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P3S: Pertinent Privacy-Preserving Scheme for
Remotely Sensed Environmental Data in Smart Cities
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Abstract—Sensing devices, high-performance networking, and
privacy preservation algorithms have important roles to play in
remotely sensed environmental data in smart cities. The data
generated by these sensors are heterogeneous, vast, and sensitive.
Therefore, it is imperative that adequate security mechanisms are
put in place to protect environmental data from privacy breaches
and malicious attacks, remotely sensed environmental data, such
as weather conditions (windy, cloudy, or rainy), soil types, and
other similar data, must be protected. The biggest risks of re-
motely connected devices are that sensitive information could be
leaked and devices could be compromised. Considering these se-
curity threats, this article proposes a pertinent privacy-preserving
scheme. The presented scheme is reliable for sensitive geosensed
data in thwarting the aforementioned security issues. The data
are concealed using two-factor authentication from the transmitter
end. In this authentication, the signatures of device and receiver are
overlapped for improved authentication. The failure in overlapping
is identified by delayed signing time and noncoherent agreements.
This identification is recurrently analyzed using federated learning.
Therefore, the signing process is paused until the device verification
is performed. Hence, if the device verification succeeds, then a new
data privacy accumulation session is introduced. Contrarily, the ac-
cumulation is dropped, preventing compromised actual data from
preserving accuracy. In two-factor authentication, lightweight dig-
ital signing cryptography is utilized. The proposed scheme maxi-
mizes the average authentication success rate and average overlap-
ping factor by 8.86% and 12.20%, respectively. This scheme further
reduces average authentication time, false data, and verification
time by 10.14%, 9.70%, and 10.19%, respectively.

Index Terms—Big Data, data privacy, machine learning, privacy
preserving, remote sensing, smart city.

I. INTRODUCTION

R EMOTE sensing is a process that is used to detect and
monitor the physical characteristics of a particular object

or phenomenon without making physical contact [1]. Satellites
are used in remote sensing to collect data from objects. Satellites
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gather a group of raw data and store it in computer storage as
files or database records. Remotely sensing data is an important
process that is mostly used to predict and detect conditions
via monitoring systems. Very high-resolution (VHR) sensors
are used in remote sensing, which improves the security and
safety ratio of data that are collected via wireless sensors [2].
VHR improves the feasibility and efficiency levels of smart
cities by ensuring the safety of users from attackers. Geographic
information systems (GIS) are also used in remote sensing data
management systems [3]. The external data and the technolog-
ical paradigm utilized are modeled using learning techniques
for self-decisions. One such process is the inclusion of learning
models in GIS and similar technologies. For example, a deep
learning (DL)-based remote sensing technique is used in smart
cities to improve predictability [4]. The DL reduces latency and
time consumption in computational processes [5].

Privacy preservation and security are complicated tasks to
perform in a geosensing-based application. Important informa-
tion is stored in a GIS [6], [7]. Manual analysis and other
privacy schemes are used in securing geodata. An automated
extraction method is used for remotely sensed data to reduce the
error ratio in privacy and security policies [8]. The automated
extraction method achieves high accuracy in decision-making,
which enhances the overall performance and effectiveness of the
systems [9]. Remotely sensed data contain heterogeneous infor-
mation related to specific fields and areas. The rapid extraction
technique is used in automated extraction, which reduces time
and energy consumption in computation [10]. Authentication
and authorization policies ensure the security of remotely sensed
data. A Chaos-based encryption technique is also used in privacy
policies. Encryption techniques give users the best security ser-
vices possible and make it easier to compute and make decisions
[11]. Remotely sensed data contain important information about
specific fields [12]. Support vector machines (SVMs) are used in
weather forecasting applications to identify important features
from the database [13]. Remotely sensed data are also used in
rural map applications. The map application is implemented
via machine learning techniques, which enhance accuracy in
providing services to users and improve the performance ratio
of an application [11], [14]. Urban modeling also uses remotely
sensed data to provide accurate information for modeling and
data processing systems. Remotely sensed data produce exact
information about soil, weather, water, and the index of other
elements. Both urban and rural modeling applications make sure
that third-party members’ information is safe [13], [15]. The
sensors in remote sensing settings produce diverse and sensitive
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data. Hence, environmental data must be secured against privacy
breaches and malicious attacks. The contributions to privacy
preservation in remotely sensed environmental data are listed as
follows.

1) A pertinent privacy-preserving scheme (P3S) for remotely
sensed environmental data using two-factor authentica-
tion is proposed. The proposed scheme is based on a
lightweight digital signing process to reduce computa-
tional costs.

2) To improve authentication, the signatures of the device
and the receiver are overlapped. The failure in overlapping
is identified by delayed signing time and noncoherent
agreements. This identification is recurrently analyzed
using federated learning.

3) A comprehensive simulation of the environmental dataset
is conducted to validate the functional correctness and
effectiveness of the proposed scheme.

The rest of this article is organized as follows. Section II
presents the state-of-the-art of privacy preservation in remotely
sensed environmental data. Section III presents the proposed
P3S. The results and performance analysis have been discussed
in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

Zurbarán et al. [16] introduced a geoprivacy-based evaluation
framework to identify characteristics of a location in geospatial
analysis. The nearest neighbor index reduces latency in evalu-
ation, which enhances the feasibility of analysis systems. The
proposed framework improves the performance and efficiency
of location privacy. However, the optimal mechanism did not
get the highest score on any of the indices but rather maintained
average performance throughout them.

