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Remote Sensing Image Super-Resolution With
Residual Split Attention Mechanism

Xitong Chen"”, Yuntao Wu"”, Tao Lu

Abstract—Recently, deep-learning-based methods have become
the current mainstream of remote sensing image super-resolution
(SR) due to their powerful fitting ability. However, they are still
unsatisfactory in large-scale factor SR scenarios. The more compli-
cated information distribution of images further increases the dif-
ficulty of reconstruction. In this article, we propose a novel residual
split attention group (RSAG) to maintain the overall structural and
thelocal details simultaneously. Specifically, an upscale module that
makes the network jointly consider hierarchical priors, which as-
sists in the prediction of high-frequency information, and a residual
split attention module to adaptively explore and exploit the global
structure information in low-level feature space. In addition, an
artifact removal strategy is proposed to reduce excessive artifacts
and further boost the performance. By progressively connecting the
above modules and incrementally fusing the multilevel intermedi-
ate feature maps, the fidelity of high-frequency detail information is
improved. Finally, we propose a residual split attention network by
stacking several RSAGs for reconstructing high-resolution remote
sensing images. Extensive experiment results demonstrate that the
proposed approach achieves better quantitative metrics and visual
quality than the state-of-the-art approaches.

Index Terms—Attention mechanism, convolutional neural
network (CNN), remote sensing image, super-resolution (SR).

1. INTRODUCTION

S AN important means of earth observation, the remote
A sensing image is widely used in a variety of fields, includ-
ing mineral resources, environmental monitoring, public safety,
and military applications. The spatial resolution is the most sig-
nificant indicator of the quality of the satellite image. However,
the spaceborne imaging systems are often affected by the com-
plex imaging environment, resulting in low spatial resolution
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of the acquired images. Therefore, the captured satellite images
may not be accurate enough for advanced remote sensing ap-
plications such as object detection [1], image segmentation [2],
etc. Image super-resolution (SR) is an algorithmic technique for
producing a potentially high-resolution (HR) image from a given
low-resolution (LR) image.

With the rapid development of satellite photogrammetry, it
is very urgent to develop efficient and high-precision satel-
lite image SR methods. Tsai [3] pioneered the use of fus-
ing complementary information for satellite image SR tasks
and utilized the complementary information between different
frameworks to reconstruct HR remote sensing images. Recently,
SR algorithms have been effectively utilized to improve image
resolution and quality, which are widely used in preprocessing
techniques for remote sensing image analysis [4]. The current SR
methods can be categorized as interpolation-, reconstruction-,
and learning-based methods. The interpolation-based meth-
ods [5], [6] are a kind of noniterative framework, whose core idea
is to align the LR with the HR remote sensing image and apply
nonuniform interpolation to obtain the value of each pixel corre-
sponding to the HR remote sensing image grid. Reconstruction-
based methods [7], [8] typically entail converting HR images
to LR images by using downsampling, establishing correspon-
dence by studying the performance of HR detail information
under LR conditions, and ultimately expressing this relationship
through modeling. One of the classical remote sensing SR recon-
struction algorithms is the hidden Markov chain model proposed
by Li et al. [9]. Because this model relies on accurate subpixel
accuracy estimates, reconstructed remote sensing images may
be severely lacking in high-frequency detail information and can
only boost small magnifications [10].

Influenced by the speed development of machine learning, the
deep learning-based satellite image SR approaches, gradually
become a mainstream research direction. The deep learning-
based algorithms show strong feature representation ability,
which can be used to learn the nonlinear function by convolu-
tional neural networks (CNNs) and achieve satisfactory results.
As aresult, more and more CNN-based remote sensing SR meth-
ods are being proposed by scholars. But most studies [11], [12],
[13], [14], [15] on the SR of remote sensing images have focused
on small magnification factors, and increased the resolution by
adding an upsampling layer. Few studies have attempted to solve
the reconstruction problem with a large magnification factor.
Such as, Pan et al. [16] utilized the backprojection strategy to
handle of the dependency between LR and HR more completely.
Dong et al. [17] proposed a dense-sampling framework that
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reused an upscaler to upsample low-dimensional features via a
dense-sampling mechanism for investigating large-scale factor
SR reconstruction. Although the existing methods, RDBPN [16]
and DSSR [17], have attempted to densely connect the feature by
upsampling modules to address the reconstruction challenge at
high magnification levels (e.g., x8), which used the same weight
size to learn remote sensing feature maps of different regions
and lacked discriminative ability across feature channels. During
the application process, the connection between the hierarchical
features is lost, resulting in the loss of intermediate information.
In addition, due to the limited a priori factors available in LR
space under severe upscaling circumstances, reliable prediction
of local features becomes extremely challenging. The addi-
tional prior information means more computational overhead
and increases the training difficulty, thus negatively affecting
the subsequent reconstruction process.

To meet the aforementioned challenges, we propose an effi-
cient residual split attention network (RSAN). First, we propose
amultipath residual split attention (RSA) mechanism to promote
the internal correlation of features by splitting and fusing differ-
ent channel dimensions, which ensures the method pays more
attention to detail-rich regions and focuses less on parts that are
not well-informed. Then, we design an upscale module to learn
the hierarchical prior information in an HR potential subspace to
help the prediction of high-frequency information and a residual
split attention module (RSAM) with the proposed RSA and a
downscale operation to explore and exploit global information
in LR potential subspace. In addition, an artifact removal strategy
is proposed in the upscale module to reduce excessive artifacts
for better large-scale factor SR. The upscale module and RSAM
are combined to form the residual split attention group (RSAG),
which is introduced to simultaneously enhance the consistency
of global structure and the fidelity of local detail restoration
by fusing multilevel and multipath features. In each RSAG
module, we adopt a dense connection to conduct the residual
features fusion (RFF), which across different levels, reducing
feature redundancy and promoting information exchange within
and between modules. Finally, we propose a RSAN to cascade
several RSAGs for reconstructing HR remote sensing images.
The main contributions are as follows.

