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Expansion Spectral–Spatial Attention Network for
Hyperspectral Image Classification
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Abstract—Deep learning is increasingly used for the classifica-
tion of hyperspectral images (HSI), thanks to its ability to com-
pletely utilize the rich characteristics of this type of imagery. How-
ever, at present, most classification models proposed for processing
HSI data are based on standard convolution neural networks,
which prefer to learn local information rather than global in-
formation, so that it is difficult to achieve ideal accuracy in the
case of insufficient training samples in real applications. In this
article, we propose a novel expansion spectral–spatial attention
network (ESSAN) for HSI data classification in cases of insufficient
training samples. First, a dual-branch network based on expansion
convolution is employed as the model backbone to extract spectral
and spatial information. All feature maps produced during the
dual-branch process are superimposed to combine deep and shal-
low features by the ResNet concept. With the design philosophy of
the superposition of expansion convolutional layers, the network
can increase the receptive field to gather more global contextual
information. Second, the model also includes a coordinate attention
block, which directs the network to weight features according to
their significance and suppresses those that are irrelevant. Finally,
the method was tested on the four datasets from Matiwan Village,
Pavia Center, Pavia University, and Shenzhen University, utilizing
1%, 1%, 5%, and 0.2% training samples, respectively. The results
showed the overall accuracies, in order, 97.96%, 99.12%, 98.73%,
and 99.36%. The preliminary results demonstrate the higher effi-
cacy and accuracy of the proposed ESSAN in HSI data classification
than the other state-of-the-art.

Index Terms—Convolutional neural network (CNN), deep
learning, expansion spectral–spatial attention network (ESSAN),
hyperspectral image (HSI) classification.

I. INTRODUCTION

THE recent rapid development of the hyperspectral sensing
technology has improved the data availability and qual-

ity of hyperspectral images (HSIs). With these advances, HSI
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applications have excelled in a variety of fields, including crop
monitoring, the estimation of crop leaf area index inversion,
the prediction of soil organic carbon, and the prediction of soil
organic carbon [1], [2], [3], [4].

The purpose of remote sensing image classification is to
categorize each type of feature presented in an image. There
have been numerous studies on HSI classification due to its
high spatial and spectral resolutions and wealth of information
features. Initially, the traditional machine learning algorithms
have been widely applied to HSI classification, such as using
support vector machines to classify the reduced-dimensional
data [5], Zhang et al. [6] proposed a spatial–spectral joint
classification method based on the random forest for classifi-
cation. The redundancy between a large number of HSI bands
and adjacent bands leads to an increase in noise and uncer-
tainty, which may limit classification accuracy in the case of
limited training samples [7], [8]. Therefore, feature extraction
and dimensionality reduction techniques have been developed.
The traditional methods are used in the early days, including
principal component analysis (PCA) for linear dimensionality
reduction [9], [10], linear discriminant analysis [11], nonlinear
dimensionality reduction kernel PCA [12], isometric feature
mapping [13], and extended morphological profiles [14], [15].
However, some advanced band selection and dimensionality
reduction techniques have also been proposed. Zhang et al.
[16] proposed a new spectral–spatial and SuperPCA method
to reduce dimensionality and extract effective low-dimensional
features of HSI. He et al. [17] proposed a dual global–local
attention network band selection method for high-dimensional
hyperspectral data reduction.

As the volume of tasks and data continues to grow, if the
training features are manually selected inappropriately, there
may be misclassification, resulting in the accuracy not meeting
the expected results. Therefore, a new method of machine learn-
ing, deep learning, has emerged. Convolutional neural networks
(CNNs) have been somewhat successful in the categorization
of ground feature objects from HSI imagery. 1-D CNN is
straightforward and requires little hardware configuration [18].
Wei et al. [19] parsed raw hyperspectral data using 1D-CNN
to extract and classify hierarchical spectral features. However,
1D-CNN only uses the 1-D vector pixel information, whereas
2-D CNNs [20] can fully utilize the rich spectral values or the
spatial information in HSI. In comparison with 1-D and 2-D,
3D-CNN [21], [22], [23] combines spectral and spatial informa-
tion to improve classification results, but the complicated net-
work topology increases hardware configuration requirements.
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Pi et al. [24] suggested a shallow GDIF-3D-CNN classification
model using 3-D convolution to classify pure and mixed pixel
sets by tweaking the parameters. Lee and Kwon [25] suggested
extracting features by combining spatial–spectral contextual in-
formation with a Context-Deep CNN (CDCNN). Theoretically,
a deeper network can gather more information characteristics
and produce better results; nevertheless, the deeper the network
gets, the greater the chance that gradient disappearance and
gradient explosion will occur, which will worsen the outcomes.
To address the mentioned issues, He et al. [26] proposed the
ResNet residual structure. The spectral–spatial residual network
(SSRN) was proposed by Zhong et al. [27] using the ResNet
residual block as the primary structure. Inspired by ResNet,
Wang et al. [28] created the fast dense spectral–spatial convolu-
tion (FDSSC) in which the network feeds all of the feature maps
output in the previous module into the next module via dense
connections to achieve the accurate classification; however, the
huge amount of parameters increases the running training time.
Combining convolutional layers of different dimensions into the
same model can better capture the spatial and spectral informa-
tion of multidimensional data, thereby improving the accuracy
and generalization ability of the model. The model HybridSN
proposed by Roy et al. [29] consists of a 3-D convolutional
block that extracts spectral information, followed by a 2-D
convolutional block that extracts spatial information. Compared
with using only 3D-CNN, the use of HybridSN can reduce
the complexity of the model. Tinega et al. [30] suggested a
deep 3-D/2-D genome graph-based network (HybridGBN-SR)
that is acceptable for small sample data and does not exhibit
overfitting. Yang et al. [31] proposed a synergistic CNN that
combines a hybrid convolutional module with a data interaction
module.

All of the methods described above are implemented on a
single branch and cannot extract information from several chan-
nels and spaces at the same time. Therefore, some researchers
have proposed multibranch networks to extract the desired
features separately. For instance, to categorize photographs of
coastal wetlands, Xie et al. [32] created a dual-branch multilayer
global spectral–spatial attention network. They employed the
extended random walker approach to maximize the classification
probability and build the final map. To improve the capability
of extracting global information from small HSI sample data,
Feng et al. [33] proposed a three-branch mixed spatial–spectral
features cascade fusion network, which uses two 3-D residual
modules and one 2-D separable residual block to extract features
after fusing them to form a cascade fusion model.

Although the traditional convolution can produce accurate
classifications, the local operation of the convolution kernel
with a fixed shape size cannot obtain a large range of features,
and a large amount of parameters significantly increases the
computing workload. To overcome this issue, Shi et al. [34]
presented the feedback expansion convolution net (FECNet) to
introduce holes into the regular convolution kernel to increase
the receptive field (RF) and extract more context data. Zhao et al.
[35] reduced the computing costs with the hybrid depth separable
residual network based on the depth separable convolution.