Wang et al. [17] proposed a transmission scheduling method
for remote state estimation systems. The main aim of the pro-
posed method is to identify transmission scheduling problems
that occur during computation. The proposed scheduling method
achieves high accuracy in scheduling, which enhances the effec-
tiveness and reliability of the systems. However, practically, the
performance of remote estimation is not known.

Huang et al. [18] developed a blockchain-based continuous
data integrity checking protocol for cloud computing (CC) tech-
nology. A zero-knowledge privacy protection technique is used
here to verify delay functions. Compared to other protocols,
the proposed protocol makes CC work better and has more
significance. However, the overhead of the mining process is
not considered in the performance analysis.

Brahem et al. [19] proposed a privacy-by-design solution for
the consent-driven data reuse process in multitasking crowd-
sensing systems. The main aim of the proposed method is to
identify the consent that is presented in the analysis process.
The proposed method improves the overall privacy and security
levels of crowdsensing systems. The authors have not reported
any performance analysis that ensures the integrity and confi-
dentiality of the privacy-preservation solution.

Smahi et al. [20] introduced blockchain-based privacy-
preserving SVM classification (BPPSVC) for mobile-cloud-
sensed data. Blockchain identifies the features necessary for

classification and identification processes. Secure multiparty
computation is implemented in BPPSVC, which reduces the
latency level in computation. Experimental results show that
the proposed BPPSVC maximizes the privacy of data, which
enhances the feasibility of the systems. However, the use of
blockchain technology has introduced communication and min-
ing overhead.

Ding et al. [21] introduced a new privacy-preserving task allo-
cation method for edge-computing-based mobile crowdsensing
(EC-MCS) systems. Accurate users are selected based on the
homographic encryption process, which reduces error levels in
task allocation. The proposed method ensures both the safety
and security of users, which improves the effectiveness and
efficiency of EC-MCS. The primary drawback of homomorphic
encryption is that it necessitates either modifying existing ap-
plications or deploying new, custom client-server programs in
order to perform properly.

Sani et al. [22] developed a new scheme for smart commu-
nities, named a secure and privacy-preserving mutually depen-
dent authentication and data access scheme (SPrivAD). Cryp-
tographic operations and techniques are used here to encrypt
information that is required for privacy-preserving policies.
Zero-knowledge proof of knowledge (ZKPK) is used here to
identify computational attributes. The proposed SPrivAD pro-
tocol maximizes the privacy ratio of users from third-party
members. However, the ZKPK technology is a computationally
intensive process.

Fakroon et al. [23] introduced a secure remote anonymous
user authentication scheme for smart home environments and
systems. The proposed scheme is mostly used to identify
clock-synchronized problems that occur during authentication.
The proposed scheme combines both transaction history and
physical context to get feasible information for the authen-
tication process. User authentication schemes improve both
the privacy and security levels of users during authentication.
The storage and communication cost of the proposed schedule
is high, which may not be suitable for real-time embedded
applications.

Ge et al. [24] designed resilient and secure remote monitor-
ing for cyber-physical systems. The main aim of the proposed
monitoring is to identify ellipsoidal attacks and problems that
are presented in the collected data. The set-based evaluation
method is used here to predict important features from the
database. The proposed method achieves high accuracy in pre-
diction and detection, which enhances the efficiency level of
the decision-making process. The ellipsoidal prediction and es-
timate approach may be vulnerable to certain types of malicious
assaults.

Hu et al. [25] introduced a privacy-preserving scheme for
wireless sensor networks (WSNs). Sensor nodes are detected
and managed via key agreement protocols that reduce latency in
computation and identification.

The proposed scheme improves the efficiency of sensed data
that are generated from WSN. The proposed scheme ensures
the privacy of users’ data from unknown third-party members.
However, the deployment and implementation processes, which
are two components of overhead, have become more time-
consuming.
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Fig. 1. Proposed P3S scheme for remotely sensed environmental data.

Zhou et al. [26] developed fog and Internet of Things (IoT)-
based mechanisms for privacy-preserving policies. Range-max
queries are detected from the database that provides optimal in-
formation for further processes. Ciphertexts are calculated based
on functions and operations that reduce the time consumption
ratio in computation. Compared to other methods, the one that
is being proposed is more effective and uses less time.

Xie et al. [27] designed a secure, privacy-preserving protocol
for WSN. The proposed protocol is mostly used in smart cities
that require proper privacy policies for users to ensure safety.
The proposed method provides optimal authentication services
to users, which improve the security and safety of users’ data
from third-party members. Experiments show that the proposed
protocol improves the level of privacy in WSN systems as much
as possible. However, the computational cost is high.

Popa et al. [28] proposed a privacy-aware mobile distributed
system for mobile participatory sensing (MPS). The main aim
of the proposed method is to reduce location leakage, which
enhances the performance and feasibility level of MPS systems.
The supporting server infrastructure is used here to identify tradi-
tional features that are required for privacy-preserving policies.
One of the disadvantages of the proposed model is the high
aggregation time. In addition to this, PAMPAS+ costs for an
extra phase known as the couple-key exchange, during which
each pair of SPs trades a secret key.