1) We propose aresidual split attention network for the single
remote sensing image SR, which can better balance the
model size and achieve superior results on two publicly
available datasets even under the large-scale factor.

2) We present the RSAM to assist the network in focusing
training on detail-rich regions while paying less attention
to parts that are not well-informed by splitting and fus-
ing the intermediate residual feature maps from different
channel dimensions and strengthening the representation
capacity of the network.

3) To ensure both the global structural consistency and the
local detail restoration fidelity are fully maintained, the
RSAG is proposed to use an upscale module to jointly
consider the hierarchical prior information and connect
with an RSAM for adaptive weighted fusion of multipath
information, which enables the network to be more accu-
rate for reconstruction by exploiting different dimensional
information.

The rest of this article is organized as follows. Section II de-
scribes the related work. Section III illustrates detailed descrip-
tion of the proposed method. Section IV provides experimental
results. Finally, Section V concludes this article.

II. RELATED WORK
A. CNN-Based Image Super-Resolution

Recently, CNN-based methods demonstrate excellent perfor-
mance in various computer vision tasks [18], [19], [20] because
of their robust feature representation capabilities. In 2015, Dong
et al. [21] first proposed three-layers CNN framework. Kim
et al. [22] introduced the concept of residual networks [23]
can effectively build deeper networks and converge faster. Lim
et al. [24] improved a enhanced residual SR network (EDSR)
based on ResNet [25] blocks, which saved space by eliminating
unnecessary modules from the traditional residual network and
further expanded the size of the model to enhance the network
expression ability. Lai et al. [26] introduced the Laplacian
pyramid framework, which can predict residuals from coarse to
fine. Haris et al. [27] introduced the deep back-projection net-
work (DBPN) that can fully exploit the interdependence of HR
and LR pairings by cascading several up- and down-sampling
blocks to better learn high-resolution features and achieve good
performance, particularly on large-scale factor. Considering the
correlation between the channels, Zhang et al. [28] presented a
very deep residual channel attention network (RCAN), which
can have targeted extraction of the high-frequency component,
by rescaling the channelwise features to focus on the image edge
texture. To improve feature expression ability, Dai et al. [29]
proposed a second-order attention network (SAN) to generate
discriminative features and information. Lu et al. [30] designed
a multiscale information polymerization network, which ad-
dressed the problem of limited representation ability of re-
constructed networks caused by the lack of consideration of
the potential relationship between multiscale features in ex-
isting CNN-based SISR methods. By studying image sparsity
to accelerate the inference efficiency of the network, Wang et
al. [31] designed a sparse mask framework to identify different
regions by using spatial and channel mask learning to mark
unimportant regions that can reduce redundant computations
while maintaining good performance.

The SR method described above is aimed at general images.
Due to the wide range of satellite images, the spatial distribution
of remote sensing images is complicated. Thus, the targets to be
recovered often cover only a few pixels in the image, and the
pixel differences between different types of targets are small.
Therefore, deep learning-based methods designed for general
images cannot effectively process satellite images due to their
inability to retrieve the potential high-frequency information
contained in satellite images, especially with large-scale sam-

pling.

B. Satellite Images Super-Resolution

In remote sensing image applications, recovering HR images
with clear texture details is indispensable for many tasks, be-
cause satisfactory application results cannot be obtained with
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only a small amount of feature information provided by LR
images. Liebel and Korner [11] were the first to apply the
SRCNN [21] to satellite images SR. Considering the satellite
image SR method cannot directly train by the natural im-
ages, so the authors produced a remote sensing dataset using
SENTINEL-2 images to relearn the mapping relationship. Lei
etal. [32] designed a multifork structured framework to learn the
multiscale representation ability, which combined shallow and
deep feature mappings to complete the interaction of network
information to better guide the reconstruction. Qin et al. [33]
introduced a multiscale network based on GoogLeNet [34] that
extracted image features with multiscale kernels and obtained
more comprehensive depth features after concatenating each
channel feature to improve the SR effect.

Inspired by the successful application of knowledge distilla-
tion [35], [36], [37] in computer vision tasks, Jiang et al. [38]
constructed a distillation framework to distill and compensate
feature maps at various stages for high-frequency information
enhancement. Ma et al. [39] devised a approach to simplify the
training stage by the wavelet transform, which combines global
with local residual learning to alleviate the problem of gradient
disappearance. Gu et al. [40] developed a deep residual attention
strategy, which used a residual attention block to adjust the
weight of feature maps and improve the representation ability.
Huan et al. [41] proposed a pyramidal multiscale residual frame-
work to enhance the power that detect contextual information.
Lu et al. [42] proposed a novel structure-texture parallel embed-
ding (SPE) method, which utilized both global structural infor-
mation and local texture information in the upscaling process
to guide the reconstruction results. Wang et al. [43] designed
a novel satellite SR framework to transform HR images into
LR, artifact, high-frequency information and introduced a self-
adaption difference convolution module to better recover remote
sensing images.