The vast spectral and spatial features offered by HSI increase
information redundancy. The proposed attention technique [36],
[37], [38], [39] enables the network to concentrate on more
crucial features and enhance model performance. Ma et al.
[40] created the dual-branch multiattention (DBMA) by in-
corporating spectral and spatial attention mechanisms in two
branches of the model. Li et al. [41] suggested the dual-branch
dual-attention (DBDA), which flexibly employs an adaptive
attention mechanism. By mining the characteristics of the HSI
spectrum from the viewpoint of a transformer, Hong et al. [42]
proposed the SpectralFormer network; however, SpectralFormer
does not yield high classification accuracy under small sample
HSI. Gong et al. [43] proposed the spectral and spatial attention
network model to apply the attention mechanism to HSI-based
change detection. In addition, the transformer [44] has also been
successfully applied to HSI classification tasks. The transformer
uses a self-attention mechanism to learn global features, which
can better capture the global relationships and contextual in-
formation in the image. Hong et al. [42] proposed a backbone
network called SpectralFormer from the perspective of learning
spectral sequence information. Based on this backbone network,
Sun et al. [45] proposed spectral–spatial feature tokenization
transformer to capture spectral–spatial features and high-level
semantic features, greatly improving computational efficiency.
Liu et al. [46] proposed a hyperspectral image transformer iN
transformer method for drawing coastal wetland classification
maps on satellite HSIs, which achieved great classification re-
sults.

Despite the good results achieved by the existing depth learn-
ing algorithms, there are still numerous issues with the classifica-
tion of HSI features, such as insufficient training samples [47],
[48] and a high number of parameters [49], making training
slow. This article proposes a novel expansion spectral–spatial
attention network (ESSAN) to address these issues and enhance
the extraction of HSI global spatial and spectral information with
a dual-branch CNN structure with an attention mechanism.

The main work of this article can be summarized as follows.
1) We propose a dual-branch structure based on expansion

convolution to extract the features. This method reduces
the number of parameters and broadens the RF while pre-
serving the spatial–spectral data produced by each layer.

2) The model incorporates the coordinate attention block
(CAB) module, which gives more weight to relevant
information and suppresses unfavorable characteristics,
thereby improving accuracy and robustness. The exper-
iment demonstrates that CAB can raise the network’s
overall classification accuracy.

3) ESSAN combines the expanded CNN block and attention
block from shallow to deep, which can effectively extract
feature information from HSI in the case of insufficient
samples. Moreover, ESSAN has fewer parameters. We
conducted comprehensive experiments on three public
HSI datasets and a self-created SZU dataset, and the
results demonstrate that ESSAN outperforms state-of-the-
art methods in terms of classification accuracy and training
efficiency.
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Fig. 1. Overall flowchart of the proposed ESSAN. It mainly consists of three parts: the dual-branch network block, the coordinated attention block, and the
expansion convolution basic structure. In addition, the cube of 13×13×band fed into the space branch; sent to the spectral branch is the patch size after PCA
dimensionality reduction, that is, the patch size of 13×13.

The rest of this article is organized as follows. Section II pro-
vides a detailed description of the proposed ESSAN framework.
Section III presents the dataset that was used in this study and
contrasts the experimental findings of the suggested method with
those of the eight other models. Finally, Section IV concludes
this article.

II. METHODOLOGY

In this section, we provide a thorough introduction to the
ESSAN network framework and all of its elements, including
expansion convolution’s fundamental structure and design, the
dual-branch network module, and the attention mechanism. We
also show the advantages of this approach for HSI categoriza-
tion.

A. ESSAN Framework

The ESSAN framework includes three components (see
Fig. 1): the dual-branch network block, the coordinated attention
block, and the expansion convolution basic structure.

The area that pixel points in the output feature map on the
input image maps is referred to as the RF. When the convolution
kernel size is the same, the expansion convolution has a larger
RF than the standard convolution. When the RF is the same,
the expansion convolution has fewer parameters and a faster
calculation speed than the standard convolution. We use two
branches to extract the spectral and spatial information of HSI
data effectively, and then combine them to derive joint features.
First, to extract spatial information, we must create a small cube
centered on each pixel of the original image in the three dimen-
sions of height, width, and channel (e.g., a 13×13×band cube,
where the band is the number of bands), and then pass these small
cubes to the spatial branch. Similarly, for HSI pixels after PCA
dimension reduction, we take a patch size centered on this pixel
in the height and width dimensions, which is a 13×13 patch, and
then pass it to the spectral branch to extract spectral information.
Second, using a CAB, we combine spectral and spatial properties
to focus on information that is more significant and gives it a
higher weight, while ignoring information that is less important
and gives it a lower weight. Finally, we use the fully connected
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Fig. 2. RF size analysis. Two convolution operations with a convolution kernel
of three are performed on the original image. The RF of each pixel in layer 1
is 3 because it was derived from the 3×3 region in the original image; the
RF of each pixel in layer 2 is 5 because it was derived from the 5×5 region.
(a) Original image. (b) Characteristic layer 1. (c) Characteristic layer 2.

layer to aggregate all features to build classification maps based
on the number of land cover categories, preventing the feature
locations to impact the classification results.

In this article, we divided the sample data into three categories:
training set, test set, and validation set. Samples from the training
set are used to train the model and adjust the parameters. The
validation set is used to monitor the network performance after
each epoch with updated parameters and determine the optimal
combination of hyperparameters. The test set is used to evaluate
the performance of the model after training is complete and
determine the model’s generalization ability. Cross-entropy loss
is used in the network as the loss function to change the model’s
parameters. One way to express the multiclassification loss
function is given as follows [32]:

Loss =− 1

C

C∑
i=0

(Xtarget log(Xi) + (1−Xtarget) log (1−Xi))

(1)
where C represents the total number of categories, and Xi and
Xtarget for the predicted labels of each category and the actual
labels, respectively.

B. Two-Dimensional and 3-D Expansion Convolution

1) Size of the RF: Fig. 2 shows the analysis process of
determining the RF size, calculated as follows:

rl+1=rl +(kl+1−1)×
l∏

i = 1

Si (2)

where rl is the RF size of the lth layer, kl+1 is the convolution
kernel size of the l+1 layer, and Si is the stride of the ith layer.
Then, the RF needs to be enlarged on a reasonable basis to ensure
that the network uses global information rather than simply local
information. For instance, if the size of the input image is 13×13
and the RF of the pixel in the last layer of the feature map is
greater than 13, it indicates that all of the information in the
original image were covered by the features that were retrieved
during the final classification discrimination of pixels.

Fig. 3. Working process of the 2-D expansion convolution.

