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Abstract—Notable achievements have been made in remote sens-
ing images change detection with sample-driven supervised deep
learning methods. However, the requirement of the number of
labeled samples is impractical for many practical applications,
which is a major constraint to the development of supervised deep
learning methods. Self-supervised learning using unlabeled data to
construct pretext tasks for model pretraining can largely alleviate
the sample dilemma faced by deep learning. And the construction
of pretext task is the key to the performance of downstream task. In
this work, an improved contrastive self-supervised pretext task that
is more suitable for the downstream change detection is proposed.
Specifically, an improved Siamese network, which is a change
detection-like architecture, is trained to extract multilevel fusion
features from different image pairs, both globally and locally. And
on this basis, the contrastive loss between feature pairs is minimized
to extract more valuable feature representation for downstream
change detection. In addition, to further alleviate the problem
of little priori information and much image noise in the down-
stream few-sample change detection, we propose to use variational
information bottleneck theory to provide explicit regularization
constraint for the model. Compared with other methods, our
method shows better performance with stronger robustness and
finer detection results in both quantitative and qualitative results
of two publicly available datasets.

Index Terms—Change detection, contrastive learning, remote
sensing, self-supervised learning, variational information bottle-
neck (VIB).

I. INTRODUCTION

AGAINST the backdrop of global change, accurate and
rapid sensing of surface changes is of great practical

significance for ecological environmental protection, natural
resource management, and for carrying out sustainable planning
and governance [1]. The technology of change detection with
remote sensing images has gradually become the main way for
humans to discover and understand changes and has been widely
used in agricultural mapping [2], land cover change detection
[3], disaster detection [4], and other tasks. In addition, with
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the continuous development of earth observation technology,
high-resolution remote sensing images with a spatial resolution
of meters or even submeters are increasingly used for fine
analysis due to their clearer description of ground objects [5].
However, due to the complex structure and variable scale, there
are still many challenges to detect changes.

In recent years, deep learning methods have attracted increas-
ing attention and achieved great success in the field of remote
sensing images change detection. According to the number of
labeled samples in the training stage, they can be divided into
supervised [6], [7], unsupervised [8], [9] and semisupervised
method [10], [11]. In supervised learning, sufficient labeled sam-
ples are provided for network training. And in reality, the recent
development and success of deep learning method for change
detection also mainly focus on supervised learning. However,
in practical applications, the labeling of samples is a work that
consumes manpower, material, and financial resources, espe-
cially the dense pixel-level labeling, which greatly limits the
application of supervised method in practical scenarios [12]. One
strategy to address this limitation is the unsupervised method,
which is able to automatically learn the intrinsic distribution
characteristics of the data without any labeled samples. And
currently, domain adaptation [13] and image transformation or
reconstruction [14], [15] are the two mainstream methods in un-
supervised change detection. However, the problem of these two
types of methods is that their focus is not placed on the change
detection, e.g., domain adaptation methods focus on reducing in-
terdomain differences, and image transformation or reconstruc-
tion methods pay more attention to perfect image transformation
and reconstruction. In summary, the above-mentioned two meth-
ods do not consider the need for features applicable to the change
detection to be sufficiently discriminative [16], [17]. On the
other hand, semisupervised learning is an alternative paradigm
to alleviate the constraint of labeled samples [18]. This method is
able to extract latent feature information from a large number of
unlabeled samples and transfer it to the downstream model, mak-
ing it possible to train the network with a small number of labeled
samples and solve the target task. Currently, self-supervised
learning has a dominant presence in semisupervised learning,
especially contrastive self-supervised learning [19], [20], [21],
[22]. It has been proved to be able to extract more meaningful
feature representations for downstream task by constructing pos-
itive and negative sample pairs and training the network under
the constraint of contrastive loss. However, most of existing
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methods construct self-supervised framework with contrastive
learning in the most classical way and do not consider the intrin-
sic relevance of contrastive learning architecture to downstream
task. Therefore, it is a key to construct a contrastive learning ar-
chitecture to provide a better direction of parameter optimization
for downstream few-sample change detection model.

