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An Effective Multimodel Fusion Method for SAR
and Optical Remote Sensing Images
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Abstract—Remote sensing images acquired by different sensors
exhibit different characteristics due to their distinct imaging mech-
anisms. The fusion of Synthetic Aperture Radar (SAR) and optical
remote sensing images is valuable for specific remote sensing image
applications, as it enables the extraction of texture features from
SAR images while preserving the spectral information of optical
images. Several existing fusion approaches have been proposed
in recent years, including the Nonsubsampled Shearlet Transform
Pulse Coupled Neural Network (NSST-PCNN), which is a typical
and effective fusion method. However, it suffers from the incon-
sistency in regional edge information. To address this issue, we
propose a new method called MS-NSST-PCNN for multi-model
fusion of SAR and optical remote sensing images. This method
incorporates the multiScale morphological gradient (MSMG) into
NSST-PCNN to detect edges and enhance the utilization of edge
characteristics. The fusion results of two polarization modes, VV
and VH are evaluated in combination with existing methods, us-
ing image fusion accuracy and visual interpretation criteria. The
results demonstrate that for Sentinel 1 and Landsat 8 OLI image
fusion the proposed MS-NSST-PCNN method achieves higher cor-
relation coefficients and lower spectral distortion with VV polariza-
tion compared to traditional methods in two study areas. Moreover,
the proposed method also exhibits better performance for GF3
and GF2 images with higher spatial resolution. In subsequent
applications of land classification in urban and rural scenarios,
the fusion results of the proposed method achieve higher accu-
racy than those of other fusion methods or source images applied
directly.
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I. INTRODUCTION

W ITH the development of remote sensing technology,
new satellite sensors continue to emerge, making it

possible to obtain multisensor, multitemporal, and multireso-
lution remote sensing image data sequences in the same area.
Images acquired by different satellite sensors usually have dif-
ferent characteristics and application scenarios due to different
imaging principles, such as visible light sensors and synthetic
aperture radar (SAR) sensors [1], [2]. Visible light sensors can
obtain black-and-white and color images of objects on Earth,
which are easy to be interpreted by the human eyes. Mean-
while, due to its unique imaging principle and the ability to
penetrate terrestrial objects to a certain extent, SAR sensors can
acquire surface information all-weather. To fully understand the
characteristics and changes of ground objects, it is necessary to
comprehensively utilize the respective advantages of different
satellite sensors for remote sensing applications [3], [4], [5], and
multisatellite sensor data fusion came into being. The fusion of
SAR and optical remote sensing image data is one of the most
typical and important research topics.

According to the principle of SAR and visible light image
fusion [6], the existing fusion algorithms can be divided into two
categories: 1) component substitution (CS); and 2) multiresolu-
tion analysis (MRA). The principle of CS [7], [8] can also be
called a fusion method in the spatial domain, which fuses visible
light and SAR images through its spatial transformation method.
The intensity information and spectral acknowledge are first
separated by projecting the visible light image into a new feature
space, and then the intensity information is replaced by the SAR
image. These methods can improve the spatial resolution of the
fused images, and the fusion enhances the display of spatial
details. However, the fusion results have poor spectral retention
ability and are prone to spectral distortion. The representative
methods of this category mainly include IHS transform, PCA
transform, and Brovey transform. The IHS transform [9] divides
the visible light image into three components: 1) intensity (I), 2)
hue (H), and 3) saturation (S), and uses the grayscale stretched
SAR image to replace the “I” component. This method does not
consider the difference between the dynamic gray range of SAR
and visible light images, which causes spectral distortion and
affects the accuracy of object interpretation. Hong et al. [10]
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combined the characteristics of panchromatic images and SAR
images to establish feature selection criteria to adjust the lumi-
nance components of multispectral images, which avoided the
mixing of redundant information.