2) Basic Structure of Expansion Convolution: The tradi-
tional standard convolution typically employs convolutional
layers and pooling layers to improve the RF, but because of
limitations, many various convolutions are generated. Among
them, to capture multiscale context information, expansion con-
volution can alter the field of view by modifying the expansion
coefficient without altering the size of the feature map. The
operation of 2-D expansion convolution is illustrated with an
example in Fig. 3. Compared with standard convolution, expan-
sion convolution has an additional hyperparameter called the
expansion rate, which describes the number of gaps between
the convolution kernel’s points. The three images in Fig. 3 each
have a convolution kernel size of 3×3, and the expansion rate
from left to right are 1, 2, and 3, respectively. The red box
represents the size of the equivalent convolution kernel; the
blue square represents the position of the convolution kernel;
and the white square within the red box represents the holes,
which are typically all filled with 0. The RF size is the same as
the standard 3×3 convolution kernel size when the expansion
rate is 1. When the expansion rate is 2, the RF produced with
standard convolution kernels of 5×5 size is equal. When the
expansion rate is 3, it is the same size as the RF obtained by a
convolution kernel of size 7×7 of standard convolution. The RF
will differ when different expansion rates are selected, meaning
that multiscale information is collected. To attain the necessary
RF size in a practical application, an appropriate expansion rate
should be adjusted by the size of the input image.

Equation (2) is the formula for calculating the size of ordinary
convolutional RF. By replacing the size of the ordinary convolu-
tion kernel in the formula with the equivalent convolution kernel
size, the expansion convolutional RF size can be derived. The
equivalent convolution kernel size is calculated as follows:

K = k + (k − 1) (rate − 1) (3)

Rl+1 = Rl + (Kl+1 − 1)×
l∏

i=1

Si (4)

where K is the size of the equivalent convolution kernel, k is the
size of the initial convolution kernel, and the rate is the rate of
expansion rate. The RF size of layer l+1 is Rl+1. The size of the
RF expands exponentially as the expansion rate rises. For the
same RF, the expansion convolution has fewer parameters than
the standard convolution, and the number of parameters falls off
exponentially as the expansion rate rises.
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Fig. 4. Gridding effect problems. (a) Original image is Layer1, which is then
expanded three times in a row to produce feature maps for Layers 2, 3, and 4.
(b)–(d) Three expanded convolutions (both expansion rate = 2) use the pixels
in the original image from left to right, with orange representing the position of
the center pixel.

Fig. 5. Continuous convolution with different expansion rates. (a) Original
image is Layer1, which is then expanded three times in a row to produce feature
maps for Layers 2, 3, and 4. (b)–(d) Three expanded convolutions (The expansion
rates are 1, 2, and 3, respectively) use the pixels in the original image from left
to right, with orange representing the position of the center pixel.

The 3-D expansion convolution works on the same principles
as the 2-D but with a 3-D spatial relationship instead. The 3-D
convolution is subject to the same rules of RF and parameter
amount as the 2-D convolution.

C. Dual-Branch Network Block

The model employs a dual-branch CNN, as seen in the ESSAN
framework flowchart (see Fig. 1). The composition and layout
of spatial and spectral branches are thoroughly explained in this
section.

1) Expansion Rate of the Dual-Branch Expansion Convolu-
tional Layer: Expansion convolution is frequently used because
it can produce a larger RF. However, inappropriate expansion
rate settings can result in gridding effect [46] issues when multi-
ple layers of expansion convolution are superimposed. There are
three expansion convolutions used sequentially in Figs. 4(a) and
5(a). While the convolution kernel size is 3, the expansion rate
choices are different. As demonstrated in Fig. 4(b)–(d), three ex-
pansion convolutions with the same expansion rate only employ
a portion of the input within their corresponding RF, losing some
features and the correlation between information. However,

Fig. 6. Spatial branch overall parameter structure.

there is no gap between the pixel values when three expansion
convolutions [see Fig. 5(b)–(d)] with various expansion rates
are stacked since all of the pixel information in its equivalent
RF are employed. In all cases, the convolution kernel size and
the number of parameters are the same, but the expansion rate
varies, with Fig. 5 providing the preferred solution. As a result,
it is crucial to design a reasonable expansion coefficient; the
distribution of the expansion rate should be zig-zagged.

A straightforward method known as hybrid dilated convolu-
tion [50] was suggested, which calls for three convolutional ker-
nel sizes of neighboring convolutional layers, whose expansion
rate setting should follow the formula:

Li = max [Li+1 − 2di, Li+1 − 2 (Li+1 − di) , di] . (5)

The goal is to make L2≤K, where K is the convolution kernel
size and d is the expansion rate, Li=di, i�{1,2,3}. When the
convolution kernel K = 3 and the expansion rate of the three
convolutional layers d = [1,2,5], L2= 2<K, which meets the
conditions, so the expansion rates of 3-D and 2-D in both the
spatial branch and the spectral branch in this experiments are 1,
2, and 5.

2) Dual-Branch Network Block: It is challenging to train
complicated CNNs for HSI classification with small sample
sizes, and stacking with many 3-D convolution operations will
slow the network. Therefore, we extract features from the spatial
and spectral branches using a dual-branch CNN structure (see
Fig. 6).

The spatial branch contains three expansion convolutional
layers for extracting multiscale features; different expansion
rates can obtain information features at various scales, and the
third layer expansion rate of 5 can get information at the global
level.

The spatial branch has three expansion convolutional layers
for extracting multiscale features. The third layer’s expansion
rate of 5 may extract global information, while different expan-
sion rates can retrieve information features at various scales. The
3-D expansion convolutional layer is denoted by the quantity of
output feature maps—the size of the convolution kernel—and
the expansion ratio (shown in Fig. 6). For instance, the 3-D
convolution represented by 32-3×3×3-1 has 32 feature maps,
a convolution kernel size of 3, and an expansion rate of 1.
While the spatial branch employs a 3×3 convolution kernel to
extract semantic position information, the spectral branch uti-
lizes a 1×1 convolution kernel to filter unnecessary information
and concentrate more on the discriminant channel. After each
expansion convolutional layer, a batch normalization layer is
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Fig. 7. Dual-branched block.

Fig. 8. CAB workflow.

introduced to increase the speed of training and convergence,
reduce overfitting during training, and enhance network stability.
A rectified linear unit (ReLU) is added between each expansion
convolutional layer and the BN layer to increase the nonlinearity
of the interaction between the layers. We assemble all the feature
maps produced by the expansion convolutional layer in the spirit
of ResNet [26], and here, we represent the spatial branch feature
map Kspa and spectral branch feature map Kspe as follows:

Kb(x) = Fb(x) +

l∑
i=0

σ(Kl−1
b (x) �� W l

b + rlb(x)) (6)

where b�{spe, spa}, l�{1,2,3}, Fb(x) is represented as the
feature of the input space and spectral branch, Kl

b(x) represents
the feature map obtained by the lth convolutional layer of the
bth branch, and W l

b represents the convolution kernel size.
In the spatial branch, W l

b ∈ R3×3×3; in the spectral branch,
W l

b ∈ R1×1. rlb(x) is the increased bias; “σ” represents the
activation function ReLU.

To aggregate spectral information Kspe and spatial informa-
tion Kspa efficiently, as seen in Fig. 7 , the two characteristics
need to be combined to create the spectral–spatial global joint
feature FG, which is represented as follows:

FG (x) = Kspa (x)�Kspe(x) (7)

where � represents the concatenation, and the aggregate feature
FG�RB×H×W includes the extensive spectral and spatial con-
text data. To highlight crucial joint information, reduce unneces-
sary information, and eliminate noise, the aggregate information
is then entered into the attention module to produce a weight
map.

