widely used method
to reduce these radiometric differences, its performance depends on
the accurate identification of representative pseudoinvariant fea-
tures (PIFs). However, existing RRN methods are mainly developed
for bitemporal images and are limited to time-series imageries due
to the complexity of identifying effective PIFs. In this study, we
proposed a novel RRN method to enhance the radiometric consis-
tency of Landsat time-series imageries. This method includes the
following: first, a trend-based PIFs identification considering land
cover changes and phenological trends from the entire time series;
second, a PIFs optimization involving an automatic reference selec-
tion and a PIFs refining for each reference–target image pair; and
third, a combined RRN modeling using the M-estimator sample
consensus algorithm and robust linear regression. The Landsat
surface reflectance products were used to validate the proposed
method. The experimental results showed that the trend-based
PIFs identification provided the consistent PIFs for all reference–
target image pairs; aided by an automatic reference allocation,
PIFs optimization filtered the proper PIFs with high spectral and
spatial similarity for each image pair in monthly image stack;
the proposed RRN method achieved good performance in model
precision and radiance consistency improvement; the proposed
RRN method outperformed seven commonly used RRN methods
on majority images in image stack of December. The normalized
images can help generate more comparable time-series analysis
results by reducing the uncertainties from radiometric calibration,
atmospheric correction, and sensor differences.
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I. INTRODUCTION

RADIOMETRIC consistency of multitemporal satellite ob-
servations can be affected by sensor related calibration and

scene related changes, such as atmospheric conditions, illumina-
tions, ground target properties, viewing angles, and phenology
differences over time [1], [2]. Performing radiometric normal-
ization to reduce inconsistent radiance among temporal satellite
observations has been proven to be beneficial to the applications
of change detection [3], [4], land cover classification [5], [6],
vegetation monitoring [7], [8], and image mosaicking [9], [10].

Radiometric normalization can be categorized as absolute
(ARN) and relative (RRN) approaches. ARN uses physical
parameters to convert digital values to surface reflectance in con-
junction with sensor calibration and atmospheric correction [11].
Compared to the difficulties in collecting synchronous satellite
data and building the radiative transfer model for ARN [12],
RRN is easier to be implemented, which performs an image-to-
image transformation by adjusting the radiometric properties of
a target image to match those of a reference image [11], [13].
Because RRN cannot remove the differences caused by atmo-
spheric conditions [14], combining RRN with ARN is used
to generate normalized results with consistent physical mean-
ing [10], [15].

RRN can be broadly divided into two categories: global
statistics-based methods and radiometric control set sample-
based methods [16], [17], [18], also called dense RRN (DRRN)
and sparse RRN (SRRN) [19]. DRRN uses all pixels of reference
and target images to determine the adjustment of radiometric
properties, such as histogram matching [20], haze correction
(HC) [21], minimum–maximum (MM), mean-standard devia-
tion (MS) [22], and simple regression (SR) [23]. DRRN meth-
ods are of low complexity but sensitive to land cover changes
and clouds of images [2], [24]. Comparatively, SRRN methods
identify invariant pixels from a reference–target image pair and
use them to establish a mathematical relationship for adjusting
the target image, which can effectively reduce the negative
effects of changed pixels on normalization. Some conventional
methods include the dark and bright sets method [11], pseudoin-
variant features (PIFs) regression [25], and the no-change sets
method [13].
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The basic hypothesis of SRRN methods is that the invariant
pixels at time t1 are linearly related to the corresponding pixels at
t2 [26], [27], although a nonlinear relationship is also applied for
multisensor images in cases [14], [24], [28]. Therefore, the key
to SRRN is to identify the representative and accurate invariant
pixels to illumination and land cover changes, known as PIFs,
from the images acquired on different dates. Considering the
important impact of PIFs on the estimation of the mathematical
relationship between a reference–target image pair, some semi-
automatic methods have been proposed to ensure the quality of
PIFs, such as the ridge method [5], principal component analysis
based method [26], and temporal invariant cluster method [7],
but these mentioned methods still face the challenges in deter-
mining threshold or cluster centers. Alternatively, represented by
multivariate alteration detection (MAD) [29], [30] and iterative
slow feature analysis [31], mathematical transformation-based
RRN methods have been proposed to extract PIFs using change
probability. MAD is invariant to linear and affine scaling but
is unsuitable for dealing with images containing substantial
land cover changes [32], [33], [34]. As a result, many MAD
variants have been proposed, such as iteratively re-weighted
MAD (IR-MAD) [33], [35], [36], [37], [38], multitemporal
MAD [32], and KCCA-based MAD [39], [40]. However, their
performance is highly dependent on the threshold segmentation
result of the change probability map.