In addition, the key constraint on the performance of few-
sample deep learning is that it is difficult for the model to extract
sufficient prior knowledge related to label from limited labeled
samples, resulting in insufficient representation ability of the
extracted features. From another perspective, the geographic
structure and composition in high-resolution remote sensing
images are more complex and variable, and there are more
pseudochanges caused by noise such as shadows, illumination,
and seasonal changes. In this case, it is more difficult for the
model under the supervision of few samples to focus on the real
change information, which leads to a lot of information in the
extracted feature representation that is irrelevant to the task of
change detection. And it is not conducive to the identification
of changed and unchanged regions. Therefore, it is crucial to
explicitly provide certain prior information to regularize the
model, suppress the introduction of noise, and make it focus
on the extraction of discriminative features.

Considering the above problems, in this work, we propose an
improved change detection method based on contrastive self-
supervised pretraining and variational information bottleneck
(VIB) theory for few-sample change detection. The motivations
of the method lie in two aspects. On the one hand, the design
of existing self-supervised pretext tasks does not adequately
consider the characteristics of downstream tasks, which limits
the potential information provided by the pretrained model. On
the other hand, a much more complex scene and noise in high-
resolution remote sensing images may lead to redundant and un-
reliable features. Based on the above motivations, a contrastive
self-supervised framework oriented to the downstream change
detection is designed in the proposed method. The backbone
of the framework is a four-branch Siamese network, which is
trained in a contrastive manner using the bitemporal images
and their enhanced images. In this method, the deep feature
of individual image in the classical architecture of contrastive
learning is replaced by the fusion features between bitemporal
images. And the contrastive learning is performed at two gran-
ularities of image global and local and two levels of shallow
texture and deep semantic features, respectively. In addition,
in the fine-tuning stage of downstream change detection, a
regularization constraint based on the VIB theory is exploited
to guide the network to focus on the changed region, reduce the
interference of noise information, which further improves the
final change detection results. The main contributions of this
work are summarized as follows.

1) A contrastive self-supervised pretraining framework for
change detection is proposed. The training is performed
with fusion features of bitemporal images as the basic con-
trast unit to fully learn the intrinsic relationship between
bitemporal images using unlabeled images, so as to pro-
vide better initialization parameters for the downstream
change detection network.

2) Multilevel and multigranularity feature extraction is pro-
posed. Emphasizing the characteristics of different levels
and granularity features, contrastive learning is performed
globally and locally from the perspective of deep semantic
and shallow texture, and multilevel change detection is
performed. In this way, the overall and detailed informa-
tion can be taken into account and the detection perfor-
mance can further be improved.

3) A simple but effective regularization method is proposed
in this work. By adding the VIB constraint, the change
detection network can focus on the extraction of real
change information to weaken the interference caused by
noise, thereby enhancing the effect of change detection.

The rest of this article is organized as follows. Section II
briefly presents the work related to self-supervised learning
and information bottleneck. Section III describes the proposed
approach in detail, including the architecture of contrastive
self-supervised network and change detection with the VIB.
Section IV presents the results of comparison with other meth-
ods on two publicly available datasets, ablation experiments,
and analysis of relevant factors. Section V provides a further
discussion. Finally, the article is summarized in Section VI.

II. RELATED WORK

In this section, we begin with an overview of the existing
works on self-supervised learning and information bottleneck
related to our method, which lays the groundwork for the pro-
posal of our method in the following sections.