D. Coordinate Attention Block

The attention model in the CNN can help give each component
of the input a different weights, select some crucial information
by adjusting the size of the weight, and make each pixel in the

Fig. 9. Original HSI, real land cover, and number of samples in Matiwan
Village dataset. (a) Original image. (b) Ground-truth image. (c) Class name and
samples.

model pay more attention to these crucial details, thus improving
the training accuracy and effect. A CAB [51] is added to the
network to focus the pixels’ attention on various categories. The
complete flowchart of the CAB framework is shown in Fig. 8.

After entering the spatial–spectral aggregate feature FG into
the CAB, first, it uses the global average pooling to acquire the
height feature MHeight

ave and width feature Mwidth
ave . After concate-

nating the features in the two directions, a 2-D convolutional
layer, a BN layer, and an activation function called h_swish are
coupled to create a remote dependence to combine data in the X
and Y directions. Equation (8) illustrates the mixing procedure

{
Mθ

ave = AvgPoolingFG

MXY = δ[ Conv2−DM
Height
ave ⊕MWidth

ave ]
(8)

where θ�{Height, Width}, ⊕ represents the feature connection,
and “δ” indicates the h_swith activation function. The global
data are currently present in each dimension of the feature map
MXY . A split function is then used to separate the feature map
MXY , and the value is then shrunk to between 0 and 1 using
the Sigmoid activation function, which can produce two sets
of weight maps along the height and width directions. The dot
product operation is finally applied to these two sets of weight
graphs to obtain the weighted weight maps in the X and Y
directions.

III. EXPERIMENTS AND ANALYSIS

A significant number of experiments were conducted on four
datasets to evaluate the performance of the ESSAN and the
model’s ability to recognize insufficient samples.

A. Experimental Datasets

Four hyperspectral datasets were used in this experiment.
Three were from widely used public hyperspectral datasets:
Matiwan Village [52] in Xiong’an New Area, Pavia Center
(PC), Pavia University (PU), and a new land cover categorization
database we created, named the Shenzhen University (SZU) HSI
dataset. Figs. 9 –12 display the dataset’s true color image, the true
classification map, the color of each category, and the number
of samples.
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Fig. 10. Original HSI, real land cover, and number of samples in PC dataset.
(a) Original image. (b) Ground-truth image. (c) Class name and samples.

Fig. 11. Original HSI, real land cover, and number of samples in PU dataset.
(a) Original image. (b) Ground-truth image. (c) Class name and samples.

Fig. 12. Original HSI, real land cover, and number of samples in SZU dataset.
(a) Original image. (b) Ground-truth image. (c) Class name and samples.

1) Matiwan Village (MV): This dataset was collected using
a full-spectrum multimodal imaging spectrometer of the
aerial remote sensing system developed under the Special-
ity Project of High-Resolution Earth Observation System
by the Shanghai Institute of Technology Physics, Chinese
Academy of Sciences, Xiong’an New Area, Baoding City,
Hebei Province, China. The image has a 3750×1580 pixel
dimension and a 0.5 m spatial resolution. The number of
bands is 256, and the wavelength range is 0.4–1 μm. The
image has 18 categories of features, mostly cash crops,
as a result of the field campaign of the feature objects.
Fig. 9 shows the number of image pixels each category
has indicated.

2) PC: The ROSIS sensor collected the data for the PC
dataset, which covers the center of Pavia in northern Italy.
The sensor has 115 bands; however, only 102 of them are
present in the PC dataset after excluding 13 noise bands.
With a spatial resolution of 1.3 m, the image’s spatial size
is 1096×715 pixels. Nine land cover feature classes may
be found in the photographs.

3) PU: The PU dataset was likewise obtained from the ROSIS
sensor; 103 bands were kept after 12 noise bands were
eliminated. The dimension of the image area is 610 ×
340 pixels. Nine different urban feature categories, each
with more than 1000 labeled pixels, are represented on the
ground-truth map.

4) SZU: SZU is a university in Shenzhen, Guangdong
province of China. An unmanned aircraft platform
equipped with a Specim FX10 hyperspectral sensor was
used to collect data on SZU. This sensor captured 112
bands with a total wavelength range of 0.4–1 μm. The
radiometric calibration, geometric correction, and atmo-
spheric correction were applied to the original data during
the preprocessing stage. The images have a spatial resolu-
tion of 0.1 m and a spatial size of 8757×3373 pixels. The
ground-truth data include a total of ten categories.

B. Experimental Setting

1) Sample Settings: For each of the four datasets, an insuffi-
cient subset of pixels was chosen as training samples to test the
effectiveness of the proposed network model for classification.
For MV, PU, PC, and SZU, the training sample proportions were
set to 1%, 5%, 1%, and 0.2%, respectively, with SZU having the
biggest spatial extent and the fewest samples. Accordingly, the
validation and test sample proportions were established at 3%,
10%, 5%, and 0.5%, respectively.

2) Parameter Settings: Pytorch was used to implement all
of the networks in this experiment. The input size was set
at 13×13 based on prior knowledge; the training period was
100, and Adam was chosen as the optimizer. We tested the
five values of 0.001, 0.005, 0.0001, 0.00005, and 0.00005 for
the learning rate before settling on 0.0001 as the experiment’s
learning rate after several iterations of testing. All model results
are the average of five experimental results, and the standard
deviation of five experimental results is included in the results
for each category. All experimental running workstations were
configured with Intel(R) Xeon(R) Gold 5218R CPU, NVIDIA
GeForce RTX 3080 GPU, machine RAM of 128 GB, and a
Windows 10 operating system.

3) Evaluation Factor: The benefits and drawbacks of catego-
rization outcomes were assessed by comparing overall accuracy
(OA), average accuracy (AA), and Kappa coefficient. Overall
accuracy can be used as a good classification accuracy indicator
when the number of samples for each category is balanced. The
percentage of samples that the label correctly identified the label
relative to samples of actual labels is known as the average ac-
curacy. The degree of correspondence between each category’s
recognition results and the actual label can be determined using
the Kappa coefficient.

C. Comparison Methods

We compared eight commonly used propagation networks,
including 3D-CNN, HybridSN, SSRN, CD-CNN, DBMA,
DBDA, FDSSC, and FECNet to validate the effectiveness of
the proposed method on the dataset.
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TABLE I
CLASSIFICATION RESULTS OF 18 CATEGORIES OF THE MV DATASET USING NINE METHODS (%)

Fig. 13. Ground classification map results for MV datasets (1% of training samples). (a) Ground-truth map. (b) Three-dimensional CNN (OA = 93.77%).
(c) HybridSN (OA = 91.46%). (d) SSRN (OA = 92.55%). (e) CDCNN (OA = 86.07%). (f) DBMA (OA = 94.97%). (g) DBDA (OA = 86.87%). (h) FDSSC
(OA = 96.16%). (i) FECNet(OA = 96.01%). (j) ESSAN (OA = 97.96%).