With increasingly diverse satellite observations, multi-rule-
based RRN methods have been developed to identify PIFs
by taking the advantage of various measurement perspec-
tives [18], [19], [28], [34], [41], [42], [43], [44]. Moreover, for
distorted or unregistered high-resolution images, the keypoint
descriptors are used to identify robust PIFs to radiance distor-
tions [17], [45], [46]. Most multi-rule-based and keypoint-based
methods perform better due to the data-oriented designs. Thus,
the applicability of these methods to various data still requires
to be explored [24].

Enhancing radiance consistency is also necessary for appli-
cations using Landsat time-series images. Even though Landsat
surface reflectance code (LaSRC) [47] and Landsat ecosystem
disturbance adaptive processing system (LEDAPS) [48] are
namely used to generate Level-2 surface reflectance products
for Landsat 8 OLI and Landsat 5 TM/7 ETM+ data, the sur-
face reflectance products’ uncertainty is still increased by the
uncertainties of radiometric calibration [47] and different atmo-
spheric correction algorithm. Moreover, adjusting the spectral
reflectance of similar bands is unneglectable to the application
using multisensor observations of Landsat [49]. RRN can be an
effective means to address uncertainties from the above factors.
However, most RRN methods are developed for bitemporal
images. For time-series images, the separated image-to-image
PIFs identification hardly keeps consistent PIFs and leads to less
comparable normalization models among all image pairs [50].
Coupling this with the reference selection under unstandard-
ized criteria increases the risk to yield unstable normalization
results [10]. To address mentioned limitations, we proposed
a multi-rule-based RRN method to enhance the radiometric
consistency of Landsat time-series imageries. The contributions
of this study include the following.

TABLE I
MAIN SENSOR PROPERTY

1) We developed a novel trend based PIFs identification
method, which provides consistent PIFs for all reference–
target image pairs by identifying land cover changes and
phenological trends from entire time series.

2) We proposed a novel local PIFs optimization, including an
automatic reference image allocation and a PIFs refining
using spatial-spectral metrics for each reference–target
image pair.

3) We achieved a good normalization performance aided by
a combined RRN modeling using inlier data pair identifi-
cation and robust linear regression (RLR).

The rest of this article is organized as follows. Section II
introduces the experimental data. Section III describes the pro-
posed method. Section IV reports and analyzes the results.
Section V discusses the performance differences compared to
seven commonly used RRN methods and the pros/cons of the
proposed method. Section VI draws the concluding remarks.

II. DATA

Landsat Collection 2 Level-2 surface reflectance product
serves as ideal data for our study. Compared to Level-1 digital
number data, Level-2 surface reflectance improves comparison
among multiple images over the same region in detecting the
Earth’s surface changes by accounting for atmospheric effects.
We collected Landsat Collection 2 Level-2 product from the
United States Geological Survey (https://www.usgs.gov/core-
science-systems/nli/landsat) via Google Earth Engine (GEE)
platform [51], including the atmospherically corrected surface
reflectance data from Landsat 5 TM, 7 ETM+, and 8 OLI.
The main properties of the sensors are listed in Table I. We

https://www.usgs.gov/core-science-systems/nli/landsat
https://www.usgs.gov/core-science-systems/nli/landsat
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Fig. 1. Flowchart of the proposed method.

used blue, green, red, near-infrared (NIR), and short-wave in-
frared (SWIR) 1/2 bands of each image after removing the
cloud and cloud shadows pixels using the C Function of Mask
(CFMask) algorithm [52]. We selected a rectangle experimental
area with 1100 × 1100 pixels in Nanjing, China. This area has
various land covers and has experienced drastic urbanization
over the past three decades [53]. Based on the experimental
area (WRS-2 Path/Row: 120/038), we filtered a total of 580
images acquired from 2001-01-01 to 2020-12-31 from the GEE
image collections of “LANDSAT/LT05/C02/T1_L2,” “LAND-
SAT/LE07/C02/T1_L2,” and “LANDSAT/LC08/C02/T1_L2.”

III. METHODOLOGY

The proposed RRN method includes three key steps: 1)
trend-based PIFs identification from entire Landsat time-series
images; 2) PIFs optimization for reference–target image
pair; and 3) RRN modeling (see Fig. 1). First, we identified
trend-based PIFs from annual harmonic-fitted spectral indices
belonging to the unchanged area using the Mann–Kendall (MK)
trend test method (see Section III-A). This aims to identify
consistent PIFs for all reference–target image pairs. Then,
after the automatic reference allocation for a monthly image
stack, we refined the trend-based PIFs for each reference–target
image pair using a spatial-spectral metric (see Section III-B).

Finally, we normalized target images in each monthly image
stack using a combination of the M-estimator sample consensus
(MSAC) algorithm and RLR (see Section III-C). To take full
advantage of different processing platforms, Section III-A and
the reference selection in Section III-B were performed on
GEE. The remainder was implemented using MATLAB 2021a.