The MRA method [11], [12] is a kind of fusion algorithm
based on the transfer domain, which decomposes and fuses the
multiscale coefficients of the source image, and finally performs
inverse transformation to obtain the fused image. This type of
method can extract the edge and texture of the image at different
scales, while retaining more spectral information, and the fused
image quality is higher. However, the fusion effect and operation
time of this method mostly depend on the selection of multiscale
decomposition approaches and fusion criteria. The represen-
tative methods of multiscale analysis methods mainly include
discrete wavelet transform (DWT), Laplace pyramid, contourlet
transform, and curvelet transform. The contourlet transform
proposed by Do and Vetterli [13] in 2002 achieved multiscale
and multidirectional decomposition of images. On this basis, the
nonsubsampled contourlet transform (NSCT) was proposed in
2006 [14], which enhanced the translation invariance and orien-
tation selectivity and avoided the pseudo-Gibbs phenomenon.
In 2007, Guo and Labate [15] proposed shearlet transform with
better localization characteristics and more direction-sensitive
based on the idea of affine system. Similarly, the nonsubsampled
shearlet transform (NSST) also greatly enhanced the direction
selectivity and translation invariance. Based on these meth-
ods, many fusion methods have been proposed in the transfer
domain [16], [17], [18]. However, after multiscale analysis, the
low-frequency components cannot be sparsely represented and
cannot effectively reflect salient features.

In recent years, more researchers have focused on the fusion
method combining spatial domain and transform domain [19],
[20], [21], [22], [23], [24]. Jiahuan et al. [25] proposed an
image fusion method based on NSCT transform and adaptive
gamma correction, changed the low-frequency fusion rule to
adaptive gamma correction, and achieved better fusion results.
Liu et al. [26] combined discrete wavelet and multiscale mor-
phological transform in the IHS color space to fuse PAN and
multispectral images. Liu et al. [27] proposed a convenient
task-inspired multiscale nonlocal-attention network (MNAN)
for remote sensing image fusion which focuses more on en-
hancing the multiscale targets in in the scene when improving
the resolution of the fused images.

Sparse representation is another representative image fusion
algorithm based on the transform domain [28], it has been a
hot research topic in the field of signal processing in recent
years. And, it has exerted its advantages in many fields, such
as target tracking, pattern recognition, image denoising, audio
processing, etc., [29], [30], [31], [32]. Based on this, researchers
have introduced the principle of sparse representation into the
field of image fusion, and achieved a series of research re-
sults [33], [34], [35]. Liu et al. [36] combined IHS transform
and joint nonnegative sparse representation method to obtain
fused images with higher image quality. Zhang et al. [37] pre-
sented a fusion framework to integrate the information from MS

and SAR images based on the Laplacian pyramid and sparse
representation theory.

Among the fusion methods based on sparse representation,
NSST-PCNN has attracted extensive attention for its ability to
preserve details and energy without any training process. NSST
is simple in operation and there is no requirement for the direc-
tionality of the image decomposition. Consequently, NSST is
utilized in the image fusion field, and a series of fusion methods
were proposed based on NSST. However, the performance of
NSST-based fusion methods is subject to effective activity level
metrics and fusion rules. Pulse coupled neural network (PCNN)
is a simplified neural network model proposed by Eckhorn, and
the signal form and processing mechanism are more in line with
the physiological basis of the human visual nervous system [38].
It is usually applied as an effective activity level measurement
tool for image fusion. But it could not determine the parameters
adaptively, which limits the performance of PCNN-based fusion
methods. In this context, NSST-PCNN is proposed to deal
with image fusion problems, especially medical image fusion.
Gai et al. [39] proposed an IQPSO-based PCNN in the NSST
domain for medical image fusion, and their experiments showed
that the method outperforms the existing state-of-the-art meth-
ods in terms of visual performance and objective evaluation. The
NSST-PCNN performs well in medical image fusion, but when
it is used for the fusion of remote sensing images with more
complex textures and colors, it often cannot identify small edge
information, resulting in discontinuous edges of the fused image.

Therefore, this article will continue to study the fusion method
for SAR and optical images by combining the spatial domain
and the transform domain, selecting NSST-PCNN as the basic
method, and improving its performance by introducing features
that can better express and preserve edge information. The
accuracy evaluation of the fusion results will be carried out from
two aspects: 1) the evaluation of various indexes of the fusion
image; and 2) the classification accuracy of ground objects based
on multiscale segmentation. The main contribution of this article
could be divided into three parts as follows.

1) A method called MS-NSST-PCNN is proposed for SAR
and optical image fusion. It is built by introducing MSMG
and IHS transforms to traditional NSST-PCNN methods
to deal with multimodel fusion issues. And the fusion
results not only retain the spectral characteristics of optical
images but also inherit the texture characteristics of SAR
images.

2) The MS-NSST-PCNN method proposed in this article can
better combine the texture features of SAR and optical
images and has better ability to distinguish object edges
and small objects, which verifies the effectiveness of the
proposed method in object-oriented classification.