The existing literature discussed so far provides privacy
preservation for sensed data, as presented in [19], [21], [25],
and [28], and location/system, as presented in [16], [26], and

[27]. Transmission security is leveraged using individual user
authentication and access controls, as discussed in [17], [22],
and [23]. The security methods lag a few security demands,
such as controlling the false rate, as discussed in [18], [20],
and [28], due to intense verification at irregular intervals. In the
user authentication and access control process, the problem of
data privacy is confined due to unplanned session authentica-
tion. The proposed scheme addresses the highlighted issues by
identifying overlapping issues in the signing process. Besides,
the noncoherent signing processes are paused for preventing
irregular verifications.

III. PROPOSED PRIVACY PRESERVATION SCHEME

The proposed scheme is designed to consider the security
threats in smart cities that rely on geosensed data and remotely
connected technologies to prevent the chances of data leakage
and device compromise. A large amount of data from the cli-
matic sensor, temperature sensor, and soil sensor are sensed
and transmitted to different communication points for analysis
and securing sensitive geosensed data, as shown in Fig. 1. The
remotely sensed data are communicated to the analysis center,
such as weather forecast centers. The initial security processes
are between the communication infrastructures through digital
signing from the sensing device.

This signature is verified by the analysis center for its privacy
using coherence and delay factors. The analysis center performs
device and data verification to ensure precise data are received.
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The remotely sensed environmental data are to be secured be-
fore performing analysis. Autonomous and remotely connected
geoapplications have fewer chances of data leakage, device
compromise, and failure. Before performing the data analysis,
the sensed remote raw data are secured through a two-factor
authentication process at the transmitter end to identify failures.
However, the large amount of remotely sensed data modifies
the device compromise based on the type of systems that are
observed in the smart city environment. This process leads
to an explosion in geosensed data and analysis over sensing
devices and sophisticated technologies to support making smart
decisions. In this work, the identification of security threats in
sensed data is a critical task that must be analyzed to check if
the signatures of the device and the receiver are overlapped for
augmenting authentication. The failure is identified at the time
of overlapping, which is detected using delayed signing time
and noncoherent agreements through two-factor authentication.
This approach prevents security issues in sensitive geosensed
data. If any failures are identified at the time of device verifica-
tion or a data drop has occurred in that session, the particular
sessions are halted. The identification of failure is recurrently
analyzed through a federated learning process, and the digital
signature process is paused until the device verification is per-
formed based on a coherence-less and time-delayed lightweight
signature. From the multiple communication points, precise
smart city data augmentation and management are achieved.
Multiple transmitters are used for sharing a large amount of data
from a sensor to an analytical center, where data transmission
time failures are detected. If the device verification succeeds,
a new data privacy accumulation session is generated. In this
proposed scheme, lightweight digital signing cryptography is
utilized using a two-factor authentication process. The device
verification is performed for delayed signing time and coherent
agreement in geosensed data analysis to reduce false data. The
false data are observed as the miscommunicated or interrupted
data in any sensing interval other than actually observed. The
geodata (GeoD) are sensed by various sensors (s) in smart cities.
The sensed data from the open environment are transmitted
to different communication points for secured data analysis
using two-factor authentication for accurate device verification.
Device compromise is used to manage big data augmentation
and management, and data privacy output is analyzed to ensure
accuracy. Hence, the P3S is focused on two operations, namely
data leakage and device compromise, in real-time applications.
The proposed schemes augment and manage the big data while
concealing geosensed data at the transmitter end. For improving
authentication, data privacy and device verification are analyzed.
This ensures that the signing time is delayed and that the agree-
ments are incoherent in multiple device verifications at different
time intervals.

A. Privacy Preservation

The geosensed data observed in the open environment rely
on sensing devices and connected technologies for improving
device compromise. The sensed data are concealed for thwart-
ing security issues. The multiple devices are autonomous and

remotely connected for reducing the chances of data leakage at
the transmitter end. The data augmentation (BigDataAug) and
remotely sensed data are computed as follows:

BigDataAug =

(
s∗ (GeoD

max − GeoD
min

)
GeoD

)
(1)

RSD =
1√
2π

⎡
⎣
(

GeoDmin

GeoDmax
− s

S

)
N (dl − dc)

⎤
⎦ (2)

where s is the active sensor data observed, s ∈ GeoD; GeoD
min

and GeoD
max are the minimum and maximum geosensed data

at different periods, respectively. Symbols RSD, dl, and dc are
used to represent the remotely sensed data, data leakage, and
device compromise, respectively, for further device verification
and privacy preservation. The sensed raw data are secured using
two-factor authentication, and the number of devices N in a
smart city sensing application is calculated in all the sessions.
In some cases, the device signature DS and received signature
RS are overlapped for augmenting authentication AA based on
failure in overlapping is identified due to delayed signing time
and noncoherent agreements in the digital signature process. The
augmenting authentication process is represented in Fig. 2.