C. Neural Attention Mechanism

The neural attention mechanism can focus on important re-
gion with limited resources and become a popular research
topic. It originated from the exploration of the human visual
mechanism. Human vision tends to focus on the salient areas
while ignoring the information-poor parts, and a neural attention
mechanism can help neural networks focus on important feature
information while suppressing useless feature representations
and improving information processing efficiency. Haut et al. [44]
introduced the attention mechanism into the SR tasks to learn
the mapping function between texture components, enhance the
high-frequency information of the image, and suppress the low-
frequency information. Dong et al. [45] designed a multipercep-
tion learning framework to perform multilevel information adap-
tive weighted fusion for reconstruction. Further, Zhang et al. [46]
proposed the mixed high-order attention mechanism (MHAN),
which applied weights to different levels of convolution in the
feature extraction stage to retain more important information,
and added frequency-aware connection in the feature refinement
stage to fuse and refine the features of different depths through
the high-order attention module. Li et al. [47] introduced an

adaptive weighted attention network that integrates an adaptive
weighted channel attention module and a patch-level second-
order nonlocal module to capture interdependencies among
intermediate features and enhance feature representations. To
address the challenge of satellite images with large difference
in scene and image size, Zhang et al. [48] proposed a mul-
tiscale attention network for features extracting that used the
channel attention mechanism to fuse multiscale features and
assigned models for the satellite images reconstruction. This
method obtains good results, but the number of models and
parameters increases significantly. Although the above attention
mechanisms can enhance the network’s learning of important
features, they lack the ability to discriminatively learn different
spatial regions of the same feature. Lei and Liu [49] utilized
the inception module [34] to extract scale-invariant features
and combined the channel and spatial attention mechanisms
to distinguish important features, which allocated attention to
different regions of each feature map and made the network
perform more comprehensive discriminative learning of remote
sensing features. To overcome the bottleneck of low accuracy in
the existing unsupervised SR methods, Li et al. [50] proposed
an unsupervised super-resolution architecture that included the
masked transformer to extract latent hyperspectral characteris-
tics for realistic restoration of hyperspectral images, with strong
constraints incorporated into the framework. They also intro-
duced a dual spectralwise multihead self-attention mechanism
to address the limitations of traditional CNN-based models and
enhance the robustness of the model.

III. PROPOSED METHOD

The structure of RSAN is described first in this sec-
tion. Then, we elaborate the proposed residual split atten-
tion group, which is composed of the upscale and residual
split attention modules, respectively. Finally, we introduce the
loss function. In RSAN, we let Iz € R"w*¢ and ITyg €
JRrhxrwxe he the LR and ground truth images, respectively,
where h, w, and c¢ denotes the height, the width, and the
channel number of the LR image. r represents the scale fac-
tor. In addition, let Conv(ng, ng,n.), PwConv(ng,ng,n.),
DwConv(ng,ng,n.) and DeConv(ng,ns,n.) indicate the
standard convolutional, pointwise convolutional, depthwise con-
volutional, and deconvolutional layers, where ny, ny, and n.
denote the filter size, the number of input channels, and the
number of output channels, respectively.

A. Network Architecture

Fig. 1 shows the structure of RSAN. The proposed method
consists of four components: coarse feature extraction part,
residual split attention group, multilevel features fusion module,
and reconstruction module. The coarse feature F- is extracted
in the RSAN initial part from the input LR remote sensing image
1 LR, as

Fo=Hc(ILgr) 1)

where H¢ () is the coarse feature extracting operation with one
inverted residual block and one C'onv(3,64,64) layer. In the
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Fig. 1. Network architecture of RSAN.

middle part Fo is used for residual split attention group deep
feature extraction, the mth group RSAG-m extracts the deep
feature map F,,,+ as follows:

Fy = Hrsagm(Fc) m=1 (@)
Fo+ = Hrsagm(Fm-1)+) m=2,..., M (3)

where Hpsac,m(-) represents the mth RSAG, the specific
structure will be detailed later and the number of m settings
will be described in the ablation study section. Then, the global
residual learning is introduced into the last RSAG output, so the
input of the last deconvolutional layer is defined as follows:

Farv = Hsum (Frrs, Fo) “)

where Hg,,, refers to elementwise sum operation. After the
last RSAG, we feed FM+ into the deconvolutional [51] layer
to obtain high resolution feature map U,;+ and aggregate the
previous multilevel HR feature maps (U1, U+, . . ., Upr+ ) inthe
multilevel feature fusion module to estimate the reconstructed
HR image. The SR can be described as

Isr = Hgee (concat (Ul,U2+,...,UM+,UM+>) 5)

where Hpre. () use Conv(3,64 % (m + 1), 3) as reconstruction
and concat(+) represents the concatenation function.

B. Residual Split Attention Groups

Previous attention-based methods [45], [46], [48] only used
multilevel residual blocks for refinement to generate richer
hierarchical features. However, the lack of information inter-
action between different spaces and channels in the single-sized
receptive field residual blocks. Inspired by ResNeSt [52], we
propose the RSAG to excavate the internal relevance of features
by multichannel splitting and classification of feature channel
dimensions, and focus on detail-rich regions and pay less atten-
tion to parts that are not well-informed. Compared to ResNeSt,

our proposed RSAG first learns the hierarchical features in a
high-resolution potential subspace to improve the network’s
prediction of high-frequency information. This procedure has
the additional advantage of an artifact removal operation that
effectively reduces excessive artifacts, thereby achieving better
large-scale factor SR. Then, we use a depthwise convolutional
operation along with the residual split attention mechanism
to explore and exploit global information in the LR potential
subspace. Differing from ResNeSt, RSAN continuously projects
the feature space across different dimensions to simulate the
degradation level of remote sensing images at different stages
and better learn high-resolution components. More importantly,
RSAN is specifically designed to enhance the representation of
hierarchical features and is an efficient remote sensing image SR
network that progressively restores details from coarse to fine.
AsshowninFig. 2, the RSAG is made up of the upscale and the
residual split attention module. The upscale module can upsam-
ple the coarse feature F, then we set the DeConv(ng, ny, n.)
and feature extraction processes as the upscale module for
RSAN. First, the upscale module maps the coarse feature
F¢ to an intermediate HR map U, o via one deconvolutional
layer DeConv(8,64,64) with an upsampling factor of r = 4.
When the r = 8, k is set to 12. Then, U, ¢ is mapped back
to obtain the LR feature map L, through one pointwise con-
volutional layer PwConv(1,64,64), one depthwise convolu-
tional layer DwConwv(3,64,64) and one pointwise convolu-
tional layer PwConw(1, 64, 64). Subsequently, we introduce an
artifact removal operation to utilize the structure prior in LR
potential subspace and estimate the artifact residual feature map
a. The artifact residual feature map a between the input LR
F and the learned L is computed by a deconvolutional layer
DeConv(8, 64, 64) to get the HR map Uy ;. The upscale module
output U7 is computed by summing the intermediate HR map
Ui, and Uy 1. Then, U; is fed into the proposed RSAM. The
local residual learning feature U is passed through a depthwise
convolutional layer DwConv(3,64 % m,64) to obtain Split.
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Fig. 2. Network architecture of RSAG.