3) The fusion method proposed in this article helps to im-
prove the classification accuracy. Compared with the ex-
isting fusion methods and the direct application of the
original optical image for classification, MS-NSST-PCNN
has achieved better classification results in both urban and
rural application scenarios.
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Fig. 1. Image used in fusion. (a) Landsat-8 OLI image (false color composite
Red:5, Green:4, Blue:2) of study area A. (b) Sentinel-1 A VH polarization of
study area A. (c) Landsat-8 OLI image (false color composite Red:5, Green:4,
Blue:2) of test site B. (d) Sentinel-1 A VH polarization of test site B.

II. DATASET AND PREPROCESSING

A. Test Sites

Two typical study areas (Fig. 1), rural and urban, are selected
to carry out research on the fusion method of SAR and optical im-
agery, and ground object classification experiments are carried
out based on them. Study area A shown in Fig. 1(a) and (b), lies
on Yangbei Street, southeast of Suqian City, Jiangsu Province
(33◦47′N ∼ 33◦51′N , 118◦23′E ∼ 118◦27′E). The main types
of land features are farmland, and land for construction, while the
main water body is the Beijing–Hangzhou Canal. Study area B
is shown in Fig. 1(c) and (d), and it is located in Yunlong District,
Xuzhou (34◦10′N ∼ 34◦14′N , 117◦14′E ∼ 117◦21′E). Green
land (park vegetation) and construction land (houses, roads) are
the main types. The water bodies are mainly the old Yellow
River, Dalongkou Reservoir in Dalong Lake Scenic Area and
surrounding rivers.

B. Dataset and Preprocessing

Since the ratio of remote sensing image resolutions used
for fusion determines the quality of the fused image to some
extent [40]. Sentinel-1 A data in the IW mode with a resolution
of 10 m is selected, so that the resolution ratio with the Landsat-8
OLI multispectral data can reach 1:3. And the parameters of the
optical and SAR data used in the experiment are shown in Table I.

The optical image preprocessing [41] in this experiment
mainly includes three steps: 1) radiation correction, 2) geometric
correction, and 3) band selection. Since three bands need to
be selected from the multispectral image for color synthesis

TABLE I
DATA AND PARAMETERS SETTING

to participate in the fusion, it is necessary to select the band
combination that is most conducive to the fusion effect. Ac-
cording to the principle of color synthesis of remote sensing
images, objects in false-color composite images are easier to
identify. The Landsat-8 OLI includes nine bands, appropriate
band selection to identify the ground objects is particularly
important. Considering the need for vegetation classification,
bands 2, 3, 4, 5, and 6 are selected as alternative bands.

For the fusion algorithm dealing with three bands in mul-
tispectral images, the optimal band combination is calculated
according to the optimal index formula proposed by Chavez
et al. [42]. And the calculation formula is given as

OIF =

∑n
i=1 Si∑n

i=1

∑n
j=j+1 |Rij | (1)

where Si is the standard deviation of i−band, Rij is the CC be-
tween i-band and j-band, and the optimalOIF parameter of each
three-band combination sequence of Landsat-8 multispectral is
listed in Table II.

The larger the OIF parameter, the greater the information
content of the band combination. Therefore, the combination of
band 2, 4, and 5 was selected as the Landsat-8 multispectral data
for follow-up research. The preprocessing process of Sentinel-
1 A data mainly includes filtering, geocoding, and radiometric
scaling. The GRD data used in this article had already undergone
multilook processing before it was released. Then refined Lee
filter was applied for speckle filtering, and the last step is
to perform geometric registration and cropping of SAR and
optical images to meet the fusion requirements. Finally, SAR
and optical image pairs with a size of 600 × 600 were produced
for subsequent experiments.

III. OUR PROPOSED METHODS

A. NSST

Shearlet transform [43] is a multiscale geometric analysis
method based on the construction of a 2-D affine system with
compound dilation, which was introduced to image processing
by Easley et al. [44] in 2007. The affine system can be expressed
in 2-D space as

MAB(Ψ)

= {Ψj,l,k(x) = |detA|j/2Ψ(BlAjx− k) : j, l ∈ Z; k ∈ Z2)}
(2)
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TABLE II
LANDSAT-8 BAND COMBINATION AND EVALUATION INDEX

Fig. 2. NSST model.

where Ψ ∈ L2(R2), if ∀f ∈ ϕ satisfies the Parseval compact
frame, the elements of the affine system are called synthetic
wavelets. A represents an anisotropic expansion matrix, which
is related to the transformation scale. B represents a shearlet
matrix, which is related to geometric scales, such as rotation and
shearing. A and B are 2 × 2 invertible matrices, and |detB| =
1, j, l, k represents the scale parameter, direction parameter, and
translation parameter of the decomposition, respectively. When