A. Trend-Based PIFs Identification From Landsat Time-Series
Images

1) Unchanged Area Detection Using GEE-CCDC: To iden-
tify potential PIFs from a steady area without land disturbances,
we detected the unchanged area using the change detection
module of the continuous change detection and classification
(CCDC) [54] algorithm. CCDC is a statistical boundary method
to detect abrupt and gradual changes in different land covers
using all available Landsat images [55]. In data preparation, the
cloud and cloud shadow pixels in each image are first masked
using CFMask. Then, CCDC uses iterative Tmask (multiTem-
poral mask) cloud detection [56] to further mask other missed
outliers. In detecting changes, CCDC first estimates a time series
model using a given number of clear observations (i.e., 12) for
each pixel position [54]. Then, CCDC flags a possible change by
comparing model predictions with clear observations. When the
required consecutive times of the possible changes are reached,
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this pixel is assigned as a break. After that, CCDC continues to
estimate a new model until the next break has been identified or
all observations have been exhausted. Finally, the time series at
each pixel position are split into multiple temporal segments to
indicate the changes deviate from the previous pattern.

The first occurred changes among multiple changes detected
by CCDC in each pixel were used to obtain the unchanged
area, aided by the repository of GEE-CCDC-Tools (a GEE
version of CCDC) [57]. The main parameters were set as fol-
lows: 1) the surface reflectance bands of blue, green, red, NIR,
SWIR1/2, normalized difference vegetation index (NDVI) [58],
normalized burn ratio (NBR) [59], and normalized difference
fraction index [60] were used as “breakpointBands” for change
detection; 2) the “chiSquareProbability” (chi-square probability
threshold for change detection) was set as 0.90; 3) the “minOb-
servations” (number of observations required to flag a change)
was set as 6. Other parameters were set as defaults [61].

2) Harmonic Fitting of Time-Series Spectral Index: We tem-
porally interpolated the masked pixels caused by cloud and
shadow to obtain gapless time-series indices of the unchanged
area. First, we filtered all observations of the unchanged area and
removed the incomplete time series with less than 20% of the
total observations. Then, we calculated three time-series spectral
indices of NDVI, NBR, and modified normalized difference
water index (MNDWI) [62] to highlight the pixel variations with
different land covers. Finally, we applied the Harmonic Analysis
of Time Series (HANTS) [63] algorithm to fit each time-series
index because HANTS can decompose a time-dependent peri-
odic phenomenon into a series of sinusoidal functions defined
by unique amplitude and phase values [64].

3) Trend-Based PIFs Identification Using the Mann-Kendall
Test: We identified trend-based PIFs by distinguishing the pixels
with nonsignificant trends from the harmonic-fitted time-series
indices. First, we used the MK trend test [65], [66], [67], [68]
to detect the upward or downward monotonic trend with a
statistical significance in each fitted time-series index. Then,
we selected the pixels where there are no significant monotonic
trends over the years as the candidate PIFs of each index. Finally,
we integrated the spatial union of the candidate PIFs of NDVI,
NBR, and MNDWI as the trend-based PIFs, denoted as PIFtre.
PIFtre are considered to be consistent radiometric-invariant in the
entire time series. In detail, we selected the harmonic-fitted index
in February, March, and April as the inputs because the MK test
is not suitable for the data with seasonality or periodicities [69].
At a significance level α of the test, if |Z| ≥ Z1−α/2 (Z is the
MK test statistic), the null hypothesis that there is no monotonic
trend is denied. Namely, there is either an upward (positive) or
a downward (negative) monotonic trend when |Z| ≥1.65, 1.96,
and 2.576 (at the α of 10%, 5%, and 1%). The trend categories
were listed in Table II.

B. PIFs Optimization for the Reference–Target Image Pair

We first allocated all images with cloud coverage of less than
30% to 12 monthly image stacks. Then, the PIFs optimization
was used to refine the trend-based PIFs for each reference–target
image pair in the monthly image stack. It includes an automatic

reference image selection and a PIFs refinement using spatial
and spectral metrics.

1) Automatic Reference Image Selection for Monthly Im-
age Stack: We used a pixel-based image quality evaluation
to automatically select the reference image in each image
stack. The sensor score (SS), opacity score (So), and distance
to cloud/cloud shadow score (Sd) were calculated for each
pixel [70]. The sum of three scores was used to represent the
pixel quality. We defined the better pixel Pb as the pixel with a
score greater than mean score of the current image. The image
with the most Pb in each monthly image stack was selected as
reference image.

The SS is an image-level score to avoid selecting references
from Landsat 7 ETM+ SLC-off data. The pixels of normal
ETM+ and other sensors’ data were allocated a score of 1. The
pixels of ETM+ SLC-off data were assigned a score of 0.5.