Subsequently, Split is split into n separate splits through each
channel, where the number of output channels for each split is
defined as c, resulting in a value of < output channels for each
split. Then, an elementwise sum operation is performed on each
split

FSplits = HSum (Splltla Spl2t27 AR Spl?'tn) (6)

where Split,, represents the nth split by the last division opera-
tion. The Fgp+5 is passed through an adaptive average pooling
layer and two pointwise convolutional layers, and then input to a
n-softmax function based on the feature detail richness of each
previous split, resulting in the latest Split’. Therefore, Split’
can be formulated as follows:

Split' = Hg(PwConv(PwConv(H avg(Fspiits)))) (1)

where H 4,4 denotes the adaptive average pooling operation and
Hyg represents the softmax function. We split Split’ into n splits
(Splity, Split,, ..., Split,) again. Then, each latest Split,, is
multiplied by the previous corresponding 7 split Split,, using the
product operation of the elements, respectively. By the operation
of an elementwise product, the latest n splits is multiplied by the
corresponding previous n splits. Thus, the internal correlation
of features is improved by using multipath channel information,
and the network can focus on the restoration of global structure
with RSA. After the second feature split, we use the elementwise
sum operation to merge each path split as the output of the
RSAM, whichis denotes as F'rs 4. The Ist RSAM ouput F'rg 41
is defined as follows:

Frsa1=F1 = Hprsa1(Uy)
= Hgum (Hgyp (Splity, Split) ...,

Hpg, (Split,,, Split,,)) ®)

where Hprsa,1 denotes the output of 1th RSAM, the Hp,
represents an elementwise product operation.

The upscale module and RSAM are connected with each other
to constitute the RSAG, the Fig. 1 depicts the entire RSAGs
structure. In the lower right part of Fig. 1, purple and green
cubes represent the upscale module and RASM, respectively.

The yellow cube indicates the operation of concatenating feature
maps along the channel dimension. The overall construction of
mth RSAG is described in detail below. The coarse feature F
is first processed by the upscale module

Ui = Hup(Fo) C))

where Hyrp, 1 denotes the operation of the first upscale mod-
ule. Then an RASM and upscale module generate initial level
features F; and U, as follows:

Fy = Hpsaq1(Uy)
Us = Hyp2(F1)

(10)
(In

the dense connected structure [53] is used to fully utilize the
different hierarchical features, in which each upscale module
output aggregates feature maps from all previous upscale mod-
ules. When the group number m > 2, the concatenate module
is placed after the every upscale module and RSAM, the input

to the mth RSAM can be represented as follows:
Us+ = concat(Uz,Ur) m =2 (12)

Up+ = concat(HUP’m(F(m_lﬁ), U(m_1)+) m=3,...,.M
(13)

the input to the mth upscale module can be denotes as follows:

Fy+ = concat(Hpsa2(Us+), F1) m=3 (14)
F(m_1)+ = concat (HRSA,m,1(U(m_1)+), F(m_2)+)
m=4,..., M. (15)

C. Loss Function

This section mainly introduced the hybrid loss function
(HLF), which includes the pixel loss, the perceptual loss, and the
binary crossentropy (BEC) loss function. Our network is trained
through supervised learning with the goal of minimizing the loss
function, which can be expressed as

N
1 i i
0= arg min ZLH (Hrsan(Ipg), Iyr)  (16)

i=1
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where 6 denotes the parameter of the network, IV represents the
number of input samples, and L is the loss function of the
RSAN.

Given that realistic degradation processes are difficult to
simulate, the network should be subjected to more effective con-
straints during the training process. The hybrid loss is expressed
as

Ly = )\leix + )\-QLper + A3 Lpec (17)

where the weight coefficients A1, A2, and A3 are used to balance
the loss. To calculate the pixelwise difference between the
ground-truth and the generated SR image, we use the L; function
defined as follows:

Lpiz = |Hrsan(Urr) — Iarll; - (18)

Since the VGG [54] network focuses on the deep semantic
information, it contributes to the enhancement of network output
image clarity, resulting in better visualization. Therefore, in
order to fully utilize the feature-level information, we extract
features by using a pretrained VGG network, which is used to
measure the perceptual loss. In this study, we use Conv5-4 layer
in VGG for extracting features. The perceptual loss is calculated
as shown as follows:

Lper = || veesa(Hrsan(ILr)) — fvaesa(Iur)|ly  (19)

where fyvggsa is the VGG feature extraction function.
We calculate the BEC loss in the framework of the binary
crossentropy loss function, which are shown in (19)

Lyee = — [IHR log (HR:S‘AN(ILR))

+(1 = Igg)log (1 - (HR.;’AN(ILR)))} (20)

where L. represents the BEC loss function as the discrim-
inator. Hrgan(I“%) denotes the model output after sigmoid
activation function, which indicates the probability that the
prediction belongs to a ground truth sample. The continuous
adjustment of network training is achieved by iterative compu-
tation of the above hybrid loss function.