A =
[
4 0

0 2

]
, B =

[
1 1

0 1

]
, synthetic wavelet turns to a special

form which is shearlet.
NSST also eliminates the pseudo-Gibbs phenomenon of

shearlet waves during image reconstruction, and it can obtain
sparse representations of images in different orientations and
scales. The decomposition process of NSST is shown in Fig. 2,
and the whole process consists of two steps, multiscale de-
composition through nonsubsampled pyramid filter (NSP) and
directional decomposition based on shearlet filter (SF). NSP
could decompose the source image into low-frequency subbands
(LF1) and high-frequency subbands (HF1), then the LF1 could
continue to be decomposed into low-frequency subbands (LF2)
and high-frequency subbands (HF2). The HF1 and HF2 are
reserved, and the LF2 continue to be decomposed. This cycle
continues until the set number of decompositions (3) is reached
or other set requirements are met. Then HF1, HF2, and HF3
(K = 3) are filtered by SF to obtain high-frequency subbands
coefficients, respectively. And LF3 (K = 3) is retained as

low-frequency subbands coefficients. It is worth noting that the
number of decompositions can be set according to the actual
decomposition needs. In Fig. 2, K = 3 is taken as an example.

By decomposing with the NSP, the low-frequency subbands
describing most of the information and the high-frequency sub-
bands that describe the detailed information can be obtained.
After K times of NSP decomposition, K high-frequency sub-
bands and one low-frequency subband that are consistent with
the size of the source image will be generated. NSST [45] uses
the Meyer’s window function with a variable aspect ratio to
form an improved SF for the directional decomposition of high-
frequency components. Meanwhile, the directional subbands
are obtained by the convolution operation of the new shearlet
filter in which high-frequency subbands are transferred from
the pseudo-polarization grid network system to the Cartesian
coordinate system. In this way, 2-D convolution can be realized
by inverse Fourier transform, avoiding the translation invariance
of shearlet coefficients obtained in the down sampling step.
Compared with the wavelet structure, shearlet has anisotropy,
and is more sensitive to the orientation information of the image
and has the best sparse representation ability.

B. PCNN

PCNN [46] is constructed based on iterative computation
and requires no training process, which distinguishes it from
most existing artificial neural networks. PCNN models applied
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Fig. 3. PCNN model.

in image processing tasks are generally single-layer networks
with 2-D array inputs. There is a correspondence between input
image pixels and PCNN neurons, so the number of neurons is
equal to the number of pixels. Each neuron is connected to its
neighbors for information transfer and coupling. It is composed
of multiple interconnected neurons including receptive fields,
modulation fields, and impulse generators, and is continuously
adaptively adjusted through self-learning and communication
between neurons. However, the standard PCNN model has many
parameters that need to be set through a lot of experiments or
experience, such as link strength, attenuation coefficient, and
so on. To reduce the complexity of the algorithm as much as
possible, Blasch [47] proposed a simplified PCNN model, and
the mathematical expression is illustrated as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fij(n) = Dij

Lij = Lij(n− 1)× exp(−αL) + VLΣpqωij,pqYpq(n− 1)

Uij = Fij(1 + βLij(n))

θij(n) = θij(n− 1)× exp(−αθ) + VθYij(n− 1)

Yij(n) = sgn(Uij(n)− θij(n))
(3)

whereFij(n),Lij(n),Uij(n), and θij(n) are the feedback input,
link input, internal activity, and dynamic threshold of the neuron
at (i, j) in the nth iteration, respectively. Fij(n) is fixed as
the input image intensity throughout the iteration process. αL

represents the time decay parameter, VL is the parameter of
the amplitude adjustment, β is the link strength, and Yij(n)
represents the output result of the nth iteration of PCNN. If
Uij(n) is greater than or equal to the dynamic threshold θij(n),
the neuron is activated. The simplified PCNN model structure is
shown in Fig 3, it also contains three parts, namely, the receptive
fields, modulation fields, and impulse generators. In receptive
field, amplitude adjustment parameter VL, the last iteration
output result of PCNN Yij(n− 1), and the wight wij,pq are
comprehensively considered. During the modulation field, the
link input Lij(n), link strength β, and the information extracted
in the receptive field are comprehensively calculated to obtain
Uij(n). In the pulse generator, Uij(n), and dynamic threshold
θij(n) are applied to generate the output Yij(n).