1) Three-dimensional CNN [23]: To extract spatial character-
istics, the 3D-CNN framework utilizes 3-D convolutional
layers. Three convolutional layers and three maximum
pooling layers make up the model. Each convolutional
layer also has a BN layer and ReLU added to it.

2) HybridSN [29]: To extract joint features of space and spec-
trum, the HybridSN hybrid network links 3-D convolution
and 2-D convolution in series.

3) SSRN [27]: It presents the concept of skip connection
for residual networks, which can utilize deeper neural
networks to enhance classification performance.

4) CD-CNN [25]: A deep context network that uses local
spatial–spectral properties between nearby vectors of the
central pixel to investigate contextual information.

5) DBMA [40]: It has two branches to extract spectral and
spatial features, and adds an attention mechanism to each

of the two branches to make sure that more recognized
features can be extracted.

6) DBDA [41]: Although it was developed from DBMA,
DBDA introduces different attention mechanisms in spec-
tral and spatial branches.

7) FDSSC [28]: Uses fast dense space spectrum joint convo-
lution and the tightly coupled structure fully learns each
feature to produce an extremely accurate classification.

8) FECNet [34]: FECNet increases the RF and extracts
more contextual information through expansion convo-
lution and the model includes a feedback mechanism that
combines deep and shallow features.

The classification accuracy and feature classification map of
ESSAN and eight other models on the MV dataset are shown
in Table I and Fig. 13, respectively. The proposed ESSAN in
OA (97.96%), AA (95.17%), and Kappa coefficients (97.56%)
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TABLE II
CLASSIFICATION RESULTS OF NINE CATEGORIES OF THE PC DATASET USING NINE METHODS (%)

was higher than those from other approaches (see Table I).
While ESSANs training round only takes around 32 s and
FDSSCs training round takes about 14 min, both of them produce
extremely precise classification results. This is because, during
training, the FDSSC model inputs all the feature maps produced
by the previous module into the subsequent module, leading
to a massive number of parameters and, thus, a slow training
process. By utilizing an expansion convolutional residual block,
ESSAN and FECNet are able to gather global information while
also lowering the number of parameters, speeding up training,
and increasing computational efficiency without compromising
accuracy. Due to the insufficient number of training samples, Hy-
bridSN, SSRN, and CDCNN did not effectively extract “soybean
(label16).” DBMA and ESSAN, which introduced the attention
mechanism, gave more weight to important information in the
case of insufficient samples and achieved higher classification
accuracy. As can be observed from Fig. 13, numerous features in
the SSRN, DBDA, and other models were incorrectly identified
because the MV datasets are all vegetation-based and have
similar spectral properties. The suggested ESSAN, however,
produces a better feature classification map.

The evaluation metrics and feature classification plots for the
PC dataset are displayed in Table II and Fig. 14, respectively. The
number of feature categories in PC is nine, which is half as many
as in MV; however, the PC dataset performs better in terms of
classification than the MV dataset. Table II demonstrates that the
proposed method outperforms previous comparison methods in
terms of total OA (99.12%), AA (97.61%), and Kappa coefficient
(98.72%) for each feature class. FECNet, FDSSC, DBMA,
and CD-CNN had the second highest OA after the proposed
method, although their AA was 3.5%, 5.49%, 6.5%, and 8.43%
lower than MSSANs. Fig. 14 shows that the other compared
methods cannot separate “Bitumen (label 5)” well and have all
misclassified “Bitumen (label 5)” into “self-locking bricks (label
4).” The 3D-CNN, HybridSN, SSRN, and CD-CNN show a lot
of noise on the classification graph with a salt-and-pepper phe-
nomenon. However, the classification graphs of the dual-branch
DBMA and DBDA are noticeably superior to those of the other
evaluated approaches. The proposed ESSAN accurately captures

the spatial and spectral properties of the data using a dual-branch
structure, as shown in Table II and Fig. 14, and the obtained
classification results are the closest to the ground-truth labels.

The classification evaluation metrics and result plots for the
PU dataset are shown in Table III and Fig. 15, respectively.
ESSAN still achieved the highest OA, AA, and Kappa values.
Compared with other methods, the proposed ESSAN performed
significantly better in terms of OA. In this dataset, CD-CNN
performed well (OA = 95.36%) and had the highest accuracy
in classifying the “Trees (label 4)” class, at 98.28%. Fig. 15
displays the classification results for each method in the PU
dataset. Zooming in on the classification plots, we can see that
SSRN and HybridSN have more noise, which may be due to the
large spectral variation of the same species of features causing
severe feature mixing. It is apparent that the classification maps
produced by FECNet, FDSSC, DBMA, DBDA, and CD-CNN
are superior to the models mentioned above. In comparison, the
ESSAN model generates a smoother feature classification map
by fully utilizing the incorporation of global information and
attention mechanisms.

The results of nine classification methods are displayed in
Table IV and Fig. 16. There are ten categories in the SZU
dataset and, because of the huge variations between them and the
more regular features, all classification methods achieved good
OA. However, the ESSAN described in this research produces
the greatest OA, AA, and Kappa coefficients in SZU. In the
categories of “water (label 3),” DBMA, DBDA, and FDSSC all
achieved 100% accuracy, and the final acquired OA for these
three models was only 0.46%, 0.33%, and 0.33% lower than the
suggested ESSAN. However, the average training round time for
the FDSSC is 581 s, which is 38 times longer than the ESSANs
15 s. Therefore, FDSSC training becomes extremely slow when
the image space is large and there are many sample pixels, and
ESSAN, with the addition of double branching and expansion
convolutional residuals block, can ensure that all discriminative
features are extracted in complex scenes while also speeding up
training. Furthermore, as illustrated in Fig. 16, all approaches
appear to mistakenly categorize “trees (label 9)” as “grassland
(label 4),” with the suggested method having the fewest errors.
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Fig. 14. Ground classification map results for the PC datasets (1% of training samples). (a) Ground-truth map. (b) Three-dimensional CNN (OA = 94.56%).
(c) HybridSN (OA = 93.44%). (d) SSRN (OA = 83.18%). (e) CDCNN (OA = 96.83%). (f) DBMA (OA = 97.19%). (g) DBDA (OA = 90.08%). (h) FDSSC
(OA = 97.41%). (i) FECNet (OA = 98.12%). (j) ESSAN (OA = 99.12%).

TABLE III
CLASSIFICATION RESULTS OF NINE CATEGORIES OF THE PU DATASET USING NINE METHODS (%)

In conclusion, the proposed approach ESSAN in this re-
search produced the best OA, AA, and Kappa coefficients on
all datasets, as well as the most accurate ground-truth feature
classification maps, proving the full potential of ESSAN in HSI
data classification.