IV. EXPERIMENTS
A. Experiments Details

We compared the RSAN to seven recent SR methods based
on deep learning, which include EDSR [24], DBPN [27], the
lightweight residual dense network (RDN) [55], RCAN [28],
SAN [29], MHAN [46], SPE [42], and deep unfolding method
(LDUM) [56]. We use two publicly available remote sensing
datasets for our SR experiments, including remote sensing scene
classification (RSCNN7) [57] and UCAS-high resolution aerial
object detection dataset (UCAS-AOD). Four prevalent image
quality evaluation metrics (i.e., PSNR, SSIM, VIF [58], and
ERGAS [59]) are chosen to objectively assess the performance
of the model. Furthermore, we conduct experiments on real-
scene remote sensing image SR using the Jilin-1 video satellite
dataset and introduced the no-reference image quality evaluation

. f

Bicubic EDSR
28.400.7819 20.50/0.8348

SPE.
29.69/0.8373

SAN
20.54/0.8366

DBPN
29.65/0.8392

RCAN MHAN LDUM A D374
298108411 29.80/0.8386 29.77/0.8360 20.95/0.8416 PSNRISSIM

Bicubic EDSR SPE. DBPN SAN

RCAN RDN LDUM MHAN RSAN

Fig. 3. Visual results with x4 of the RSSCN7 dataset. The final two rows of
images show the error map.

metrics image entropy [60] and average gradient [61] to evaluate
the performance of the proposed model.

The Adam optimizer is employed for the overall optimization
of the network with batch size 16. 5; = 0.9, S = 0.999, and
¢ = le — 8. The weight of loss function A1 is 1, A2 i 5.0 X 1073
and A3 is 1 x 1073, The learning rate is initialize as ¢ = le — 4
and decreases by a factor of 10 for every 500 epochs.

B. Experiments on RSCNN7 Dataset

Wuhan University released the RSSCN7 dataset, which con-
tains a total of 2800 remotely sensed images from seven typical
scene categories, with each category containing 400 images.
The original image of the RSSCN7 dataset has the pixel size of
400 x 400. To generate LR images, we apply a downsampling
process to the original HR images using a Bicubic interpolation
operation with a scale factor and no blur kernel in the MATLAB
environment. For the experiment, we select 2100 and 700 images
as the training set and test set of RASN, respectively.

Table I compares the quantitative results of the proposed
RSAN with recent CNN-based methods under the scale factors
of x4 and x8 on the RSCNN7 dataset, where the best results
are underlined. The experimental results show that the RSAN
achieves 0.14 dB than the most competitive general SR method
RDN [55] with a scale factor of x4. Compared to the latest
remote sensing image SR methods MHAN [46], SPE [42],
and LDUM [56], RSAN achieves a higher PSNR of 0.13/0.08,
0.15/0.19, and 0.11/0.05 dB with the upscaling factor of x4 and
x 8, respectively.

Figs. 3 and 4 show the subjective results on RSCNN7 dataset
with scale factors of x4 and x8, respectively. The yellow and
blue images is represented by the colorbar, which indicates the
mean square error (MSE) map between the estimated SR image
and the ground truth. The EDSR [24] method are significantly
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TABLE I
QUANTITATIVE EVALUATION RESULTS ON THE RSCNN7

Method | Scale | Param/M | PSNR 1 | SSIM 1 | VIF 1 | ERGAS |
Bicubic x4 - 2843 | 0.7146 [ 0.3816 | 2.2483
EDSR [24] | x4 40.09 29.72 | 0.7718 | 0.4108 | 1.9740
DBPN [27] | x4 10.43 29.81 | 0.7754 | 04157 | 1.9534
RDN [55] x4 1.15 29.85 | 0.7733 | 0.4194 | 1.9346
RCAN [28] | x4 15.59 2977 | 0.7741 | 04133 | 1.9628
SAN [29] x4 15.82 29.76 | 0.7740 | 0.4133 | 1.9640
MHAN [46] | x4 11.35 29.86 | 0.7768 | 0.4196 | 1.9263
SPE [42] x4 7.84 29.84 | 0.7754 | 0.4164 | 1.9387
LDUM [56] | x4 2.17 29.88 | 0.7727 | 04204 | 1.9325
RSAN (Our) | x4 8.21 29.99 | 0.7786 | 0.4239 | 1.9078
Bicubic 8 - 2577 | 05762 [ 02289 | 3.0669
EDSR [24] | x8 83.22 2625 | 05954 | 0.2114 | 2.9468
DBPN [27] | x8 23.21 2627 | 0.6029 | 0.2192 | 2.9408
RDN [55] 8 1.29 26.50 | 0.6093 | 0.2388 | 2.8506
RCAN [28] | x8 15.74 26.41 | 0.6065 | 0.2256 | 2.8850
SAN [29] 8 15.97 2641 | 0.6072 | 02282 | 2.8843
MHAN [46] | x8 11.51 2654 | 0.6140 | 0.2436 | 2.8412
SPE [42] 8 7.99 2643 | 0.6080 | 0.2341 | 2.8818
LDUM [56] | x8 2.54 2657 | 0.6117 | 02453 | 2.8334
RSAN (Our) | x8 9.72 26.62 | 0.6165 | 0.2480 | 2.8217

* The best results are in bold.

SPE DBPN
28.590.6630 28150.6571

RSAN
2863/0.6661

Fig. 4.  Visual results with x8 of the RSSCN7 dataset. The final two rows of
images show the error map.

improved compared to the conventional interpolation method
(Bicubic). Although the EDSR subjective visual results are fine,
the edge information of the generated remote sensing images is
significantly insufficient. RCAN [28], SAN [29], and SPE [42]
introduce attention mechanisms into the network and obtained
better repair results. As the network grows deeper, the number of

extracted deep residual features increases, RDN recovers more
texture detail on remote sensing images than other single image
SR methods.