C. MS-NSST-PCNN

The schematic diagram of the MS-NSST-PCNN model is
shown in Fig 4. The first step is to apply the IHS transform
to extract the intensity components from the three-bands pseudo

color optical image. And then SAR image is used to extract high-
frequencyH l,k

S and low-frequencyLS parts. The low-frequency
parts of LV and LS are then used to generate low-frequency Lp

through WSEML algorithm. And the high frequency of HV

and HS is tackled with PCNN and MSMG techniques to obtain
high-frequency H l,k

p . After the fusion frequency is completed,
the inverse IHS transform is applied to obtain the fused image.

1) Low-Frequency Fusion: For the fusion rule of low-
frequency coefficients, using the WESML (weighted sum of
eight-neighborhood-based modified Laplacian) instead of the
traditional average low-frequency fusion rule can reduce loss

EP (i, j) = Σr
m=−rΣ

r
n=−rω(m+ r + 1, n+ r + 1)

·DLP (i+m, j + n)2 (4)

WSEMLP (i, j) = Σr
m=−rΣ

r
n=−rω(m+ r + 1, n+ r + 1)

· EMLP (i+m, j + n)2 (5)

EMLP (i, j)= |2DLP (i, j)−DLp(i− 1, j)−DLP (i+ 1, j)|
+|2DLP (i, j)−DLp(i, j − 1)−DLP (i+ 1, j)|

+
1√
2
|2DLP (i, j)−DLp(i− 1, j − 1)−DLP (i+ 1, j + 1)|

+
1√
2
|2DLP (i, j)−DLp(i− 1, j + 1)−DLP (i+ 1, j − 1)|

(6)

where p ∈ {V, S} and W is a weighting matrix size of (2r +
1)× (2r + 1). For each element inW , its value is set as 2(2r−d),
where d is its four-neighborhood distance to the center. The
activity level of the low-frequency subband is defined as the
multiplication of Ep and WSEMLP . The final low frequency
subband coefficients can be calculated as follows:

Lp(i, j) =

{
LV (i, j), if EWV (i, j) ≥ EWS(i, j)
LS(i, j), otherwise

(7)

where EWV (i, j) = EV (i, j) · WSEMLV (i, j), EWS(i, j) =
ES(i, j) · WSEMLS(i, j).

2) High-Frequency Fusion: If the gray value of certain pixels
in the image changes rapidly and the gradient value is large, it can
be judged as an edge point. MSMG is an efficient operator that
extracts gradient information through intensity difference of the
pixels at the boundary part in the original image. It is an efficient
method mostly used for edge detection and image segmentation
in medical images [48], [49]. Therefore, we propose a method
based on the conventional NSST-PCNN fusion method and aided
by MSMG to improve the performance of multimodel fusion.
The single-scale morphological gradient of the tth levelGt(x, y)
can be obtained by the dilation–corrosion operator of the source
image f(x, y)

Gt(x, y) = (f(x, y)
⊕

gt(x, y))− (f(x, y)
⊙

gt(x, y))

(8)
where

⊕
and

⊙
represent morphological dilation and erosion

operations, respectively. gt(x, y) denotes the structural elements
of the tth level. From multiscale structuring elements and gra-
dient features, the MSMG can be obtained by computing the
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Fig. 4. MS-NSST-PCNN.

weighted sum of all scale gradients

M(x, y) =

N∑
t=1

Wt ·Gt(x, y) (9)

where Wt represents the weight of the gradient in the tth scale,
and it can be represented as Wt =

1
(2t+1) . The MSMG of the

two input images is applied to replace the link strength β of the
PCNN in (3) to strengthen the edge information extraction.

IV. EXPERIMENTAL RESULTS

A. Fusion Results

1) Evaluation Standard: After the fusion process of SAR and
optical images is completed, the quality of fusion results needs to
be evaluated to ensure that the multimodel fusion quality meets
the requirements for subsequent experiments. According to the
image fusion quality evaluation standard, the fusion reconstruc-
tion results can be evaluated with the following parameters.
� Average value (μ) reflects the average reflection intensity of

the ground objects in remote sensing images, and M and
N represent the number of rows and columns of remote
sensing images, respectively

μ =
1

M ×N

M∑
i=1

N∑
j=1

P (i, j). (10)

� Information entropy (E): It is a statistical form of features,
which is an indicator of the richness of information in an
image. The unary gray entropy of a gray-scale image is
defined as

E = −
L−1∑
i=0

Pi logPi (11)

where Pi represents the proportion of pixels whose gray
value is i in the image, and L− 1 is the maximum gray
value of the image.