A. Self-Supervised Learning

The main reason why previous deep learning methods have
been difficult to generalize in practical applications is that
supervision of a large number of labeled samples is required,
and it is impractical to collect these samples. On the contrary,
there is a large amount of unlabeled data that are not effec-
tively utilized in real scenarios. In such a case, self-supervised
learning methods, which can automatically learn the intrinsic
characteristics of data without any manual annotation, emerged
and showed great potential. First, pseudosupervision with a large
amount of unlabeled data is performed by setting pretext tasks to
replace the supervision of real labels, and then, the learned latent
information is transferred to the downstream task by knowledge
transfer. Further, the network is trained under the supervision of
a small number of labeled samples with a view to achieving
comparable results to supervised learning. Due to the above
characteristics, self-supervised learning methods have attracted
more and more attention in image classification, segmentation,
and change detection [23], [24], [25], [26], [27].

The key to self-supervised learning method is the construc-
tion of pretext task, which can be roughly divided into con-
trastive method and context-based method. Among them, the
noncontrastive pretext tasks such as grayscale image recoloring
[28], image rotation angle prediction [29], relative position of
image blocks prediction [30], and image inpainting [31], which
take a single image as input, have been shown to be effective
for some specific downstream tasks. To obtain more sufficient
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latent features, there are also methods that integrate the above
different tasks for self-supervised learning and achieve good
results [32], [33], [34], [35]. On the other hand, contrastive
self-supervised learning constructed in a contrastive manner can
extract discriminative features by making positive sample pairs
close to each other and negative sample pairs away from each
other. The mode of construction and the optimization direction
of this pretext task are far more relevant to the change detection
than the above-mentioned noncontrastive pretext tasks. More
importantly, it has been shown that features extracted by con-
trastive learning are more favorable to downstream task opti-
mization and largely narrow the gap with supervised methods
[36], [37], [38]. The basic context of this method is, first, the
generation of sample pairs. Specifically, the samples generated
by the image transformation without changing the semantic are
taken as positive samples, and the other samples are regarded
as negative samples. Then the distance between sample pairs is
measured and constrained, and the network is further trained.
On this basis, there are methods that keep the architecture of
contrastive learning unchanged and learn more efficient feature
representation by changing the way of constructing positive and
negative sample pairs. For example, Dwibedi et al. [39] took the
closest samples in the embedding space as positive samples to
learn key knowledge from more relevant objects. Starting from
the basic properties of hyperspectral images, Lee and Kwon
[25] considered images blocks in adjacent regions as positive
samples with similar spectral properties and images blocks in
different regions as negative samples. In addition, there are
some studies that construct positive and negative sample pairs
through similarity measurement [24], [26]. Recently, contrastive
learning combined global and local contrasts and proved to be
more suitable for the downstream task of pixel-level change de-
tection. Jiang et al. [40] followed the general contrastive learning
framework to perform global and local contrastive pretraining
with a single image as the contrast unit. And the change detection
backbone network is proposed as the feature extractor in the
pretraining network to adapt to the downstream change detec-
tion. Inspired by these methods, and considering advantages of
contrastive learning and its fit with the change detection, it is
used as the basic methodological framework for pretraining.
We extend the image-level contrastive method and improve
the network architecture to extract discriminative features from
different feature levels and granularity for downstream task.

B. Information Bottleneck Theory

Information bottleneck theory [41] is extended from rate dis-
tortion theory in the field of data compression to find an optimal
representation between source distortion and rate reduction.
In 2016, Alemi et al. [42] proposed variational inference to
solve the problem of difficult mutual information calculation
in the information bottleneck, i.e., VIB, and further linked it
with deep learning. Currently, the applications of information
bottleneck and VIB in the field of deep learning mainly focus on
feature representation and interpretable deep learning. In [43],
[44], and [45], the attention mechanism based on VIB theory
is proposed, and the theory has been shown to be effective in