Therefore, the digital lightweight signing process impact
GeoD at any period, in which the data privacy DataPrivacy is
computed as follows:
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(
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i
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where
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1
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√
1
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∑GeoD
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(
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N
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. (4)

Therefore
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{‖(GeoD

max − GeoD
min

)
i
‖ − ‖GeoDmax − GeoD

min‖
}

+ SDt∗NCa − F (5)

F = s
{‖(GeoD

max − GeoD
min

)
i
‖+ ‖GeoDmax − GeoD

min‖
}

≤ s
{‖(GeoD

max − GeoD
min

)
i
‖ − ‖GeoDmax − GeoD

min‖
}

− OV (DS +RS) . (6)

As per (3)–(6), the privacy preservation relies on geosensed
data and analysis with existing data, then considering the delayed
signing time (SDt), non-coherent agreementNCa, overlaps OV,
and failures F in active sessions. Here, OV is identified at the
time of performing two-factor authentication for data privacy
from the transmitter end.

The RSD is accumulated at different sensing intervals that
generate GeoD

min and GeoD
max depending on s operations. Post the

classification, the s status for transmission and authentication is
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Fig. 2. Augmenting authentication process.

determined at the analysis center. Authentication initialization
is performed using mutual acceptance between sensors and
the analysis center. If the s status is ready, then overlapping
(mutual acceptance) is verified for data exchange. This process
is required for AA ∈ (GeoD

min + GeoD
max), which is intense over

the different intervals (refer to Fig. 2). The signing delay and
nonmatched data are identified through a lightweight signing
process, in which precise geosensed data are required. Based on
the GeoD and DataPrivacy(GeoD), the sequential identification
Id of signing delay and noncoherent agreement in overlapping
is estimated as follows:

Equation (7) shown at the bottom of this page computes
continuous smart city big data augmentation and management
for the instance until sensors s are active in sending information
to the communication points. The sensed data need to be con-
cealed before analytical disclosures, and the devices should be
remotely connected to prevent compromised data and leakage.
The sequence of device compromise and data augmentation
using two-factor authentication and this proposed scheme is
reliable for geosensed data. Consider that the data privacy at the
transmitter end is to be verified and secured using a lightweight
signature for better privacy-preserving accuracy, which mainly
focused on device and receiver signatures overlapping in any
situation being analyzed. This overlapping is said to fail in
privacy-preserving solutions for remotely sensed environmental
data of smart cities to improve the digital signing processing.
In addition, it is crucial to ensure the privacy of the sensitive
geosensed data, as all the data collected from various locations
undergoes real-time analysis. Therefore, data augmentation and
management based on identifying failure are continuously an-
alyzed using federated learning. If failure is identified at the
time of device compromise, then that session will be halted.
The autonomous and sophisticated remotely connected devices
pose risks of data compromise and leakage; therefore, the failure
occurring in that session is detected and rectified through feder-
ated learning paradigm. The learning process is configured with

the s ∈ different intervals. Coherence verification is performed
using the input features OV and AA. This is initially performed
across different time intervals. In the latter, the independent
configurations forN and Id are considered. The learning process
for coherence analysis is presented in Fig. 3. The initial state of
these remotely sensed environmental data is protected through
two-factor authentication, and then further sensing operation
is observed and analyzed. The privacy-preserving output for
remote sensing data performs the condition (1− F

GeoD )OV from
different transmitter ends for reliable and precise authentication,
which is provided to the smart city data.

From this instance, the aforementioned two security issues
in geosensed data are analyzed for improving authentication.
Letdl anddc be used for computing privacy-preserving solutions
using federated learning. For this privacy-preserving output
computation PP k, the sequence of remote sensing geoappli-
cations is modeled as per (8) and (9)

dl + dc = PP k. (8)

For the consecutive instance

fl =

(
Id (F ) +

OV
N

)
. (9)

This federated learning “fl” is performed to identify failures in
active sessions at the transmitter end, following the lightweight
signature to conceal data from theft. These geodata are analyzed
based on coherence and time delay in data transmission to
prevent data leakage and device compromise. The learning for
coherence (see Fig. 3) is a reverse process in which Ca is
segregated from NCa. First, for (GeoD

min + GeoD
max), Id for

the sensed intervals and s are identified. This identification
is split across OV and F computations; if AA is to be per-
formed, then OV ⊆ Id, else noncoherent output is generated.
Such instances (post) are halted for preventing false data. The
identified halts are separately analyzed for (1to t) across GeoD

min
and GeoD

max occurrences for extracting the least possible Id.

Id
[
GeoD,DataPrivacy

(
GeoD

)]

=

√[
DataPrivacy (GeoD)

GeoD

]2
1

+

[
DataPrivacy (GeoD)

GeoD

]2
2

+ . . .+

[(
1− F

GeoD

)
OV

]2
s

. (7)
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Fig. 3. Coherence analysis.

Fig. 4. Authentication flow.

This process is repeated through OV for authentication. This
authentication is therefore different for Id ⊆ NCa and Id ⊆ Ca,
whereas for SDt instances, the authentication is halted.

B. Lightweight Signing Process

The EI Gamal algorithm is used for lightweight signatures; it
first selects the prime numbers p and q and then two integers,
α and X , where α < p; The estimation of Y is given as Y =
αX mod p. The prime numbers p and q should be selected;
hence, (p− 1) · (q − 1) has a large prime factor r. When signing
a deviceD and a receiverR, a random integerK will be selected
for further process, where K must not be used before satisfying
the condition 0 < K < pq − 1 and is relatively prime to (p− 1)
and (q − 1).