� Standard deviation (σ): The standard deviation reflects the
discrete degree of the gray value set of images, and to a
certain extent, it can also be used to evaluate the contrast of
the images. μ is the average value, and P (i, j) represents
the pixel value of the ith row and jth column in remote
sensing images

σ =

√
1

M ×N

∑M

i=1

∑N

j=1
((P (i, j)− μ)). (12)

� Degree of distortion (DD): The degree of spectral dis-
tortion reflects the ability of the fusion image to preserve
the spectral information of the source image. The lower
the degree of spectral distortion, the lower the degree of
spectral distortion caused by fusion

DDF,S =
1

M ×N

M∑
i=1

N∑
j=1

|F (i, j)− S(i, j)| (13)

where F (i, j) and S(i, j) are the pixel gray values at (i, j)
in the fused image and source image.

� Correlation coefficient (CC): The CC is a statistical indi-
cator to evaluate the linear relationship between the fused
image and the source image, reflecting the similarity of
spectral features between the two

CCF,S =

∑M
i=1

∑N
j=1[F (i, j)− μF ][S(i, j)− μS ]√∑M

i=1

∑N
j=1[F (i, j)− μF ]2[S(i, j)− μS ]2

(14)
where μF and μS are the average value of the fused image
and source image, respectively.

2) Experiment Procedure: To verify the fusion effect of the
proposed method MS-NSST-PCNN, a fusion experiment was
carried out with Landsat-8 and Sentinel-1 A images in the
test site A. Classic methods including the Brovey transform,
IHS transform, PCA transform, NSCT transform, and NSST-
PAPCNN were used for comparison. The decomposition scale of
NSCT and NSST transforms is unified to 4, the directional filter



LI et al.: EFFECTIVE MULTIMODEL FUSION METHOD FOR SAR AND OPTICAL REMOTE SENSING IMAGES 5887

Fig. 5. Fusion results of study area A. (a) Brovey. (b) PCA. (c) IHS. (d) NSCT.
(e) NSST-PAPCNN. (f) MS-NSST-PCNN.

TABLE III
VV POLARIZATION FUSION RESULTS OF THE TEST SITE A

of NSCT is “pkva” and the multiscale decomposer is “9–7.” The
pyramid filter of NSST-PAPCNN is “maxflat.” The images of
study areas will also be evaluated in a fusion effect comparison
experiment based on the selection of SAR image polarization
mode, as the basis for the next step of ground object classification
application.

3) Fusion Results Evaluation: The Brovey transform
[Fig. 5(a)] performs a ratio operation on the gray value of the
pixels of the fused image, so the gray difference between SAR
data and multispectral data results in a large color difference
between the fused image and the optical data. Although the PCA
transform [Fig. 5(b)] has improved the preservation of spectral
features, the boundary of the objects is blurred, which makes it
the worst texture effect among all methods. In IHS transform
[Fig. 5(c)], the “I” component is replaced by the texture of the
SAR image. It can also be seen from the figure that the distinction
of the ground objects is not obvious enough in fused image. The
unavoidable pseudo-Gibbs phenomenon in NSCT leads to low
edge preservation in fused images. The comparison of the yellow
circles in Fig. 5(d) and (e) clearly shows that the description of
the road edge is more ambiguous than that of NSST-PAPCNN.
The MS-NSST-PCNN [Fig. 5(f)] method proposed in this article,
owing to the introduction of MSMG, can process the edge of
objects more clearly, with higher image contrast and stronger
readability.

From the comparison between Tables III–VI, Brovey, PCA,
and IHS are unable to fully meet the requirements of fusion
experiments from quantitative aspect. Compared with the first

TABLE IV
VH POLARIZATION FUSION RESULTS OF THE TEST SITE A

TABLE V
VV POLARIZATION FUSION RESULTS OF THE TEST SITE B

TABLE VI
VH POLARIZATION FUSION RESULTS OF THE TEST SITE B

three methods, the NSCT transform has gained higher standard
deviation and CC. However, when faced with the application
scenario of farmland in study area A, the pseudo-Gibbs phe-
nomenon leads to spectral distortion, due to a large number of
finely fragmented plots, showing a fusion result with a high
spectral distortion index. Due to the introduction of PCNN,
the fusion results of NSST-PAPCNN have improved in spectral
preservation ability, CC, and obtained the highest average value
of 140.45. Compared with NSCT and NSCT-PAPCNN, the
proposed method gets a greater correlation between the fusion
image and the source image, and the CC reaches the highest
0.901, which better retains the information of the source image.
In terms of the evaluation index of spectral distortion, it also
achieves the lowest 24.00 with less spectral loss. Meanwhile, we
also found that the performance of our method is not superior
in all evaluation metrics, such as average value μ and standard
deviation σ. It may relate with the MSMG, which focuses more
on the preservation or extraction of edge information, but does
not pay more attention to the mean or standard deviation.