extracting key features of interest and reducing the interference
of irrelevant information. In reinforcement learning and natu-
ral language processing [46], [47], [48], the addition of VIB
constraint also significantly enhances the feature representation
in low resource. In [49], VIB theory is applied in multiview
representation learning. By maximizing the mutual information
between the desired representation and the shared representa-
tion, maximizing the mutual information between the desired
representation and view-specific representation, and minimizing
the mutual information between the desired representation and
the original image, the shared and specific information between
different views is decoupled and irrelevant information is filtered
out to explore the optimal complete representation. In addition,
the graph neural network based on VIB is also proposed to
explore the key graph structure and improve the quality of the
final graph representation in the application of unstructured data
[50]. In terms of interpretable deep learning, Schulz et al. [51]
added a bottleneck layer to the network to reveal the importance
of different regions of an image to the network prediction by
adding noise, limiting the flow of information, and observing the
prediction results. In general, VIB theory can limit the flow of
irrelevant information to a certain extent and make the network
focus on the key features of interest. In the change detection
of high-resolution remote sensing images focused on in this
work, the noise, such as illumination, shadows, and seasonal
changes, will bring adverse effects. And reducing the effect of
noise is expected to improve the accuracy of change detection.
Therefore, we consider incorporating this theory into the net-
work framework to alleviate the negative impact of irrelevant
information. Moreover, as far as we know, this theory has not
been discussed in the field of remote sensing images change
detection so far.

III. METHOD

In this section, we detail the proposed change detection
method for high-resolution remote sensing images with a small
number of labeled samples. First, the overall framework of the
method is introduced, and then its two important components,
contrastive self-supervised pretraining and change detection
with VIB, are described in detail.

A. Overall Framework

Our approach is designed for applications where the dataset
contains a small number of labeled samples and a large number
of unlabeled samples. The whole training framework is shown
in Fig. 1 and consists of two stages: a contrastive self-supervised
pretraining stage and a few-sample change detection fine-tuning
stage. The purpose of the pretraining is to fully explore the latent
knowledge of a large number of unlabeled samples to provide
a good direction for parameter optimization in the fine-tuning
stage. First, both labeled samples and unlabeled samples are
taken as input. Then, the features of the bitemporal images and
their corresponding enhanced samples are extracted separately
by a four-branch Siamese network, and the network parame-
ters are optimized by constraining the extracted multilevel and
multigranularity features of bitemporal images using contrastive
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Fig. 1. Illustration of the proposed change detection approach. (a) Contrastive self-supervised pretraining: the four-branch Siamese network takes bitemporal
images before and after image enhancement as input and performs multilevel and multigranularity contrastive pretraining. (b) Change detection fine-tuning: the
pretrained model parameters are transferred to the downstream task using transfer learning, and the change detection model is fine-tuned using few samples under
the constraint of VIB.

loss. In the fine-tuning stage, the pretrained network parameters
are first transferred to the change detection network through
knowledge transfer, and then the network is fine-tuned for mul-
tilevel change detection under the supervision of a small number
of labeled samples. In addition, to further increase the prior
knowledge of network and reduce the interference of irrelevant
noise, the VIB theory is introduced to regularize the model of
change detection. Finally, in the test stage, the test images are
fed into the trained change detection network to generate change
maps directly in an end-to-end manner.

B. Contrastive Self-Supervised Pretraining

In order to learn latent knowledge suitable for bitempo-
ral images change detection from unlabeled images, the pro-
posed contrastive self-supervised pretraining network integrates
a combination of global and local, shallow and deep feature-
level contrastive learning. A four-branch Siamese network with
parameter sharing is used, which maps bitemporal images and

their enhanced images to the same feature space and then
compares the fusion features of bitemporal images at different
feature levels and granularity to extract discriminative features.
Specifically, the whole pretraining stage consists of two steps.