D. Discussion

1) Ablation Experiments: Some ablation experiments were
carried out to confirm the effectiveness of each component of

the suggested method. SSC stands for single standard CNN,
SEC for single expansion CNN, DSC for double standard CNN,
and DEC for double expansion CNN. Table V presents the find-
ings with OA serving as the criterion for accuracy assessment.
Concatenating the spatial branch with the spectral branch in
the dual-branch network produces the single-branch network
used in the experiment. As can be seen, the dual-branch net-
work achieves superior classification accuracy when compared
with the single-branch network since it can completely and
effectively extract spatial and spectral information from the
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Fig. 15. Ground classification map results for the PU datasets (5% of training samples). (a) Ground-truth map. (b) Three-dimensional CNN (OA = 92.19%).
(c) HybridSN (OA = 85.45%). (d) SSRN (OA = 77.15%). (e) CDCNN (OA = 95.36%). (f) DBMA (OA = 87.16%). (g) DBDA (OA = 86.89%). (h) FDSSC
(OA = 96.28%). (i) FECNet (OA = 95.67%). (j) ESSAN (OA = 98.73%).

TABLE IV
CLASSIFICATION RESULTS OF TEN CATEGORIES OF SZU DATASET USING NINE METHODS (%)

original data. In comparison with the SEC, the OA of DEC
is increased in the MV, PC, PU, and SZU datasets by 2.28%,
2.51%, 5.47, and 0.7%, respectively. As can be seen in Fig. 17,
the addition of a dual-branch to PU results in the highest gain
in OA, although the number of training samples for PU is the
smallest. This suggests that the dual-branch block is better suited
for improving model accuracy in datasets with limited training
samples.

Expansion convolution has enhanced the classification accu-
racy compared with standard convolution, and DEC and SEC
employing it have higher overall accuracy than DSC and SSC.
In this experiment, the patch size fed into the network is 13.
RF completely covers the information in the patch size when
three expansion convolutions running at various expansion rates
are utilized continuously. Thus, to increase network accuracy,
the expansion convolution can receive global information over
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Fig. 16. Ground classification map results for the SZU dataset (0.2% of training samples). (a) Ground-truth map. (b) Three-dimensional CNN (OA = 97.49%).
(c) HybridSN (OA = 9.40%). (d) SSRN (OA = 98.47%). (e) CDCNN (OA = 97.84%). (f) DBMA (OA = 98.90%). (g) DBDA (OA = 99.03%). (h) FDSSC
(OA = 99.03%). (i) FECNet (OA = 98.94%). (j) Proposed (OA = 99.36%).

TABLE V
ANALYSIS OF ABLATION EXPERIMENTS OF DIFFERENT BLOCKS ON FOUR

DATASETS

Fig. 17. OA (%) of ablation experiments of different blocks on four datasets.

a larger RF. The highest OA, AA, and Kappa coefficients
are obtained in the four datasets when CAB is introduced
to the network, demonstrating that adding the attention mod-
ule to the HSI classification model ESSAN in this article is
effective.

2) Effects of Different Attention Models: Two traditional
attention models, the convolutional block attention module
(CBAM) [36] and the squeeze-and-excitation (SE) [37] attention
module, were compared to demonstrate the efficacy of the CAB
used in this article. Table VI displays the categorization accuracy

TABLE VI
ABLATION ANALYSIS OF DIFFERENT ATTENTION MODULES ON FOUR

DATASETS (%)

results from four datasets using various attention modules. As
can be observed, CAB achieved the highest OA on the MV, PC,
PU, and SZU datasets, which were 97.96%, 99.12%, 98.73%,
and 98.73%, respectively. The CBAM assigns weights in both
the channel and the spatial dimensions. The parameters become
redundant when many weights are applied to the features, which
does not help to increase the model accuracy overall. The inter-
dependence between channels has been established using SE,
which increases accuracy and adds a modest bit of computation
In the MV dataset, SE earned the greatest AA, and in the PC
dataset, the highest OA and Kappa coefficients. Lightweight
CABs will not burden network computation because they simply
give weight to spatial dimensions. Table VI presents that, in the
PU and SZU datasets, the CAB approach had the largest OA and
the best classification accuracy.

The output results of the attention model were extracted as se-
mantic features for t-distributed stochastic neighbor embedding
(t-SNE) [53] dimensionality reduction, and high-dimensional
data were reduced to two dimensions for visualization after
applying different attention models to four datasets, as shown
in Fig. 18. It can be seen that the addition of CBAM to the
model does not lead to correctly distinguish between ground
objects. Because of the classification phenomenon of different
objects with the same spectrum in the MV dataset, the mixing of
different types of features is very serious after adding CBAM.



WANG et al.: EXPANSION SPECTRAL–SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION 6423

Fig. 18. Two-dimensional t-SNE. Scatter visualization after applying different attention models to four datasets.

SEs visualization is far superior to CBAMs, but there is still
some feature mixed in the MV dataset. In the PC dataset, SE
and CAB both obtained the same OA and both “Tree” and
“Asphalt” features are misclassified. The phenomenon of the
same objects with a different spectrum was reduced after CAB
was incorporated into the model and the same type of features
were grouped into the same area. In particular, the boundaries
of each type of feature in the MV dataset are very clear, and the
advantages are obvious compared with the other two attention
models. This also verifies the effectiveness of adding CABs to
ESSAN.

3) Performance of ESSAN on Insufficient Samples: Experi-
ments were carried out with extremely insufficient samples to

confirm the efficacy and applicability of the proposed ESSAN
model in HSI dataset classification with insufficient training
samples. For this experiment, the MV and SZU datasets were
chosen, and the training samples for each dataset were re-
duced by the same amount, taking 0.25%, 0.5%, 0.75%, and
0.05%, 0.1%, and 0.15% of the total samples, respectively. The
outcomes of this experiment are shown in Table VII and Fig. 19.
As can be observed from Fig. 19, the advantages of ESSAN over
other approaches grow as the sample size decreases. When the
sample size of the two datasets was reduced to one-quarter of the
original, the OA of other comparison methods showed a signif-
icant downward trend. In the MV dataset, CD-CNN and DBDA
had the worst results, and HybridSN had the worst outcomes in
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TABLE VII
OA RESULTS (%) OF MV AND SZU DATASETS IN NINE MODELS WITH AN INSUFFICIENT TRAINING SAMPLE RATIO

Fig. 19. OA (%) with minimal training samples, MV is on the left and SZU is on the right.

SZU. Overall, only two models—FDSSC and ESSAN—show
a slight reduction in OA, and these two models outperform
others when dealing with extremely tiny data. However, FDSSCs
training time takes significantly longer than ESSANs. Table VII
presents that ESSAN has the highest OA in both datasets. As
a result, the experimental results in this section further verify
the effectiveness of our proposed method ESSAN in insufficient
sample situations.

4) Analyzing the Effect of the Dropout Rate: The effect of
different learning rates on accuracy was investigated in this
experiment using four datasets with dropout rates ranging from
0.1 to 0.9. The OA, AA, and Kappa coefficients for the four
datasets at various dropout rates are presented in Table VIII. In
the proposed method, PU performs best when the dropout rate
is 0.7; when it is 0.4, PC and MV provide the best classification
results; SZU chose a dropout rate of 0.5. Table VIII presents that
when the dropout rate increases, the classification accuracy of
ESSAN approximately follows a rising and then dropping trend.
In conclusion, MV, PC, PU, and SZU have dropout rates set at
0.4, 0.4, 0.7, and 0.5, respectively.