On the other hand, the change of polarization mode also makes
a slight difference in the aspect of evaluation indexes of the fused
image. However, when the VV polarimetric SAR data are used
as the source image for fusion in the application scenarios of
study area A and study area B, the evaluation indicators related
to the source image of the six methods all present various degrees
of improvement. This phenomenon may relate to the backscatter
echo energy, that is the energy obtained in VV is larger than that
of HV, which leads to a stronger representation of ground objects
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TABLE VII
CLASSIFICATION ACCURACY OF STUDY AREA A

TABLE VIII
CLASSIFICATION ACCURACY OF STUDY AREA B

in the VV polarimetric channel. Therefore, in the following part
of the ground object classification experiments, the VV polar-
ization NSCT, NSST-PAPCNN, and MS-NSST-PCNN methods
with better fusion effects are selected for comparison, and the
ground object discrimination ability of the fusion results of each
method is verified.

B. Land Classification Based on Multiscale Segmentation

The random forest classifier is selected to perform ground
object classification experiments with the fused images after
multiscale segmentation. The scale is set to 30, the shape factor
is set to 0.6, the compactness factor is set to 0.5, and the weight
of each band is set to 1. In terms of verification data, point
vector data are randomly generated in the study area, and then
the actual types of ground objects in the verification points are
counted according to the visual interpretation of the image and
the Google Earth satellite image. Lastly, the results of the ground
object classification are evaluated by calculating the confusion
matrix.

From Table VII and Fig. 6, it is found that the NSCT trans-
form [Fig. 6(a)] classification image has negative optimization
compared with the Landsat-8 source image classification, which
may be caused by the defects in its antidistortion ability. The
classification result of NSST-PAPCNN [Fig. 6(c)] misclassifies
some other types of ground objects as water bodies, resulting
in unsatisfactory classification accuracy of water bodies and
other types of ground objects. The proposed MS-NSST-PCNN
method [Fig. 6(d)] improves the classification effect for various
ground objects, especially for the road details in construction
areas. Meanwhile, alternating farmland is also the closest to the
actual situation. Due to Others and Water both appearing black
on the fused image, part of Others type of ground objects are

Fig. 6. Random forest classification results of (source)fused images in study
area A. (a) Landsat 8 OLI. (b) NSCT. (c) NSST-PAPCNN. (d) MS-NSST-PCNN.

misclassified (as shown in the blue circles). In the rural appli-
cation scenario of the final study area A, the overall accuracy
(OA) and Kappa coefficient (KC) of the proposed method are
0.87 and 0.81, respectively. Compared with Landsat-8 source
image classification, the overall accuracy and Kappa coefficient
have been improved by 8.75% and 10.96%, respectively.
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Fig. 7. Random forest classification results of (source)fused images in test site
B. (a) Landsat 8 OLI. (b) NSCT. (c) NSST-PAPCNN. (d) MS-NSST-PCNN.

From Table VIII and Fig. 7, we can see that the Landsat-8
source image classification [Fig. 7(a)] cannot cope with the
mixed ground features of buildings and vegetation, and there are
a lot of objects misclassified. Due to the different components
contained in different water bodies, different colors appear on
the multispectral data, and many shaded areas between buildings
are thus classified as water bodies. The classification results
of NSCT fusion [Fig. 7(b)] cannot subdivide small river water
bodies between buildings. However, the proposed MS-NSST-
PCNN method [Fig. 7(d)] can well combine the texture features
of SAR and solve the problem of not being able to accurately
identify bridges on rivers and distinguish the small river next
to the built-up area (as marked by the blue circles). Cases of
misclassification have also decreased, and the user accuracy
of vegetation and construction is also the highest among the
four types of data. In the urban application scenario of study
area B, the OA and KC of our method reach 0.88 and 0.76,
respectively, which are 23.94% and 43.40% higher than those
using the Landsat-8 source image classification alone.