First, the backbone network ResNet50 is used to extract
the features of the four images respectively and output the
corresponding abstract features of two different levels, and the
features are divided into shallow and deep features, and further
a two-branch encoder is constructed for late fusion and change
feature extraction for shallow and deep features of different
time phases, respectively. Finally, the network is trained using
the contrastive loss function to constrain the feature distance
between positive and negative sample pairs. The global and local
sample pairs are acquired, as shown in Fig. 2. Specifically, the
bitemporal image pair is used as the contrast unit for pretraining.
And global contrast emphasizes on distinguishing image sam-
ples from other different image samples so that the enhanced
image corresponding to the original image is used as the positive
sample and the other samples are the negative samples. Local
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Fig. 2. Construction of positive and negative sample pairs. With the bitemporal
images as the contrast unit, global positive and negative sample pairs are images
before and after image enhancement, and local positive and negative sample
pairs are image blocks.

contrast focuses on the local information of the image and differs
from the former in that it takes the image block as the contrast
unit. The image blocks in the corresponding positions of the
original image and enhanced image are positive samples, and
the other blocks in different images and different regions are
negative samples. The details of the feature extraction network
and the contrastive loss function are as follows.

1) Multilevel and Multigranularity Discriminative Feature
Extraction: The recent development and success of bitemporal
images change detection methods mainly focuses on the Siamese
network architecture with late fusion [6]. The reason for this
is that, in the early stage, the two-branch network can sepa-
rately extract features from the bitemporal images and retain the
original features of each image. And the late fusion can fuse
and discriminate the extracted features on higher dimension and
further improve the situation that the low-dimensional feature
space is not separable. Inspired by this, four-branch Siamese
network is constructed to improve the problem that existing
two-branch self-supervised network may overlook the intrinsic
relationship between bitemporal images. Specifically, the four-
branch network is used to extract features from the bitemporal
images and their enhanced images separately, and then the
extracted bitemporal image features are fused and deeper feature
extraction are carried out. Moreover, on the one hand, it is
considered that there are not only global differences, such as
weather and illumination, but also local differences at pixel level
in the bitemporal images change detection. Therefore, inspired
by Li et al. [52], we perform feature extraction from both global
and local. On the other hand, in deep networks, shallow features
are beneficial to detect changes in low-level image texture and
locate the spatial location of the changed regions. Deep features
are beneficial to detect changes in high-level semantic level and
identify whether changes are present or not. Considering the
above facts, we propose multilevel and multigranularity feature
extraction architecture that combines global and local, shallow
and deep features. The computational details are as follows.

As shown in Fig. 1, in the global contrastive module, fea-
ture extraction is first performed on single image using the
backbone network ResNet50, which includes five stages of

Fig. 3. Structure of feature fusion and deeper feature extraction. The bitempo-
ral feature maps are the input, and the fused global feature vector is the output.

feature extraction. And the feature maps output in the second
stage are regarded as shallow feature, focusing on texture in-
formation. Correspondingly, the final output feature maps of the
fifth stage of the network are regarded as deep feature for feature
analysis at the semantic level. After that, in order to establish the
internal relationship between the bitemporal images and extract
discriminative features that can reveal changes, feature fusion
and deeper feature extraction are performed on the shallow
and deep features of bitemporal images, respectively. The two
processes are the same, as shown in Fig. 3. The difference
lies in that the inputs are bitemporal shallow features and deep
features, respectively. Specifically, the shallow and deep features
of bitemporal images are connected along the channel, and then
fed into the feature fusion module and encoder for late fusion
and feature extraction, respectively. The feature fusion module
contains a 3 × 3 convolution, a batch normalization layer, a
nonlinear activation layer ReLU, and a dropout. And the encoder
is DeepLabV3+, whose role is to encode the fusion features
output from the feature fusion module at a deeper level. After
that, the global pooling is performed on the features output
from the encoder, and then the mean and variance of the pooled
features are calculated, and the two are connected as the input
of the single hidden layer MLP. Finally, the nonlinear global
feature vector Zglobal at different levels is obtained.

In addition, the extraction of local features is shown in the
local contrastive module in Fig. 1. First, the shallow and deep
features output from DeepLabV3+ are fed into the correspond-
ing decoder network to obtain the feature map with the same size
as the original image. Then, as shown in the local sample pairs’
selection strategy in Fig. 2, local features of multiple regions
are randomly selected from the decoded feature map. Finally,
in a similar way to the global style feature vector extraction,
the local feature vector Zlocal is obtained by performing global
pooling and MLP projection on the local features obtained in
the previous step.