5) Impact of the Number of Training Samples: Fig. 20 shows
the classification accuracy results for the four datasets in the

ESSAN model with various training ratios. Here, the propor-
tions of the training sample are represented by the horizontal
coordinates, while the vertical coordinates indicate the overall
accuracy. Evidently, as the number of training samples rises,
classification performance on all four datasets improves. This
further demonstrates the efficiency of the proposed method by
showing that it can obtain higher classification performance with
adequate training samples.

IV. CONCLUSION

In this article, we proposed an HSI classification model ES-
SAN based on the expansion convolution. First, to improve
the features’ ability to be distinguished from one another, we
created a dual-channel structure of joint spatial–spectral fea-
tures, with both the spatial and spectral branches being blocks
of residual structures based on the expansion convolution; the RF
was increased by stacking of expanded convolutional layers to
gain richer global feature information. In addition, the attention
mechanism was added to the network to acquire the weight
map to improve the ability of feature extraction, which greatly
increased classification accuracy and accelerated the model’s
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TABLE VIII
ANALYSIS OF DIFFERENT DROPOUT RATES ON FOUR DATASETS (%)

Fig. 20. Classification accuracy of training samples at different scales (%). OS
stands for the percentage of the four datasets’ original samples, whereas 2-OS
stands for twice the original samples.

training efficiency. The comparison of ESSAN and other eight
popular deep learning HSI classification algorithms reveals that
ESSAN obtains optimum classification results with few training
samples and has greater classification efficiency on four different
datasets. In MV datasets, in particular, ESSAN provides more
overt advantages. This is because all of the species in the MV
dataset are tree species, there is little variation existed in the
features, and the phenomenon of different objects with the same
spectrum exists. As a consequence, the recognition results of the
other comparison methods on MV seem to be relatively poor,
whereas ESSAN obtains greater OA, AA, and Kappa coeffi-
cients. This demonstrates that ESSAN has certain advantages in
identifying similar objects in HSI data.

REFERENCES

[1] S. Wang et al., “Using soil library hyperspectral reflectance and machine
learning to predict soil organic carbon: Assessing potential of airborne and
spaceborne optical soil sensing,” Remote Sens. Environ., vol. 271, 2022,
Art. no. 112914.

[2] L. Liang et al., “Estimation of crop LAI using hyperspectral vegetation
indices and a hybrid inversion method,” Remote Sens. Environ., vol. 165,
pp. 123–134, 2015.

[3] S. Junttila et al., “Close-range hyperspectral spectroscopy reveals leaf
water content dynamics,” Remote Sens. Environ., vol. 277, 2022,
Art. no. 113071.

[4] E. A. Antipov and E. B. Pokryshevskaya, “Mass appraisal of residential
apartments: An application of random forest for valuation and a CART-
based approach for model diagnostics,” Expert Syst. Appl., vol. 39, no. 2,
pp. 1772–1778, 2012.

[5] X. Kang, X. Xiang, S. Li, and J. A. Benediktsson, “PCA-Based edge-
preserving features for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 12, pp. 7140–7151, Dec. 2017.

[6] H. Zhang, W. Liu, and H. Lv, “Spatial-spectral joint classification of
hyperspectral image with locality and edge preserving,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 13, pp. 2240–2250, 2020.

[7] C. Jiao, C. Chen, R. G. McGarvey, S. Bohlman, L. Jiao, and A. Zare,
“Multiple instance hybrid estimator for hyperspectral target characteriza-
tion and sub-pixel target detection,” ISPRS J. Photogramm. Remote Sens.,
vol. 146, pp. 235–250, 2018.

[8] W. Xie, J. Lei, J. Yang, Y. Li, Q. Du, and Z. Li, “Deep latent spectral
representation learning-based hyperspectral band selection for target de-
tection,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 2015–2026,
Mar. 2020.

[9] J. Jacques and C. Preda, “Model-based clustering for multivariate func-
tional data,” Comput. Statist. Data Anal., vol. 71, pp. 92–106, 2014.

[10] Y. Ait-Sahalia and D. Xiu, “Principal component analysis of high-
frequency data,” J. Amer. Stat. Assoc., vol. 114, no. 525, pp. 287–303,
2019.

[11] Q. Du, “Modified fisher’s linear discriminant analysis for hyperspectral
imagery,” IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 503–507,
Oct. 2007.

[12] F. Kuang, W. Xu, and S. Zhang, “A novel hybrid KPCA and SVM with GA
model for intrusion detection,” Appl. Soft Comput., vol. 18, pp. 178–184,
2014.

[13] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geometric
framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.

[14] M. D. Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended
profiles with morphological attribute filters for the analysis of hyperspec-
tral data,” Int. J. Remote Sens., vol. 31, no. 22, pp. 5975–5991, 2010.

[15] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005.

[16] X. Zhang, X. Jiang, J. Jiang, Y. Zhang, X. Liu, and Z. Cai, “Spectral–
spatial and superpixelwise PCA for unsupervised feature extraction of
hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5502210.

[17] K. He et al., “A dual global-local attention network for hyperspectral
band selection,” IEEE Trans. Geosci. Remote Sens., vol. 60, Apr. 2022,
Art. no. 5527613.



6426 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[18] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman,
“1D convolutional neural networks and applications: A survey,” Mech.
Syst. Signal Process., vol. 151, 2021, Art. no. 107398.

[19] X. Wei, X. Yu, B. Liu, and L. Zhi, “Convolutional neural networks and
local binary patterns for hyperspectral image classification,” Eur. J. Remote
Sens., vol. 52, no. 1, pp. 448–462, 2019.

[20] H. Gao, S. Lin, Y. Yang, C. Li, and M. Yang, “Convolution neural network
based on two-dimensional spectrum for hyperspectral image classifica-
tion,” J. Sensors, vol. 2018, 2018, Art. no. 8602103.

[21] C. Wang, N. Ma, Y. Ming, Q. Wang, and J. Xia, “Classification of
hyperspectral imagery with a 3D convolutional neural network and J-M
distance,” Adv. Space Res., vol. 64, no. 4, pp. 886–899, 2019.

[22] S. Nezami, E. Khoramshahi, O. Nevalainen, I. Polonen, and E.
Honkavaara, “Tree species classification of drone hyperspectral and RGB
imagery with deep learning convolutional neural networks,” Remote Sens.,
vol. 12, no. 7, 2020, Art. no. 1070.

[23] S. Mirzaei, H. van Hamme, and S. Khosravani, “Hyperspectral image
classification using non-negative tensor factorization and 3D convolutional
neural networks,” Signal Process., Image Commun., vol. 76, pp. 178–185,
2019.

[24] W. Pi, J. Du, Y. Bi, X. Gao, and X. Zhu, “3D-CNN based
UAV hyperspectral imagery for grassland degradation indicator
ground object classification research,” Ecol. Inform., vol. 62, 2021,
Art. no. 101278.