We calculated the So using the “SR_ATMOS_OPACITY”
band. It is an estimator of aerosol optical thickness from the blue
bands of Landsat 5 TM or 7 ETM+ images using the dark dense
vegetation method [48], [71]. In general, an opacity value (Oi)
less than or equal to 0.1 refers to a clear pixel, an Oi ∈ (0.10.3]
is an average pixel, and anOi > 0.3 is a hazy pixel. We assigned
So of a clear pixel (Oi < 0.2) and a haze pixel as 1 and null,
respectively. TheSo of a pixel withOi ∈ [0.20.3]was calculated
as follows [70]:

So = 1−
(

1

1+e

(
−0.2

(
min(Oi, Omax)−

(
Omax−Omin

2

)))
)
, So ∈ (01)

(1)
where Oi is the opacity value of the ith pixel, Omax and Omin

are namely the maximum opacity value (i.e., 0.3) and minimum
opacity value (i.e., 0.2). A dummy band with an opacity score
of 0.25 was used to replace the null “SR_ATMOS_OPACITY”
band of Landsat 5 TM/7 ETM+ data and represent the opacity
value for Landsat 8 OLI data.

We calculated the Sd using the “QA_PIXEL” band. We as-
signed a score of 1 to the pixels that are greater than 30 pixels
away from the cloud/cloud shadow. The rest pixels having a
distance within 30 pixels were assigned a score as follows [72]:

Sd =
1

1 + e

(
−0.2

(
min(Di,Dr)−

(
Dr−Dmin

2

))) , Sd ∈ (01) (2)

where Di is the distance to cloud/cloud shadow of the ith pixel,
Dr is the required minimum distance (i.e., 30 pixels), and Dmin

is the minimum distance of the given pixels (i.e., 0 pixels).
2) PIFs Optimization Using Spatial and Spectral Metrics:

We refined the trend-based PIFs for each reference–target image
pair based on their spatial and spectral differences. In the spatial
domain, we first calculated the structural similarity index mea-
sure (SSIM) [73] for each band between reference and target
images. Then, we sorted the SSIM values of each band in
descending order and selected the top 80% of highly similar
pixels as the candidate spatial similarity masks of each band,
denoted as Mspa_n. Finally, we obtained the spatial similarity
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mask (Mspa) using the spatial intersection part of all Mspa_n

Mspa =

{
1, if {Mspa_1 ∩Mspa_2 ∩ . . . ∩Mspa_n}
0, if the rest pixels

. (3)

In the spectral domain, we first calculated the spectral change
magnitude (m) between reference and target images using the
change vector analysis method

m =

√√√√ n∑
i=1

(Ri − Ti)
2, m ∈ [0, max (m)] (4)

where Ri and Ti are the ith band of reference and target images,
m is the change magnitude, and n is the number of bands. Then,
we convertedm into a 1-D vector and sorted it in ascending order,
denoted as vm. Next, we calculated the cumulative moving
average of vm under K intervals (CMAK )

CMA1 =

∑N
i=1 vmi

N

CMA2 =

∑2N
i=1 vmi

2N

. . . ,

CMAK−1 =

∑(K−1)N
i=1 vmi

(K − 1)N

CMAK =

∑KN
i=1 vmi

KN
(5)

where N is the number of pixels within the interval, K is
the number of intervals (i.e., 500), and vmi is the ith sorted
vm value. Finally, we used the forward-difference method for
CMAK to identify the inflection with minimum differential
values [74]. All pixels with differential values (DVi) less than
the inflection value (DVinflection) were determined as the spectral
similarity mask, denoted as Mspe (see Fig. 11)

Mspe =

{
1, if DVi ≤ DVinflection

0, if the rest pixels
. (6)

After converting PIFtre, Mspa, and Mspe to binary images, we
used their spatial intersection as the optimized PIFs (PIFopt) for
current reference–target image pair

PIFopt = PIFtre �Mspa �Mspe. (7)

C. Relative Radiometric Normalization Modeling

We estimated RRN models for each band using the reference
and target pixels corresponding to PIFopt. To achieve better
fitting performance for each band, we first identified inlier data
pairs of each band using MSAC [75] algorithm. Then, we used
RLR to model the relationship between the identified inlier
data pairs of each band. The above-mentioned processes aim to
reduce the negative influence of outlier data pairs on the model
accuracy. Finally, we normalized each band of the target images
using the estimated models.