The lightweight signature in the device and receiver
(D and R) is performed through R = αK mod pq
and R = K − 1(D −XR)mod(p− 1) · (q − 1), where K−1

is the multiplicative inverse of K mod(p− 1).(q − 1);
hence, K∗ K−1 = 1 mod (p− 1) · (q − 1). When verifying
the device-compromised data, the public key XY is used

to estimate Y RDrmod pq and determine if it is equivalent
to αDmod pq. The proposed model performs the public key
generation and encryption at the leaf node to decrease the
communication and computation overhead of the sensor nodes,
as shown in Fig. 4.

The digital signature algorithm (DSA) is also known as the
digital signature standard. DSA is referred to as two-factor
authentication with a few limitations, which are as follows.

1) The size of p and q is fixed at 3602 < pq < 2513, which
makes p and q about 180 decimal digits long.

2) r , which is the largest prime factor of (p− 1) · (q − 1),
is chosen, so that 2513 < r < 3602.

3) The hash value H(D∗R) is used, instead of using all the
device-compromised data D.

4) The computations of the device and receiver signatures
are taken mod r,

This authentication clearly states that two-factor authenti-
cation and lightweight signature are two completely different
algorithms for improving device performance and reducing data
leakage; lightweight signature can go up to 4096 b, whereas
two-factor authentication has to be exactly 1024 b.



ALGARNI et al.: P3S: PERTINENT PRIVACY-PRESERVING SCHEME FOR REMOTELY SENSED ENVIRONMENTAL DATA IN SMART CITIES 5911

The Big DataAvg is prepared for OV verification with the
analysis center (receiver) demands. The requirement is the PP k

satisfaction for generating Ds and RS in AA. Therefore, the re-
ceived AA is verified for Id[.] and PP k demands satisfaction. If
any discrepancy occurs in this process, then decisions on halting
and/or s verification occurs. Therefore, the false/incomplete data
are prevented from entering the actual analysis and verification
(see Fig. 4). The above-mentioned representation is different
from Fig. 2, where the augmenting process is illustrated. In
the representation shown in Fig. 4, the in-depth signing pro-
cess is illustrated. The Fig. 2 covers the overview between
the devices and the intervals, whereas the Fig. 4 specifies the
authentication variables and their demands in the former inter-
val. Therefore, the first privacy-preserving output is achieved
through a lightweight signature and two-factor authentication.
Therefore, DS = GeoD and RS = 0 outputs in failure in
communication points, and it increases the time delay in the
signing process and coherence agreement at the time of de-
vice verification. From this instance, DS = DataPrivacy (GeoD)
and RS = F

N . Therefore, in this proposed scheme, the active
session’s performance is analyzed with device verification based
on the condition DS + RS = DataPrivacy (GeoD) + F

N , which
is computed for preventing the time delay in signing. Federated
learning checks the privacy of the device and recurrently ana-
lyzes any failure in active sessions for preserving accuracy. If
failure is identified in the active session, the signing processes
are paused, and operations are halted until accurate device
verification succeeds. Once the device verification process is
successfully completed, a new session is initiated to analyse the
geosensed data, which is then followed by the generation of
output. The effective verification process minimizes the compu-
tation overhead. The smart city data augmentation and manage-
ment operations rely on optimal device verification performed
through federated learning, which is represented as follows:

F‖DataPrivacyi
(
GeoD

) ‖2 ≤ ‖DataPrivacy
(
GeoD

) ‖2DS

+ ‖DataPrivacy
(
GeoD

) ‖2RS − F

N
(10)

F‖DataPrivacyi
(
GeoD

)− DataPrivacy
(
GeoD

) ‖2 ≤ ‖D2
S‖

(11)

‖DataPrivacyi
(
GeoD

)− DataPrivacy
(
GeoD

) ‖2
≤ {OVi + Ca

(
FOVi +NPP k

)}
(12)

where Ca =
∑
i∈N

DSi
+RSi

+ Idi

F‖DataPrivacyi
(
GeoD

)− DataPrivacy
(
GeoD

) ‖2

= F‖DataPrivacyi
(
GeoD

) ‖2 − 2F‖DataPrivacyi
(
GeoD

) ‖

‖DataPrivacy
(
GeoD

) ‖+ F‖DataPrivacy
(
GeoD

) ‖2

= F‖DataPrivacyi
(
GeoD

) ‖2 − F‖DataPrivacy
(
GeoD

) ‖2.
(13)

First, we analyze the identified halts across GeoD
min and GeoD

max
to represent the convergence at different time instances as
follows:

F
{‖GeoDmin − GeoD

max‖
}2

= F
{‖GeoDmin − PP k

(
DataPrivacyi

(
GeoD

))− GeoD
max

+ PP k
(
DataPrivacy

(
GeoD

)) ‖}
≤ F{‖GeoDmin − GeoD

max‖+ PP k‖ DataPrivacyi
(
GeoD

)
− DataPrivacy

(
GeoD

) ‖
+ PP k

(
OVi + Ca

(
FOVi +NPP k

))}. (14)

The performance is analyzed using authentication success and
overlapping failures that are responsible for performing device
verification at different instances. In two-factor authentication,
lightweight digital signing cryptography is utilized for prevent-
ing false rates. Based on the analytical disclosure, the sensitive
remote sensing geoapplications for preventing compromised
data with remotely connected devices are computed as shown in
the following equations:.