MHAN also subjoins the attention mechanism, which mixes
high-order attention mechanisms with the ability to fully exploit
hierarchical features. LDUM utilizes a combination of LR and
high-frequency residual images to model HR images, achieving
a balance between computational cost and performance. In
contrast, our RSAN obtains clearer and better results in saliency
regions through a multichannel attention mechanism with mul-
tilevel residual feature fusion, which is more faithful to the
ground truth. In large-scale factor condition, the RSAN recovers
more salient and informative components from LR images and
produces more competitive results than other algorithms.

C. Experiments on UCAS-AOD Dataset

The UCAS-AQOD dataset is a public satellite image dataset
that includes two kinds of targets, automobile and aircraft, and
negative background samples. We randomly select 900 of these
images with a resolution of 1280 x 689 as the training set. We
randomly select 100 HR images and intercept a 200 x 200 pixel
portion of them as the test images. To generate LR images,
we utilize Bicubic interpolation with a scale factor and no blur
kernel in the MATLAB environment to downsample the original
HR images.

Table II compares the quantitative results of the proposed
RSAN to other CNN-based algorithms with scale factors of x4
and x8 on the UCAS-AOD dataset, where the best results are
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TABLE II
QUANTITATIVE EVALUATION RESULTS ON THE UCAS-AOD

Method | Scale | Param/M | PSNR 1 | SSIM 1 | VIF 1 | ERGAS |
Bicubic x4 - 30.62 | 0.7899 [ 0.4490 [ 1.4738
EDSR [24] | x4 40.09 3271 | 0.8471 | 0.5064 | 1.1786
DBPN [27] | x4 10.43 32,73 | 0.8480 | 0.5072 | 1.1756
RDN [55] x4 1.15 3221 | 0.8341 | 04903 | 1.2488
RCAN [28] | x4 15.59 3278 | 0.8487 | 0.5091 | 1.1724
SAN [29] x4 15.82 32.76 | 0.8483 | 0.5083 | 1.1717
MHAN [46] | x4 11.35 32.65 | 0.8454 | 0.5050 | 1.1894
SPE [42] x4 7.84 3251 | 0.8438 | 0.5003 | 1.2003
LDUM [56] | x4 2.17 3253 | 0.8427 | 0.5031 | 1.2076
RSAN (Our) | x4 8.21 32.87 | 0.8494 | 0.5128 | 1.1619
Bicubic x8 - 2577 | 05762 [ 02289 [ 3.0669
EDSR [24] | x8 83.22 2872 | 0.7158 | 0.3184 | 1.8114
DBPN [27] | x8 23.21 2874 | 0.7189 | 0.3195 | 1.8028
RDN [55] x8 1.29 28.50 | 0.7073 | 0.3079 | 1.8412
RCAN [28] | x8 15.74 28.73 | 0.7162 | 0.3119 | 1.8032
SAN [29] x8 15.97 28.77 | 0.7189 | 03170 | 1.7957
MHAN [46] | x8 11.51 28.56 | 0.7131 | 0.3179 | 1.8447
SPE [42] x8 7.99 2859 | 0.7150 | 0.3175 | 1.8408
LDUM [56] | x8 2.54 28.61 | 0.7127 | 0.3166 | 1.8235
RSAN (Our) | x8 9.72 28.84 | 0.7206 | 0.3247 | 1.7832

* The best results are in bold.

in bold. According to the experimental results, the RSAN has a
higher PNSR value of 0.09 dB than the most competitive general
SR method RCAN [28] with a scale factor of x4. Compared
with the latest remote sensing image SR method MHAN [46],
SPE [42], and LDUM [56], RSAN achieves a higher PSNR of is
0.22/0.28, 0.36/0.25, and 0.34/0.23 dB with the upscaling factor
of x4 and x8, respectively.

Figs. 5 and 6 show the subjective results on the UCAS-AOD
dataset with scale factors of x4 and x8, respectively. The last
row of images indicate the error map between the estimated
SR image and the ground truth. RCAN [28] and SAN [29] can
achieve satisfactory outcomes. Nevertheless, their VIF/ERGAS
values are lower than the proposed RSAN, particularly at the
scale factor of x8. Since the UCAS-AOD dataset contains only
two simple scene categories compared to the RSCNN7 dataset,
the proposed RSAN performs significantly better on the UCAS-
AOD dataset, especially at large scale factor, compared to the
remote sensing image super-resolution methods MHAN, SPE,
and LDUM. From the magnified details of the reconstructed
images of these methods shown in the images, we observe that
the RSAN is capable of obtaining pleasant results, which is
reflected in the MSE error maps.

D. Experiments on Jilin-1 Video Satellite Dataset

In real-world scenarios, the captured satellite images may
not meet the precision requirements of many applications due
to limitations caused by undersampling and imaging blur of
imaging sensors. Under such circumstances, it is essential to

s s il e e

DBPN
376609422

Bicubic EDSR SPE SAN
33.33/0.8807 375609397 37.56/0.9406 37.65/0.9423

sl e s

RCAN MHAN LDUM RSAN

09SO
37.56/0.9409 PSNR/SSIM

378309420

SPE

EDSR

RDN

RCAN LDUM MHAN

3762109396

382609482

SAN
RSAN

Fig. 5. Visual results with x4 of the UCAS-AOD dataset. The final two rows
of images show the error map.

utilize SR methods to improve the quality of the LR remote
sensing images. To demonstrate the robustness of the proposed
RSAN in real-world scenarios, we randomly crop seven remote
sensing images of different scenes with a size of 256 x 256 from
the Jilin-1 satellite video imageries, and compare with remote
sensing SR algorithms through subjective evaluation. As shown
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RCAN RDN LDUM MHAN RSAN

Fig. 6. Visual results with x8 of the UCAS-AOD dataset. The final two rows
of images show the error map.