1) Identification of Inlier Data Pairs Using MSAC: MSAC
is an improved random sample consensus (RANSAC) [76] al-
gorithm. The cost function of RANSAC is shown as

C =
∑
d∈D

Loss (Err (d,M)) (8)

where d is the selected subset, D is the dataset, Loss is the loss
function, Err is the error function of geometric distance, and M
is the estimated model parameter. The loss function is shown as

Loss (e) =

{
0 |e| < T
constant |e| ≥ T

(9)

where e is the error. T is the error threshold to determine inliers
and outliers. However, higher T can lead to poor estimations
(all solutions have the same cost as all the matches would be in-
liers) [75]. Therefore, MSAC uses the redescending M-estimator
as a loss function to reduce the influence of the threshold on the
model. The new robust loss function is given as

Loss (e) =

{
e2 |e| < T
T 2 |e| ≥ T

. (10)

In this way, outliers still can have a fixed penalty but inliers
are scored to the extent they fit the data. For the linear regression
in this article, the minimum number of the subset (n) was set to
2, the inlier proportion dp was set to 90%, and the error threshold
ti for the ith band was set as follows:

ti = θ × 1

n

n∑
i=1

|Ri − Ti| (11)

where θ is a proportion constant that was set to 0.3,Ri and Ti are
the vectors of the ith band’s pixel value for reference and target
image, respectively, and n is the pixel number of each band.

2) Relative Radiometric Normalization Modeling Using
RLR: After identifying inlier data pairs, we estimated RLR mod-
els for each band using the iteratively reweighted least square
(IRLS) algorithm. The IRLS iteratively calculates weights to
determine the influences of each response value on the final
parameter estimates [77]. A lower weight is assigned to the point
farther from model predictions in the previous iteration. Then,
the IRLS solves model coefficients using weighted least squares.
We used Tukey’s bisquare function [78] as the weight function
(w), which is given by

w′ (r) =

{
r
[
1− ( rc )2]2 |r| ≤ c

0 |r| > c
(12)

where r is “residual.” c is a positive parameter set to 4.685.

D. Evaluation of the Proposed RRN Method

We evaluated the performance of the proposed RRN method
by comparing differences between the original and normalized
reference–target image pairs. First, the improvement of image
brightness intensity differences was visually checked using
checkerboard visualization. Second, three qualitative evalua-
tions were performed: 1) the precision of the estimated linear
regression models was evaluated using a tenfold cross valida-
tion with root-mean-squared error (RMSE) and coefficient of
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Fig. 2. Identification of the trend-based PIFs. (a) Detected first changes from 2001 to 2020. (b)–(d) Tested significant trends from harmonic-fitted time-series
NDVI, NBR, and MNDWI. (e)–(g) Candidate PIFs of NDVI, NBR, and MNDWI. (h) Trend-based PIFs. (i) Enlarged displays of the trend-based PIFs in typical
land covers. The background is LC08_20201220 (SWIR1, NIR, and green bands are displayed in red, green, and blue channels, respectively).

determination (R2); 2) the method’s capability of minimizing
the radiance differences in each band was evaluated using both
the RMSE variations; and 3) using the difference histogram
adjustment of the unchanged area derived by GEE-CCDC.

IV. RESULTS AND ANALYSIS

A. Trend-Based PIFs

A total of 106 632 pixels were identified as trend-based PIFs
after integrating candidate PIFs of NDVI (26 080 pixels), NBR
(62 300 pixels), and MNDWI (23 660 pixels) (see Fig. 2). Within
trend-based PIFs identification, a total of 655 814 changed pix-
els were detected from 2001 to 2020 using GEE-CCDC [see
Fig. 2(a)]. Most changed pixels were converted from vegetation
to impervious. Different amounts and spatial distributions of the
candidate PIFs showed the index capability biases in providing
the trend-based PIFs from different land covers [see Fig. 2(h)
and (i)]. NDVI and NBR provided most candidate PIFs corre-
sponding to vegetation and the impervious, but NBR provided
more candidate PIFs from forests. Integrating these candidate
PIFs effectively improved the representativeness of trend-based
PIFs.

B. Performance of PIFs Optimization

Within the PIFs optimization, the reference image of each
monthly image stack was identified by automatically selecting
the image with the greatest number of Pb (see Fig. 3). Tak-
ing the image stack of December as an example, the image
“LC08_20161209” was selected as a reference. Figs. 3 and 12
showed that the proposed reference image selection is effective
to distinguish the reference with the best pixel quality from the
images covered by haze/cloud or acquired by faulty Landsat 7
ETM+.

After identifying the trend-based PIFs that intersect the spatial
and spectral similarity masks (Mspa and Mspe) (see Fig. 4), an
average of 44 330 pixels were obtained as optimized PIFs for
each reference–target image pair in the image stack of December
[see Fig. 4(g)]. The PIFs optimization further reduced the poten-
tial errors in trend-based PIFs to the linear regression models,
according to RMSE andR2 of the linear regression models using
the PIFs obtained at different stages (see Fig. 5). The trend-based
PIFs achieved a general fitting performance: the models of
visible bands have a lower RMSE but the median R2 lower
than 0.65; the models of NIR and SWIR 1/2 bands have higher
R2 from 0.76 to 0.82. The implementation of optimized PIFs
significantly improved the models’ fitting performance for each
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Fig. 3. Number of Pb (blue), valid image pixels (green), and the main information of the selected reference image in each monthly image stack (a-l). Percentage
is the scene cloud coverage of the selected reference. X-axis is the image acquisition date.