GeoD=
∑

PPK−F‖GeoDmin − PP k
(
DataPrivacyi

(
GeoD

))
− GeoD

max + PP k
(
DataPrivacy

(
GeoD

)) ‖ (15)

=
∑(

DS in GeoD+
(∑

RS in the GeoD×Deviceverification

)
− PP k

(
Fi + Ca

(
FOVi +NPP k

)))
(16)

where

ρPPK

=

[
count

(
GeoD

)]SDt − (OV)SDt−1∑
i∈Dt [count (GeoD)]SDt × (1− Deviceverification)

SDt−1
.

(17)

From (15)–(17), the probability of privacy-preserving accu-
racy is computed based on remotely connected devices. The
privacy-preserving process is shown in Fig. 5.

The privacy-preserving process requires PP k satisfaction
∀AA ∈ [t, t+N), reducing ρ(PP k). The learning process de-
cides the NCa occurrences for which Id is halted. Therefore,
decisions to halt AA until device verification is performed for
improving GeoD. This ensures freedom from false impressions
and leakage (Id failures) so that SDt is used for identifying DS

and Rs. Therefore, the remotely sensed environmental data
are sequentially improved through successful authentication,
preventing compromised data.

IV. RESULTS AND DISCUSSION

This section presents the self-analysis of the proposed scheme
using the data available in [29] and [30]. The data are generated
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Fig. 5. Privacy-preserving process.

by observing daily climatic changes at different locations from
January 2013 to April 2017. The locations are separated by a
minimum of 4 km and a maximum of 70 km in the same geospa-
tial city location of a country. The dataset provides 1462 in-
stances of 5 features: date, average temperature, humidity, wind
velocity, and pressure. The training is provided on approximately
80% of the data, which is about 1169 instances. The testing is
performed using 293 (approximately 20%) random instances. A
varying number of data points are used in the validation phase.
For example, to predict the temperature, the date, humidity, wind
velocity, and pressure are used. To predict the wind velocity,
the date, average temperature, humidity, and pressure are used.
The feature encoding is performed automatically by the inbuilt
library of scikit-learn preprocessing functions, which handles
both continuous and categorical variables. However, in our case,
the time (months, days, weekdays, hours, minutes, seconds,
etc.) is all cyclical in nature; therefore, we have utilized the
widely used method of sine and cosine transformations of each
to encode these variables.

Data are sensed at 12 accumulation instances from 4- to
60-min intervals and used for deciding the prediction outcome.
The security concept for privacy preservation is verified by
identifying (verifying) the reception of unchangeable values in
the same instance.

The National Climatic Data Center database of historical me-
teorological and climate data from throughout the world, as well
as station history information, is available for free via Climate
Data Online [30]. In addition to radar readings and 30-year cli-
mate information, these records also include quality-controlled
daily, monthly, seasonal, and annual readings of temperature,
precipitation, wind, and degree. The collected data are integrated
and processed by applying the discussed privacy-preserving
process. The effectiveness of the system is evaluated using the
authentication rate, overlapping failure analysis, false rate, and
verification time. The possible adverse effects in data sensing,
accumulation, and reception are presented in Fig. 6.

TABLE I
SDt AT DIFFERENT TIME INTERVALS

The device compromise and data leakage adversaries result in
false data and missing inputs due to the transmission. The vari-
ants of GeoD for Geo_min and Geo_max /∈ AA are considered
as the false data. These variants of GeoD disturb the privacy
demands of sensitive geographical data. If this information is
processed, then false/improper forecast (or) data unavailability
occurs. Therefore, administering privacy-concerned security for
data and devices becomes mandatory. In a conventional authen-
tication process, a sensing device is operated remotely through
password-protected access. Similarly, the mode of authentica-
tion for data privacy is determined by the service provided. The
AA is implemented for the Big DataAvg in t using Ds and Rs.
Practically,DS represents remote access authentication, andRS

represents the mutually agreed transmission privacy. The first
analysis is performed to verify if the data integrity is sustained
at different intervals, as shown in Fig. 7(a). The proposed scheme
is analyzed for its impact on the AA for device compromise and
false data. This scheme ensures SDt less authentication using
Ds in mutual coherence with the RS . Therefore, concealed data
transmission takes place at any t. It should be noted that the
AA ∈ t is not initiated in (t±N) ∀ N {1, 2, ..t}; this pre-
vents the signing delay due to nonmutual agreement. Therefore,
device-level compromise is thwarted at the preliminary stage.

For transmission and data-sharing privacy, the El Gamal
algorithm is used, which verifies R = αk |pq| in both the
sender and the receiver. This ensures maximum data integrity,
whereas αD|pq| ensures data availability for reducing adversary
impact. Data integrity denotes the accuracy, completeness, and
consistency of remotely sensed environmental data in smart
cities. At different time intervals, data integrity has been cal-
culated. However, under limited sensing intervals as the data
accumulated is less, the integrity and GeoD are precisely high,
as shown in Fig. 7(b). Pursuing the data-level security outcomes,
SDt, the different values of t are tabulated in Table I.