2) Contrastive Loss Function: The contrastive loss function
is very effective in the processing of paired data and is an
essential part of the contrastive learning. In this work, we use the
classical Info NCE [53] as the contrastive loss function, which
is represented as follows:

LC =
1

2N

N∑
i=1

(l (xi, x̃i) + l (x̃i, xi)) (1)

l (xi, x̃i) = − log
exp (sim (zi, z̃i) /τ)∑2N

k=1,k �=i exp (sim (zi, zk) /τ)
(2)
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where N represents the total number of original samples, which
is expanded to 2N after enhancement. And the sample and
its corresponding enhanced sample form one positive sample
pair, and the other samples are negative samples, the number is
2(N-1). xi and x̃i represent the images before and after sample
enhancement, and z is the extracted feature representation, cor-
responding to the global and local feature vectors in multilevel
and multigranularity discriminative feature extraction. τ is a
hyperparameter, which is used to adjust the discrimination of the
model for negative samples. sim is used to measure the distance
between samples, and in this work, the Euclidean distance and
cosine distance are, respectively, used for training, and the results
show that the model trained based on the cosine distance can
provide better initialization parameters for downstream change
detection, which makes the corresponding change detection
better. Therefore, the cosine distance is used in all subsequent
experiments. As can be seen from (2), the numerator in the
contrastive loss function is used to measure the distance between
positive sample pairs, while the denominator calculates the
distance between all negative sample pairs. Minimizing the loss
function can promote the similarity between positive sample
pairs to be as high as possible and the similarity between negative
sample pairs to be as low as possible so that the network under
this constraint can extract discriminative information.

C. Change Detection With VIB

After the contrastive self-supervised pretraining, the pre-
trained network learns some prior knowledge related to down-
stream change detection. To make full use of this advantage
and provide a better search direction for the subsequent change
detection network, we construct a fine-tuning network similar
to the pretraining network, and the relationship between the
two is shown in Fig. 1. Specifically, we use the backbone and
bitemporal feature fusion encoder consistent with the pretraining
network and take the parameters of the pretrained network as
the initialization parameters of the fine-tuning network through
knowledge transfer. And then, the multilevel change detection
network is trained under the supervision of a small number of
labeled samples.

However, although the change detection network already con-
tains part of the prior information introduced by the contrastive
self-supervised learning, there are still some problems. That
is, the network is still limited by a small number of labeled
samples, resulting in a lot of information in the extracted features
irrelevant to the label and poor detection effect. Therefore, we
propose to introduce the theory of VIB to provide a more explicit
optimization direction for the model.

The goal of VIB is to learn a feature representation Z that
maximizes the preservation of information related to the label
Y while compressing the information of input X and reducing
irrelevant information. This is consistent with two properties
that the change detection model should satisfy: 1) the predicted
change map should be as similar as possible to the ground truth;
2) the focus should be on the real change characteristics and
the interference of irrelevant information should be as little as
possible. For this, the optimization objective can be expressed

as minimizing the following equation:

L = βI (X,Z)− I (Z, Y ) (3)

where I(, ) represents the mutual information, X corresponds
to the input image data, Y is the corresponding ground truth,
and Z is the optimal feature representation to be extracted.
I(X,Z) is used to measure the mutual information between
the input source X and the compressed feature representation
Z. I(Z, Y ) represents the correlation degree between the feature
representation Z and the target Y. Minimizing (3), i.e., maximally
compressing X by discarding the information irrelevant to Y,
minimizing I(X,Z). Simultaneously, maximizing I(Z, Y ) to
capture as much information relevant to Y as possible to obtain
the optimal feature representation of the target Y. β is used to
tradeoff between information compression and label prediction.