band: the median of RMSE was decreased to a lower range of
0.0083–0.0130, and the median of R2 was increased to a higher
range over 0.85 except the blue band has a large variation around
0.80. We found that these models of the blue band with unsatis-
fying fitting performance are from hazy/cloudy images acquired
by Landsat 5 TM/7 ETM+, such as “LT05_20081219” ( R2 =
0.60), “LE07_20121206” (R2 = 0.61), and “LE07_20151231”
( R2 = 0.63) (see Fig. 12). These images contain the pixels
without homogeneous transparency that negatively impacted
the fitting precision. Thus, it is necessary to eliminate these
negative impacts on each band for a more precise RRN model
estimation.

C. Performance of the Proposed RRN

The evaluation results showed that the proposed RRN method
achieved a good performance in model precision and radiance
consistency improvement. In terms of visual evaluation results,
the checkerboard visualization showed that our RRN method has
effectively reduced the brightness intensity differences between
raw reference and target images, resulting in more seamless
checkerboard cells (see Fig. 6). The normalized target image

sequence has more consistent color tones with the reference
image instead of the distinct fluctuations in the raw target image
sequence.

The quantitative evaluation proved the effectiveness of our
RRN method from the following aspects.

1) The RRN modeling combining MSAC with RLR better
estimated the linear regression models for each band (see
Fig. 5). The model precision was significantly improved:
the median RMSE of each band was decreased to 0.0032,
0.0029, 0.0035, 0.0033, 0.0039, and 0.0037; the median
R2 of NIR and SWIR1/2 bands’ models was increased
to a steady range of around 0.99, and the R2 of visible
bands’ models achieved a satisfying performance with a
medianR2 of 0.97, 0.99, and 0.98. The model precision of
hazy/cloudy images was improved using MSAC and RLR,
for instance, the R2 of each band for “LE07_20121206”
was increased to 0.78, 0.94, 0.94, 0.98, 0.99, and 0.99.

2) The proposed RRN method significantly reduced the ra-
diance differences of the pixels in the unchanged area.
We used RMSE to represent the radiance differences be-
tween the pixels of reference and target images; the mean
RMSE of each band was decreased by 29.37%, 20.77%,
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Fig. 4. Illustration of PIFs optimization. (a) Reference image “LC08_
20161209.” (b) Target image “LC08_20201220.” (c) Trend-based PIFs. (d)
Spatial similarity mask Mspa. (e) Spectral similarity mask Mspe. (f) Optimized
PIFs. (g) Number of optimized PIFs for the image stack of December.

15.37%, 7.87%, 6.15%, and 4.82% on average (see Fig. 7).
Moreover, the radiance differences in visible bands of TM/
ETM+ data were effectively improved, especially for the
hazy images. For example, the mean pixel differences in
visible bands for “LT05_20081219,” “LE07_20091230,”
“LE07_20121206,” and “LE07_20151231” were de-
creased by 75.01%, 65.54%, 51.92%; 81.43%, 76.89%,
71.55%; 60.69%, 39.65%, 43.12%; and 77.91%, 64.90%,
64.99%, respectively. Besides, for the image stack after
performing RRN, the mean pixel values of each band in
the unchanged area have more consistent variation over
time compared to the fluctuant variation in the original
series (see Fig. 8).

3) The proposed RRN method increased the number of
pixels with values around zero. Based on the difference
histograms of the unchanged area between the reference
and the target images before (DR−T ) and after (DR−N )
performing RRN (see Fig. 9), the histograms of DR−N

symmetrically follow a more concentrated normal Gaus-
sian distribution centered at zero than that of DR−T . Our
RRN method also successfully adjusted some bimodal
distributions in DR−T caused by inconsistent radiance
[see Fig. 9(b)] and maintained the bimodal parts caused
by underdetected changes [see Fig. 9(c)]. It proved the
effectiveness and importance of RRN in improving change
detection accuracy by reducing the probability of pseu-
dochanges [5], [79].

Fig. 5. (a) RMSE and (b) R2 of linear regression models using the PIFs in
different stages (the image stack of December). The blue line in the box is the
median. The upper and lower of the whiskers are the maximum and minimum.
The upper and lower of the box present Q1 and Q3. The colored area near the
notch is data between median± (1.57× Interquartile range)/n.

V. DISCUSSION

A. Comparison of RRN Methods

We compared the normalized image stacks of December
between our method and seven commonly used RRN methods.
The comparative methods include the DRRN methods of HC,
MM, MS, and SR, the SRRN methods of conventional PIFs nor-
malization, IR-MAD, and spectral angle mapping-based PIFs
(SAM-PIF) [74] normalization. We visually interpreted 1670
unchanged pixels for the impervious (270), vegetation (900),
and water (500) as ground truth to compare the mean RMSE of
that between the reference and normalized target images.