MHAN/4.77

Bicubic/3.65

LDUM/4.81

RSAN/5.08

Fig. 7. Visual and image entropy results of real data with a scale factor of x8.

inFig. 7, RSAN has the best reconstruction performance than the
other SR method. Specifically, RSAN is able to recover building
edges more accurately, while MHAN [46] and SPE [42] exhibit
distorted image lines in their results. In the local zoom area, the
compared methods produce visible ringing artifacts and blurred
outlines, while the proposed RSAN generates sharper edges with
fewer jagged lines and artifacts. Based on the above observa-
tions, the RSAN can produce visually satisfying high-resolution
images with sharp edges and clear boundaries compare to other
algorithms.

To further evaluate the SR performance of various meth-
ods in practical remote sensing applications, we adopt two
no-reference image quality assessment metrics, image entropy
(IE) [60] and average gradient (AG) [61]. In SR tasks, IE can be
used to measure the complexity of information and texture diver-
sity in an image. Generally, a higher image entropy indicates a
larger amount of information and richer texture in the image. The

TABLE III
COMPARISONS RESULT OF IE AND AG ON THE JILIN-1 VIDEO SATELLITE
DATASET WITH THE SCALE FACTOR X8

Method | Bicubic | MHAN | SPE | LDUM | RSAN
IE [60] 42244 | 5.8891 | 5.9906 | 6.0519 | 6.1862
AG [61] | 5.6801 | 6.9980 | 6.9866 | 7.0182 | 7.0310
* The best results are in bold.
RSSCN7
» 0.78
299 0.775
E 05 077
E 0.765 %
2.7
~o=PSNR o7
B 0.755
—aSSIM ’

25 0.75
2/(1.14M) 4/(2.54M) 6/(4.18M) 8/(6.07M) 10/(8.21M) 12/(10.59M) 14/(12.69M)

Number of RSAGs / Network Parameters

Fig. 8.  PSNR/SSIM results of RSAN on the RSSCN7 dataset as m increases
from 1 to 14.

average gradient refers to the rate of change in pixel values within
an image. Edge and texture details in an image often accompany
abrupt changes in pixel values. Therefore, the AG can reflect the
level of detail in the edges and textures of the image. The larger
the AG and IE, the clearer the image. As shown in Table III,
obviously, the proposed RSAN shows a advantage in getting the
highest score. In summary, the subjective visual performance
and the no-reference image evaluation metrics demonstrate the
effectiveness and practicality of the RSAN algorithm in SR
remote sensing images.

E. Ablation Analysis

In this section, we first investigate the impact of different
numbers of RSAG on the overall network performance, and
conduct a series of comparative experiments on the RSSCN7
dataset with a scale factor of 4, as shown in Fig. 8. Subsequently,
we introduce ablation studies to verify the effectiveness of the
proposed RSAM, RFF, and HLF on the RSSCN7 dataset as
shown in Table IV. Furthermore, we visualize the feature maps
of the RSAM module to demonstrate that it can help the network
focus on regions with rich details. Finally, we compared our
proposed method with ResNeSt [52].

As shown in the Fig. 8, The PSNR of RSAN clearly reaches
its maximum value when m = 10. The value of PSNR increases
as m increases until m = 10. As m gradually rises to 14, the
PSNR of the network gradually decreases by 0.021 dB from
its peak value, while the total number of network parameters
sharply increases. After carefully considering the trade-offs
between network parameters and reconstruction performance,
we choose RSAN when the number of RSAGs is 10 as the final
network model. In each ablation experiment, we further verify
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TABLE IV
ABLATION STUDIES ON THE RSSCN7 DATASET WITH THE SCALE FACTOR x4

TABLE V
COMPARISON WITH RESNEST STRUCTURE

Model | Base | RSAM | RFF | HLF | PSNR{ | SSIM{ Method | Param/M | Times(s) | PSNR 1 [ SSIM 1
A v - - - 29.51 | 0.7629 ResNeSt [52] 6.02 0.0073 32.64 0.8451
B v v - - 29.74 | 0.7698 RSAN (Our) 8.21 0.0101 32.87 0.8494
C v - v - 29.82 0.7739 * The best results are in bold.
E v - v v 29.85 | 0.7746
F v v ) f 29.81 | 0.7747 that the network is more sensitive to these detail information
G v v v ) 2993 | 0.7761 and can better capture the key features of edges and textures
H v v v v 29.99 | 0.7786 in the input data. Therefore, the RSAM can accurately focus

EY

The best results are in bold.

Without RSAM With RSAM
P0986 Without RSAM With RSAM

Fig. 9. Comparison of feature map visualization with/without RSAM.

the effectiveness of the proposed final network model RSAN
with RSAM, RFF, and HLE. Specifically, the base network is
constructed by removing the RFF module from RSAN, replacing
RSAM with a depthwise convolutional layer, and using L; loss.

Validation on RSAM: We replace the RSAM with the con-
ventional convolutional layers, the SR result showed a decrease
about 0.1 dB (see Table IV). The model based on the residual
split attention mechanism tends to focus more on the regions
rich in detailed information with prominent scenes. In contrast,
the conventional convolutional layer treats all feature informa-
tion in the same way, and direct prediction of high-frequency
information tends to produce missing detail information, thus
degrading the estimated SR results.

In order to better assess whether the RSAM assists the network
in focusing on detail-rich regions, we select images containing
samples from two categories, buildings and airplanes, from the
UCAS-AOD dataset. For each feature, we visualize and compare
the output feature maps of the 5-th RSAG, to demonstrate
the effects with and without the RSAM. First, we transfer the
channel attention feature maps generated from the fifth RSAM to
the CPU for further visualization. Then, we compute the mean of
the channel attention feature maps to obtain the mapping results
for a single channel. Finally, we utilize the matshow function in
the matplotlib library to visualize the channel attention maps as
a heatmap. As shown in Fig. 9, the brighter the corresponding
region (e.g., building edges and airplane contours) in the visual-
ized feature map, the higher the corresponding value, indicating

on the regions with rich details, thereby improving the network
performance.