The difficulty is that it is difficult to calculate the mutual
information of high-dimensional features in (3). However, in
this work, we actually do not care about the corresponding exact
value but just need to find the optimal solution by minimizing
(3). Therefore, we use the variational estimation proposed in [42]
to solve the upper bound of (3). Assuming that q(y|z) and r(z)
are variational approximation of p(y|z) and p(z), respectively,
we can obtain

L ≤ βEpx,z

[
log

p (z|x)
r (z)

]
− Epx,y,z

[logq(y|z)]. (4)

Then, the reparameterization trick [54] is used to express z as
z = μ(x) +

∑
(x)× ε, where ε ∈ N(0, I). The following can

be obtained:

L ≤ βKL [p (z|x) |r (z)]− Epx,y,ε
[log q(y|f(x, ε))] (5)

where f in the second term on the right side of the inequality
represents the network mapping used to identify changes, while
the entire second term is the cross entropy and represents the
prediction error. In addition, class imbalance is a common prob-
lem in practical change detection. Dice loss, as a region-related
loss function, has been shown to be effective in alleviating
the class imbalance problem and can produce complementary
effects [55], [56] when combined with loss functions, such as
cross entropy. Therefore, we combine dice loss and use both as
the evaluation function of the change detection error due to the
problem of class imbalance. In addition, in the calculation of KL
divergence, we assume that p(z|x) and r(z) obey the Gaussian
distribution. Now, the final representation of the optimization
objective is as follows.

L ≤ β

(
−

K∑
k=1

log (σk) +
1

2

K∑
k=1

(
u2
k + σ2

k

)− K

2

)

− (Lbce − log(Ldice)) (6)

where K is the dimension of the extracted feature, and σk

and uk are the standard deviation and mean of the feature,
respectively. Lbce and Ldice represent the cross entropy and dice
loss, respectively, where log is used to adjust both to the same
scale. Accordingly, the whole fine-tuning network is guided by
(6) and is trained under the supervision of a small number of
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labeled samples. Finally, excellent change detection model can
be obtained in this way.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first provide a brief description of the image
data, relevant experimental settings, the comparison methods,
and the evaluation metrics. Then we perform comparison ex-
periments and ablation experiments on different datasets. In
addition, the results of the above-mentioned experiments and
the relevant factors in the experiments are further analyzed
and discussed to fully demonstrate the effectiveness of the
proposed method.

A. Experimental Datasets

To verify the feasibility of the proposed method on different
datasets, we conduct experiments on two publicly available
datasets. The detailed description of the datasets is as follows.

1) Lebedev Dataset [57]: The high-resolution dataset is ob-
tained from Google Earth. Specifically, it contains three visible
bands of red, green, and blue, with a maximum spatial resolution
of 3 cm/px and a minimum of 100 cm/px. After processing
by data enhancement methods such as rotation, translation, and
color transformation, there are 12 998 pairs of 256 × 256 labeled
samples in the dataset, and the labels are manually annotated by
professionals. Among them, the changes to be detected include
the appearance and disappearance of small cars, large-scale land
cover change, and other changed objects at different scales. It
is worth noting that the dataset is collected in different seasons
and contains obvious seasonal differences.

2) SenseTime Dataset [58]: This high-resolution dataset is
collected for the Sensetime AI Remote Sensing Interpretation
Competition and contains 2968 pairs of 512 × 512 labeled
samples, corresponding to a spatial resolution of 0.5 × 3 m.
Similarly, the images in this dataset contain only red, green, and
blue bands. In addition, the type of change focused on in this
dataset is the conversion between six different land use types.