The above-mentioned tabulation identifies the SDt depending
on the available authentication and transmission initializations.
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Fig. 6. Possible adversary effect representation.

Fig. 7. (a) Data integrity analysis. (b) GeoD analysis.

The changes in t between the actual sensing interval and trans-
mission time are recorded as SDt. In particular, if the SDt is ma-
jor (high), then the transmission is halted, and therefore, device
verification is performed. The above-mentioned tabulation is
identified from the missing intervals in the input data. Similarly,
the difference in transmission and delay between the receiver
and the successive BigDataAvg ∈ (t+N) surpasses the current
authentication. Therefore, F (GeoD, Dataprivacy(GeoD)] is per-
formed forDS (GeoD|OV) andRs(OV|N). In this case, the OV
replication in DS and RS is required to be the same for reducing
transmission halts (see Table I). The above-mentioned tabulation
is performed for all the ρ(PP k) existence from T to (T +N).

TABLE II
ρ (PP k)∀F

Therefore, the ρ(PP k) for the varying halted/paused AA is
tabulated in Table II and Fig. 8(a).

As the ρ(PP k) increases, if the F increases, the F is in-
creased, provided SDt is observed. Depending on the NCa

occurrence, the OV verification is initiated by verifying the
device validity and uncompromised data. Federated learning
identifies AA feasible instances from F ∈ SDt for Id detec-
tion. In consecutive intervals, Id is verified if Ov is present
in the same t without (t±N) ∀N ∈ {1, 2, . . . , t}. Therefore,
the ρ(PP k) is satisfied for NCa fewer sensing instances for
preventing failures and adversaries. This is further verified for
identifying if F is present in Id (post the OV verification). Such
analyses are presented in Fig. 8(b).

The F is considerably less for OV as the SDt occurrence
is confined due to limited data accumulated and analyzed. The
verification is performed for ρ(PP k) induced Id. Therefore,
Id verification for AA and OV is recurrent using the learn-
ing for stabilizing GeoD. The front and tailing validations for
consecutive t considering GeoD

min and GeoD
max are jointly handled

for addressing NCa. In this case, the Id breaks are confined
ensuring prompt data verification (see Fig. 8).

The following section presents the comparative analysis using
the metrics of authentication success rate, overlapping factor,
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Fig. 8. (a) PP and NC analyses. (b). F analysis in Id.

authentication time, false data, and verification time. The vari-
ants considered are sensing intervals and data accumulation in-
stances. In this comparison, the existing BPPSVC [20], SPrivAD
[22], and SPPAP [27] methods are considered.

A. Authentication Success Rate

This proposed P3 scheme satisfies high authentication suc-
cess rate in device verification using federated learning and
a lightweight signature process. This is achieved by reducing
data leakage and device compromise in remotely connected
devices (refer to Fig. 9). The overlapping failure identified at
the transmitter end relies on the device due to consumption vari-
ation and receiver signature during data transmission intervals
using geosensed data analysis. Transmitting data across different
communication points for performing device compromise mod-
ification prevents security threats. The identification of device
compromise and data drops improves authentication. In the
open environment, the use of sensing devices and sophisticated
connected technologies is essential for the overall development
of the smart city. The failure is identified in sensitive geosensed
data for improving authentication. Therefore, device verification
is performed based on s ∈ GeoD, GeoDmin, and GeoD

max. Smart
city data privacy is to satisfy the device and receiver signatures
for identifying different coherent agreements.

B. Overlapping Failures

In Fig. 10, the weather, temperature, and soil information
in smart city applications are analyzed for transmitting data in
an open environment to achieve successive device verification
and reduce overlapping failures. This identification of failures

Fig. 9. Authentication success rate analysis. (a) Authentication success rate
at different sensing intervals. (b) Authentication success rate versus data accu-
mulation.

in device performance enhances privacy preservation based on
sensed data from multiple-location verification and mitigates the
security threats through federated learning at different periods.
The changes in sensed data are analyzed with existing data for
reducing authentication time. The successive device verification
relies on the overlapping of digital signing delay, and noncoher-
ent agreement for the condition (1− F

GeoD )OV is recurrently
computed using the learning process. The device verification
fails in the particular session, and as a result, further operation is
halted and the aggregation is paused in that session by federated
learning. In this proposed scheme, the device-compromised data
prevents leakage and security issues. The retransmission of data
is performed for identifying accurate device verification in an ac-
tive session. The sensed data from the smart city are analyzed for
controlling different threat mitigations in this proposed scheme
to satisfy fewer overlapping failures.

The authentication time is reduced in this proposed scheme,
which improves authentication in remote sensing geoapplica-
tions. The use of two-factor authentication and a lightweight
signature prevents compromised actual data. The security issues
of big data augmentation are analyzed and compared to the other
factors for succeeding in the device verification, as shown in
Fig. 11.

In this work, the communication points rely on the iden-
tification of data drops and utilization of lightweight digital
signing cryptography from the different transmitter ends. The
device compromise and chances of data leakage are analyzed
for improving the environment based on privacy preservation
through P3S. The overlapping failure is recurrently identified
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Fig. 10. Overlapping failures analysis. (a) Overlapping failures at different
intervals. (b) Overlapping failures versus data accumulation.