Validation on RFF: In these ablation studies, we keep the
RSAM while removing the both global and local residual feature
fusion to verify the proposed residual split attention strategy. It
is clear that RSAN performance decreases by more than 0.12 dB
when global and local residual feature fusion are eliminated. The
optimization of the residual split attention network is guided by
aggregating the multilevel global and local residual feature maps
of the satellite images, which makes the reconstructed images
more accurate. Therefore, without RFF, the reconstructed image
will be smooth due to the lack of detail information. This proves
that the global and local feature fusion can jointly and adaptively
learn hierarchical features in a aggregative way. The artifact re-
moval operation can enhance the edge part of the reconstruction
result.

Validation on HLF: To verify the validity of the hybrid loss
function, we removed the HLF and set the loss function to L
loss. We observed that the SSIM result of the RSAN decreased
significantly when the HLF was removed, indicating that the
HLF helps to reconstruct the texture and edges of an image in the
pixel and perceptual domains, which can improve the estimated
SR image to be more approximate to the ground truth image.

Moreover, in order to compare RSAN with the ResNeSt,
RSAG is replaced by using the ResNeSt modules and experi-
ments are performed based on the UCAS-AOD dataset with a
scale factor of 4. Table V shows the comparison of model size
and running time among these methods. In comparison to the
ResNeSt, RSAN achieves optimality in PSNR and SSIM. The
difference in parameter count between the RSAN and ResNeSt
models is attributed to the use of deconvolutional layers in RSAN
to learn hierarchical features in a high-resolution potential sub-
space, which increases the number of parameters. Overall, while
RSAN may not outperform other models in terms of running
time and number of parameters, it has shown the ability to
achieve superior quantitative results.

F. Model Anaysis

In a real remote sensing image SR application scenario, espe-
cially inembedded or mobile devices with low computing power,
model size and operational efficiency is a key issue. Therefore,
we illustrate the comparison of RSAN and other SR networks
in terms of the testing time at the scale factor x4 on Fig. 10.

As shown in Fig. 8, when we set the number of RSAGs to
3 for the simple network, the number of parameters is close to



CHEN et al.: REMOTE SENSING IMAGE SUPER-RESOLUTION WITH RESIDUAL SPLIT ATTENTION MECHANISM 11

°
RSAN(Our) @ o | ® L
o
325} e
L
2 32.0
% e Bicubic
< e RDN
§ e DBPN
¢ 315 e EDSR
e SAN
® RCAN
31.0 ® MHAN
e SPE
LDUM
. ® RSAN(Our)
30.5

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
running times(s)

Fig. 10.

D358 RDNO.S1

RSAN.16

Running time on the UCAS-AOD dataset with the scale factor x4.

SAN9.81

DBPN/9.49 SPE9.44

D3SYMSE RCAN®.50 MHAN9.61 LDUMM.47

Fig. 11.  Segmentation results via the spatial-spectral kernel.

that of the lightweight RDN [55] network, while the algorithm
performance is better than that of the noncompact DBPN [27]
and EDSR [24] networks. The number of parameters of the
complex RSAN (when the number of RSAG is 10) is less than
that of the RCAN [28] (15.59 M) and MHAN [46] (11.35 M),
which are also based on attention mechanisms, and the image
quality assessment results are better. Compared to SPE [42],
and LDUM [56], although RSAN does not have an advantage in
terms of the number of parameters, it achieves better quantitative
results while achieving good inference efficiency, which can
provide a suitable network for applications in different scenarios.

G. Performance in Downstream Task

To further validate the effectiveness of the estimated SR im-
ages in this article for subsequent image segmentation tasks, we
perform unsupervised spatial-spectral kernels [62] as a satellite
image semantic segmentation method, and all SR methods use
the same parameter settings for image segmentation on the the
RSSCN7 dataset.

As shown in Fig. 11, the regions where the proposed RSAN
achieves superiority over other SR methods are highlighted in
red and green boxes. In the segmentation results obtained by
SAN [29], SPE [42], and our proposed RSAN, the buildings
along the riverbank (see red box) can be accurately delineated,
while other algorithms show varying degrees of misclassifica-
tion. For the main road, only the method proposed in this article
can reconstruct it correctly, which indicates that it outperforms
the other compared algorithms and compares favorably with
other CNN-based methods. In addition, we used the average

MSE value of the three channels of the reconstructed RGB image
to measure the direct difference between the SR and ground-truth
HR image, quantitatively evaluating the segmentation results. It
is clear that the RSAN achieved the best quantitative results.

V. CONCLUSION

In this article, we propose a novel remote sensing SR method
that learns the hierarchical features independently by exploit-
ing the multipath channel feature extraction through the fused
multilevel residual features. The proposed method includes four
components, i.e., a coarse feature extraction part, the residual
split attention groups, a multilevel feature fusion module, and
a reconstruction module. We employ the residual split attention
group to extract very deep abstract features with long and short
skip connection. Meanwhile, the upscale module can remove
some of the low-frequency information by performing multiple
artifact removal operations, allowing the main network to focus
on learning texture and edge information. In addition, to improve
the reconstruction capability of RASN, we propose the residual
split attention mechanism, which promotes the flow of informa-
tion in information-rich regions and allows adaptive adjustment
of feature weights while maintaining global structural informa-
tion. Numerous experiments and ablation studies demonstrate
the effectiveness of our proposed method, which can achieve
superiority over state-of-the-art methods.
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