Our RRN method outperformed the comparative RRN meth-
ods on 18 of 27 images, obtaining the most consistent normaliza-
tion performance with a decreased mean RMSE of 19.84% and
the lowest mean RMSE of 0.0170 (see Fig. 10). The methods
of MS, SAM-PIFs, IR-MAD, and SR also performed well with
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Fig. 6. Checkerboard visualization of raw (a, c, e) and normalized (b, d, f) reference–target image pair in the image stack of December (SWIR 1, NIR, and green
bands are displayed in red, green, and blue channels). More seamless cells indicate fewer differences between reference and target images.

the decreased mean RMSE of 18.09% (4/27), 16.63% (2/27),
15.83% (2/27), and 7.56% (1/27). The pixel differences in
Landsat Collection 2 Level-2 surface reflectance products are
relatively small since the standardized ARN has reduced parts
of the differences introduced by atmospheric conditions. Thus,
the mean RMSE derived using each method is closer compared
to the research using raw digital number (DN) values data.
Inevitably, our method did not achieve the lowest mean RMSE
on all images but reached relatively closer values to some lowest
mean RMSE obtained using other methods, i.e., 0.0231 for
“LE07_20021227,” 0.0093 for “LE07_20161217,” and 0.0111
for “LC08_20171212.”

In detail, compared to the results derived using comparative
methods, our RRN method is more advantageous in identifying
accurate PIFs from hazy/cloudy images and leading to better
local normalization results. For example, we used the OTSU
method to automatically extract the unchanged pixels from the
IR-MAD chi-square change probability map. As a result, a
greater number of pixels were used to build a regression model.
Like the global method of MS, it resulted in some normalized
target images with the lower statistical RMSE but probably unfits

the actual scenario: for image “LC08_20191202,” IR-MAD
hardly excluded the impact of clouds even though it achieved the
lowest mean RMSE [see Fig. 13(c)]. On the contrary, our method
filtered the proper PIFs by identifying the cloud coverage and
land cover changes [see Fig. 13(e)–(g)]. Two checkerboards of
the normalized image showed that our method generated a more
seamless image with less local inconsistency [see Fig. 13(d) and
(h)]. Moreover, the MS and SAM-PIF achieved the lowest mean
RMSE in cloudy images “LE07_20121206”/“LE07_20151231”
and “LC08_20141220,” respectively, but our proposed method
outperformed MS and SAM-PIF in the improvement of local
brightness differences (see Fig. 14). Therefore, we still need to
focus on the specific purposes to normalize the targets instead
of using a single evaluation metric to determine the best normal-
ization method.

B. Discussion on the Proposed RRN Method

The proposed RRN method is a multi-rule-based method
including three steps in order: trend-based PIFs identification,
PIFs optimization, and RRN modeling. This method has been
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Fig. 7. Mean RMSE of the unchanged area between reference and the target
before/after performing RRN. (a)-(f) are the statistics of blue, green, red, NIR,
SWIR 1, and SWIR 2 bands, respectively.

successfully applied to enhance the radiometric consistency of
the Landsat Collection 2 Level-2 surface reflectance products,
while there are some advantages and disadvantages in each step
that need to be discussed.

1) Advantages: In trend-based PIFs identification, we de-
fined that PIFs are the pixels with steady physical attributes
without experiencing land disturbances and significant phe-
nological trends over the entire time series. Our trend PIFs
identification addressed the influence of fluctuating numbers

Fig. 8. Mean pixel value of the unchanged area in the (a) raw and
(b) normalized image stack of December.

and distribution of PIFs on estimating RRN models. It provides
consistent and representative trend-based PIFs for all reference–
target image pairs using a time series analysis strategy rather
than separately comparing the instantaneous changes in radio-
metric features over two records. Two parameters need to be
paid attention to when generating the unchanged area using the
GEE-CCDC: “chiSquareProbability” and “minObservations.”
Both two are sensitive to the determination of changes. A lower
chi-square probability threshold can better tolerate commission
errors [61], [80], [81], and a lower “minObservations” can
increase the number of detected changes by using fewer con-
secutive observations to flag a change [54]. To better balance
the commission errors and integrity of the unchanged area, we
namely assigned 0.90 and 6 to “chiSquareProbability” and “mi-
nObservations,” respectively. The involved time series analysis
in this section is implemented on the GEE platform, alleviating
the massive pressure of data processing on local devices, for
example, a 500M CCDC-fitted result and a 1100 × 1100-pixel
MK test result require 15 and 60 min to be outputted to user’s
Assets.