Fig. 11. Authentication time analysis. (a) Authentication success rate at dif-
ferent intervals. (b) Authentication time versus data accumulation.

using federated learning, as shown in (10)–(12). In this proposed
scheme, the signatures of the device and receiver are jointly
analyzed to prevent security threats. In this signing process, the
aforementioned security issues occur, and the session is paused
until the device verification is performed. In this proposed

Fig. 12. False-data analysis. (a) False data at different sensing intervals. (b)
False data versus data accumulation.

scheme, the smart city device verification is performed to reduce
the authentication time.

C. False Data

In Fig. 12, a comparison is made between the existing smart
city environmental data and the current geosensed data for
identifying changes through communication points at different
periods to prevent data drops. The high data leakage and de-
vice compromise in the remotely connected devices rely on a
different coherent agreement and delayed signing time. From
the communication points, a large amount of data is transmitted
for big data augmentation, and the raw data are concealed using
two-factor authentication for overall development.

The federated learning process is aided in detecting the over-
lapping failure of performing the device and receiver signing at
a similar time. This failure does not require constant devices for
processing the data at different periods. The associated sessions
have compromised the devices through a learning process and
performed verification based on two types of digital signature
processes recurrently performed in a continuous manner. The
learning process is used for identifying the overlapping failure
at the time of device verification failure in the active session.
The proposed P3S achieves less false data in autonomous and
remotely connected technologies.

D. Verification Time

The device verification time computation is performed to
enhance the smart city application performance and maximizing
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Fig. 13. Verification time analysis. (a) Verification time at different sensing
intervals. (b) Verification time versus data accumulation.

TABLE III
COMPARATIVE ANALYSIS FOR SENSING INTERVALS

the security levels for concealing the environmental data from
the sensors, as illustrated in Fig. 13. In this proposed P3S, a
large amount of data transmission takes place, and the success
of device verification through two-factor authentication and a
lightweight signing process for identifying data leakage and
device compromise is high. In this article, the device and receiver
signature overlapping failure is identified through the estimation
of DS = DataPrivacy (GeoD) and RS = F

N for preventing
coherence and time delay. Federated learning is performed for
improving authentication, big data augmentation, and manage-
ment. In this approach, sensitive geosensed data are processed
and secured from the transmitter end.

With this recurrent analysis of identifying failures for prevent-
ing security threats and overlapping failures using two-factor
authentication and a lightweight signing process, the device ver-
ification time is less for big data authentication. The comparative
analysis results are presented in Tables III and IV, respectively,
for the sensing intervals and data accumulation instances. In

TABLE IV
COMPARATIVE ANALYSIS FOR DATA ACCUMULATION INSTANCES

TABLE V
COMPARATIVE ANALYSIS (AVERAGE)

Tables III and IV, the final values observed from the graphs for
the varying sensing intervals and data accumulation instances
are presented. The findings given below are estimated as a mean
cumulative value of the existing methods to the single proposed
value.

The proposed scheme maximizes the authentication success
rate and overlapping factor by 9.23% and 12.99%, respectively.
This scheme further reduces authentication time, false data, and
verification time by 9.54%, 9.61%, and 10.33%, respectively.

The proposed scheme maximizes the authentication success
rate and overlapping factor by 8.48% and 11.41%, respectively.
This scheme further reduces authentication time, false data, and
verification time by 10.73%, 9.78%, and 10.05%, respectively,
as compared to existing methods, as mentioned in Table IV.

The mean cumulative values obtained from sensing interval
and data accumulation have been averaged in Table V. The
proposed scheme maximizes the average authentication success
rate and average overlapping factor by 8.86% and 12.20%,
respectively. This scheme further reduces average authentication
time, false data, and verification time by 10.14%, 9.70%, and
10.19%, respectively.

V. CONCLUSION

Considering the privacy and significance of remotely sensed
data in smart city applications, this article introduced a P3S.
This scheme incorporates federated learning and lightweight
signing authentication for ensuring end-to-end data integrity.
More specifically, this scheme counterfeits the impacts due to
device compromise and false-data adversaries. The proposed
scheme establishes coherent sequential two-factor authentica-
tion for sensed data sharing. In the mutual authentication pro-
cess, the receiver and sensor device signatures are required for
sustaining privacy requirements. The learning process identifies
lags in sequential transmission using the coherence factor and
delayed signing. The proposed scheme identifies failures in
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overlapping coherence before and after data exchange. This co-
herence factor is recurrently analyzed using federated learning,
such that the halting and sensor device verification decisions
are performed. The proposed scheme maximizes the average
authentication success rate and average overlapping factor by
8.86% and 12.20%, respectively. This scheme further reduces
average authentication time, false data, and verification time
by 10.14%, 9.70%, and 10.19%, respectively. Although the
proposed scheme is reliable for the overall privacy process, a
setback in pausing the signing process is observed. In nonpe-
riodic sensing intervals, this is less feasible due to which the
chances of the false rate increase. This problem is considered
in our future work by incorporating multilevel adaptable au-
thentication based on the time of arrival metric. This is planned
to be performed with less complexity by preventing signing
replications.
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