C. High-Spatial Resolution SAR and Optical Image Fusion

With the rapid development of remote sensing techniques
in recent years, tremendous progress has been made in spec-
tral resolution, spatial resolution, and temporal resolution. It
has formed hyperspectral, high spatial resolution, all-day, all-
weather, real-time, and real-time Earth observation capabilities.
To verify the feasibility and effectiveness of the fusion method
MS-NSST-PCNN on high-spatial resolution SAR and optical

Fig. 8. Fusion results of GF2 and GF3 high-resolution images. (a) Brovey.
(b) PCA. (c) IHS. (d) NSCT. (e) NSST-PAPCNN. (f) U2fusion. (g) MS-NSST-
PCNN.

TABLE IX
FUSION RESULTS OF GF2 AND GF3

images fusion, GF2(multispectral image) with spatial resolution
of 3.3 m and GF3(SAR image) with spatial resolution of 3 m are
employed for fusion. For high-spatial resolution satellite image
fusion experiment, the test site lies in Liuhe district, Nanjing,
Jiangsu province (32◦16′N ∼ 32◦13′N , 119◦1′E ∼ 119◦5′E).

The fusion results of GF2 and GF3 images by different
methods are shown in Fig. 8, and the specific evaluation result is
exhibited in Table IX. From Table IX, we can see that the
proposed fusion method MS-NSST-PCNN can perform well
in high-spatial resolution optical and SAR images fusion. It is
superior to the other five fusion methods in terms of DD and
CC, which is consistent with the conclusions mentioned above.
In other words, the MS-NSST-PCNN method can retain the
spectral information of the original image to the greatest extent,
while maintaining the greatest similarity with the multispectral
image. Compared with the Brovey’s method, the proposed fusion
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method in this article reduces the DD by 36.03% and improves
the CC by 51.46%. In addition, visually, the proposed fusion
method also has a good performance in reflecting complex
terrain in high-spatial resolution image fusion, as illustrated in
the blue circles on the upper right part in Fig. 8.

Meanwhile, the fusion performance of the deep learning
method U2fusion was also compared with that of our multi-
model method. From Table IX, we can see that compared with
other five fusion methods (Brovey, PCA, IHS, NSCT, NSST-
PAPPCNN), U2fusion performs well in high-spatial resolution
multimodel remote sensing images fusion, especially DD and
CC are significantly improved. However, it is not as good as the
proposed fusion method in our article, compared with U2fusion,
the proposed multimodel fusion model has 12.7% and 7.6%
improvements in DD and CC, respectively.

V. CONCLUSION

By introducing MSMG and IHS transforms into the NSST-
PCNN algorithm, a new multimodel fusion method MS-NSST-
PCNN is proposed for SAR and optical image fusion. Most of
the evaluation indicators of the fused images by the proposed
method are higher than those of traditional algorithms, espe-
cially in DD and CC indicators. The feasibility and effective-
ness of the proposed fusion method for high-spatial resolution
remote sensing images are verified as well. It also indicates
that proposed method can greatly improve the DD and CC
between the multispectral images and the fused images. The
performance of the proposed fusion method in the fusion of
high-spatial-resolution and medium-spatial-resolution images is
slightly different, which is mainly related to the number of pixels
available for fusion in the same cell, area selection, and land
types at the test sites.

The ground object classification accuracy evaluation exper-
iment in two application scenarios, urban and rural, was also
carried out to further evaluate the fusion results. It is proved
that our method can well extract the texture information of
SAR while preserving the spectral information of the optical
image. Moreover, the results of object classification show that
the proposed method can efficiently distinguish the edge of
small objects. The overall classification accuracy of study areas
reaching 0.87 and 0.88 also verifies the effectiveness of the
MS-NSST-PCNN method in object-oriented classification ap-
plications. Specifically, for rural test site A, our proposed method
obtains 0.87 in OA, and 0.81 in KC. When compared with the
Landsat-8 OLI, our proposed method improves OA by 8.75%
and KC by 10.96%. For urban test site B, MS-NSST-PCNN gets
0.88 in OA and 0.76 in KC. When compared with the Landsat-8
OLI, our proposed method improves OA by 23.94% and KC by
43.40%.

In the future, the multimodel fusion technology of SAR
and optical images will have the potential to achieve higher
fusion precision and wider application scenarios. For exam-
ple, the increased application of sparse representation methods,
the deep learning algorithms and fusion source images with
higher resolution and less noise can help improve the fusion
performance.
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