The PIFs optimization was designed on the assumption that
the optimal PIFs for the current reference–target image pair
are a subset of trend-based PIFs with similar spatial structures
and spectral properties. The experimental results showed that
the PIFs optimization is robust to hazy or cloudy images since
both the spectral differences sensitive to radiance distortion and
spatial differences insensitive to radiance distortion are exploited
to yield Mspa and Mspe (see Fig. 13). Therefore, these optimized
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Fig. 9. Difference histogram of the unchanged area between reference and the target before (darker) and after (lighter) performing RRN. (a) LC08_20201220.
(b) LE07_20161217. (c) LT05_20101209.

Fig. 10. Mean RMSE of the ground truth between the reference image and normalized target image using different methods.



5808 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

PIFs are all from clear observations and are invariant to the
gradual changes in the entire time series and the abrupt changes
on two records. The percentage to determine the pixels with
higher spatial similarity is the only required parameter during
this step. It was allocated as 80% due to the higher local SSIM
values caused by the medium-resolution image.

The quality of the PIFs to estimate RRN models is improved
via the above processes. Therefore, the MSAC and RLR can
effectively identify proper inliers and estimate the regression
parameters of a precise RRN model without deviating from the
actual relationship.

2) Limitations: During generating the trend-based PIFs, out-
putting a larger-scale MK-test result using a longer time series
needs to overcome the limitation of running capacity. It can be
addressed by splitting the image into M×N subsets to output but
with the cost of more time. Besides, in reference identification,
most references of the monthly image stacks are from Landsat
8 OLI images after 2013 and earlier Landsat 5 TM images
due to high-penalty SS for Landsat 7 ETM+ SCL-off data in
identifying reference (see Fig. 3). It brings possible unbalanced
normalization performance caused by the uneven distribution of
reference in the time series. It is noted that the hazy or cloudy
images are still challenging to deal with because the images have
heterogeneous transparency and hardly follow the assumption
of a global affine modification of radiometric values [82].

3) Applications and Future Works: The proposed RRN
method can eliminate the uncertainties caused by radiometric
calibration, atmospheric correction, and sensor differences. The
normalized images can be used as inputs for time-series change
detection, vegetation monitoring, and long-term land cover clas-
sification to generate more comparable results. The steps of
trend-based PIFs identification and automatic reference image
selection require Landsat Collection 2 Level-2 products as input
due to the usage of surface reflectance and quality assessment
bands. Once the trend-based PIFs are obtained and the reference
image is determined, the PIF optimization and RRN can also be
performed to normalize the Collection 2 level-1 data belonging
to the same spatial domain and acquisition time series, such
as the calibrated top-of-atmosphere reflectance and DN values
data.

This study also opens future research avenues to explore an
effective RRN method between the Landsat series and Sentinel
2 MSI (MultiSpectral Instrument) data, which can contribute to
improving the consistency of the harmonized Landsat 8/9 OLI
and Sentinel-2 MSI surface reflectance products.

VI. CONCLUSION

We proposed a novel RRN method, including a global trend-
based PIFs identification, a local PIFs optimization, and an RRN
modeling, for enhancing the radiometric consistency of Landsat
time-series imageries. The Landsat Collection 2 Level-2 surface
reflectance data from 2001 to 2020 of a 1100 × 1100 pixels area
in Nanjing, China, were used to validate our method. The results
showed the following.

1) The proposed trend-based PIFs identification effectively
identified the PIFs pixels without land cover changes and
phenological trends from the entire time series.

2) The PIFs optimization is capable of automatically allocat-
ing the reference image to each monthly image stack and
optimizing the PIFs based on specific spatial and spectral
differences of the current reference–target image pair.

3) The RRN modeling using MSAC and RLR achieved a
good performance in model precision (median R2 > 0.96
and median RMSE < 0.0039) and radiance consistency
improvement, resulting in a more consistent normalized
series over time.

4) Our RRN method outperformed seven commonly used
RRN methods on 18 images in the stack of December.

As an essential preprocessing step, the proposed RRN method
can effectively eliminate the uncertainties caused by radiometric
calibration, atmospheric correction, and sensor property differ-
ences. The normalized images can be used as more reliable
inputs for time-series change detection, vegetation monitoring,
and long-term land cover classification.

APPENDIX

A. Tables

TABLE II
TREND CATEGORY OF THE MK TEST RESULTS

B. Figures

Fig. 11. (a) Cumulative moving average and (b) forward-differential values
for the change magnitude of the image pair of reference “LC08_20161209” and
target “LC08_20201220.”
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Fig. 12. Visualization of the image stack of December (NIR, red, and green bands are displayed in red, green, and blue channels). (a)-(d) and (I)-(VII) refer to
the row and column numbers of the sub-figures.

Fig. 13. Comparison of the proposed method and IR-MAD (SWIR 1, NIR, and green bands are displayed in red, green, and blue channels).
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Fig. 14. Comparison of the proposed method and MS/SAM-PIF (SWIR 1, NIR, and green bands are displayed in red, green, and blue channels).
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