[25] H. Lee and H. Kwon, “Going deeper with contextual CNN for hyperspec-
tral image classification,” IEEE Trans. I mage Process., vol. 26, no. 10,
pp. 4843–4855, Oct. 2017.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[27] Z. Zhong, J. Li, Z. Luo, and M. Chapman, “Spectral-spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

[28] W. Wang, S. Dou, Z. Jiang, and L. Sun, “A fast dense spectral-spatial
convolution network framework for hyperspectral images classification,”
Remote Sens., vol. 10, no. 7, 2018, Art. no. 1068.

[29] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “HybridSN:
Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image clas-
sification,” IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 277–281,
Feb. 2020.

[30] H. C. Tinega, E. Chen, L. Ma, D. O. Nyasaka, and R. M. Mariita,
“HybridGBN-SR: A deep 3D/2D genome graph-based network for hy-
perspectral image classification,” Remote Sens., vol. 14, no. 6, 2022,
Art. no. 1332.

[31] X. Yang et al., “Synergistic 2D/3D convolutional neural network for
hyperspectral image classification,” Remote Sens., vol. 12, no. 12, 2020,
Art. no. 2033.

[32] Z. Xie, J. Hu, X. Kang, P. Duan, and S. Li, “Multilayer global spectral-
spatial attention network for wetland hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5518913.

[33] F. Feng, Y. Zhang, J. Zhang, and B. Liu, “Small sample hyperspectral
image classification based on cascade fusion of mixed spatial-spectral
features and second-order pooling,” Remote Sens., vol. 14, no. 3, 2022,
Art. no. 505.

[34] C. Shi, D. Liao, T. Zhang, and L. Wang, “Hyperspectral image classi-
fication based on expansion convolution network,” IEEE Trans. Geosci.
Remote Sens., vol. 60, May 2022, Art. no. 5528316.

[35] C. Zhao, H. Zhao, G. Wang, and H. Chen, “Hybrid depth-separable residual
networks for hyperspectral image classification,” Complexity, vol. 2020,
2020, Art. no. 4608647.

[36] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

[37] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8,
pp. 2011–2023, Aug. 1, 2020.

[38] X. He, Y. Chen, and Z. Lin, “Spatial-spectral transformer for hyperspectral
image classification,” Remote Sens., vol. 13, no. 3, 2021, Art. no. 498.

[39] L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille, “Attention to scale:
Scale-aware semantic image segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 3640–3649.

[40] W. Ma, Q. Yang, Y. Wu, W. Zhao, and X. Zhang, “Double-branch multi-
attention mechanism network for hyperspectral image classification,” Re-
mote Sens., vol. 11, no. 11, 2019, Art. no. 1307.

[41] R. Li, S. Zheng, C. Duan, Y. Yang, and X. Wang, “Classification of
hyperspectral image based on double-branch dual-attention mechanism
network,” Remote Sens., vol. 12, no. 3, 2020, Art. no. 582.

[42] D. Hong et al., “SpectralFormer: Rethinking hyperspectral image classi-
fication with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5518615.

[43] M. Gong et al., “A spectral and spatial attention network for change
detection in hyperspectral images,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5521614.

[44] A. Dosovitskiy et al., “An image is worth 16×16 words: Transformers for
image recognition at scale,” 2020, arXiv:2010.11929.

[45] L. Sun, G. Zhao, Y. Zheng, and Z. Wu, “Spectral–spatial feature tok-
enization transformer for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5522214.

[46] K. Liu et al., “Mapping coastal wetlands using transformer in transformer
deep network on China ZY1-02D hyperspectral satellite images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 3891–3903,
2022.

[47] J. Zhu et al., “Survey of few shot learning of deep neural network,” Comput.
Eng. Appl., vol. 57, no. 7, pp. 22–33, 2021.

[48] S. Jia, S. Jiang, Z. Lin, N. Li, M. Xu, and S. Yu, “A survey: Deep
learning for hyperspectral image classification with few labeled samples,”
Neurocomputing, vol. 448, pp. 179–204, 2021.

[49] S. Sengupta et al., “A review of deep learning with special emphasis
on architectures, applications and recent trends,” Knowl.-Based Syst.,
vol. 194, 2020, Art. no. 105596.

[50] P. Wang et al., “Understanding convolution for semantic segmentation,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2018, pp. 1451–1460,
doi: 10.1109/WACV.2018.00163.

[51] Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient mobile
network design,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 13708–13717.

[52] Y. Cen et al., “Aerial hyperspectral remote sensing classification dataset
of Xiongan new area (Matiwan village),” J. Remote Sens., vol. 24, no. 11,
pp. 1299–1306, 2020.

[53] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, pp. 2579–2605, 2008.

Shuo Wang received the B.Sc. degree in geographic
information science from the China University of
Mining and Technology, Xuzhou, China, in 2021. She
is currently working toward the master’s degree in
photogrammetry and remote sensing with the Chinese
Academy of Surveying and Mapping, Beijing, China.

Her research focuses on classification based on
hyperspectral image and LiDAR point cloud.

Zhengjun Liu received the Ph.D. degree in cartog-
raphy and geographical information system from the
Institute of Remote Sensing Applications, Chinese
Academy of Sciences, Beijing, China, in 2003.

He is currently a Professor with the Chinese
Academy of Surveying and Mapping, Beijing, China.
His research interests include remote sensing image
analysis, mapping application of LiDAR and multi-
sensory fusion, and facility management application
with LiDAR and multisensors.

https://dx.doi.org/10.1109/WACV.2018.00163


WANG et al.: EXPANSION SPECTRAL–SPATIAL ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION 6427

Yiming Chen received the Ph.D. degree in cartogra-
phy and geographical information system from Bei-
jing Normal University, Beijing, China, in 2018.

He is currently an Assistant Professor Fellow with
the Chinese Academy of Surveying and Mapping,
Beijing, China. His research interests include air-
ground LiDAR data forest resources stereomonitor-
ing survey.

Chengchao Hou received the B.Sc. degree in sur-
veying and mapping engineering from Shijiazhuang
Tiedao University, Shaoxing, China, in 2020. He is
currently working toward master’s degree in pho-
togrammetry and remote sensing with the Chinese
Academy of Surveying and Mapping, Beijing, China.

His research focuses on tree species classification
based on deep learning from hyperspectral images.

Aixia Liu received the Ph.D. degree in cartogra-
phy and geographical information system from the
Institute of Remote Sensing Applications, Chinese
Academy of Sciences, Beijing, China, in 2004.

She is currently a Research Professor with Land
Satellite Remote Sensing Application Center, Min-
istry of Natural Resources, Beijing. Her research
interests include satellite remote sensing application,
natural resources survey, and remote sensing moni-
toring.

Zhenbei Zhang received the B.Sc. degree in ge-
ographic information science from the China Uni-
versity of Mining and Technology, Xuzhou, China,
in 2021. He is currently working toward the mas-
ter’s degree in structural geology with the Institute
of Tibetan Plateau Research, Chinese Academy of
Sciences, Beijing, China.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