B. Experimental Settings

1) Implementation Details: All experiments are imple-
mented on a PC platform with 12th Gen Intel(R) Core(TM)
i7-12700F 2.10 GHz CPU and NVIDIA GeForce RTX 3090
graphics card, using pytorch as the underlying deep learning
framework. In both stages of network training for the contractive
self-supervised and change detection, the Adam optimizer is
used, and the initial learning rate is set to 0.001, and the learning
rate is adjusted with Cosine annealing during the training pro-
cess. Besides, it is verified that the downstream change detection
model has optimal performance when τ of the contrastive loss
function is set to 0.5 in contrastive self-supervised pretraining,
which is consistent with that in [22]. Therefore, τ is set to 0.5 in
all subsequent experiments. Sample enhancement in the training
process includes random cropping, resizing, flipping, rotation,
color transformation, and Gaussian blur. And the two stages are
trained 400 epochs and 300 epochs, respectively. The batch size
of the Lebedev and SenseTime dataset in the pretraining stage

is set to 32 and 6, respectively, and that of the fine-tuning stage
is set to 8. In addition, to fully verify the performance of the
proposed method with a small number of labeled samples, all
data in both datasets are used for self-supervised pretraining,
while only a small number of labeled samples are used to
train the change detection fine-tuning network. Specifically,
in the experiments to analyze the influence of the number of
labeled samples on the change detection performance, 1%,
10%, and 20% of the labeled samples are selected to train
the change detection fine-tuning network. Other than that, 1%
of the labeled samples are selected as training data for all
experiments. And the test set of all experiments contains 20% of
the labeled samples randomly selected from both datasets. For
fairness, consistent training and testing samples are used for all
methods.

2) Comparison Methods: In order to show the superiority of
the proposed method, seven state-of-the-art change detection
methods are selected to compare with our method. Among
them, the backbone and encoder of SimCLR, MoCo v2 and
BYOL are consistent with our method, which are ResNet50
and DeepLabV3+, respectively. In addition, the first four of
the comparison methods adopt the same network architecture
in the downstream change detection task. The details of these
methods are described as follows.

a) Random initialization: Without pretraining, the parame-
ters of the fine-tuning network are randomly initialized
using the kaiming initialization method [59].

b) SimCLR pretraining [22]: This method is a contrastive
self-supervised method at the instance level, which trains
the network with the goal of reducing the distance be-
tween positive sample pairs and increasing the distance
between negative sample pairs. And feature extraction and
projection of images processed by data enhancement are
carried out by encoder with parameter sharing and single
layer MLP, and the network is trained under the constraint
of contrastive loss. Of which the data enhanced samples
and the corresponding original samples form a positive
sample pair, while other different samples are negative
samples.

c) MoCo v2 pretraining [60]: Both this method and the Sim-
CLR method mentioned above are essentially contrastive
self-supervised methods. The difference is that the MoCo
v2 constructs a larger queue of negative samples in a
dynamic update manner to make the model learn more
negative sample information. It also proposes to update
the encoder using a type of momentum update.

d) BYOL pretraining [21]: This is an implicit contrastive
learning method without negative samples, which con-
structs regression constraint with the target network by
adding an MLP to predict the projection of online network,
so as to achieve consistent prediction between positive
sample pairs.

e) FC-EF [61]: Fully convolutional early fusion is a classical
supervised change detection method. The model takes
bitemporal images, which are concatenated along the
channel as input and is trained with U-Net as the basic
architecture and cross entropy as the loss function.
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TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE LEBEDEV DATASET

f) Multiview [17]: This method is a remote sensing im-
age change detection method based on contrastive self-
supervised pretraining. In the contrastive self-supervised
pretraining stage, the bitemporal images of the same re-
gion are regarded as positive sample pairs and others are
negative sample pairs. And the discriminative features are
extracted in a global contrastive manner. On this basis,
change detection is achieved by measuring the feature
distance of bitemporal images and performing threshold
analysis.

g) ChangeFormer [62]: This method is a supervised change
detection method. The model combines transformer and
MLP to capture multiscale long-range information to
achieve high-precision remote sensing images change de-
tection.

3) Evaluation Metrics: To evaluate the performance of the
proposed model, we use four metrics commonly used to evaluate
the performance of change detection, namely Precision, Recall,
F1-score, and intersection over union (IoU), which are defined
as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 = 2× Precison × Recall
Precison + Recall

(9)

IoU =
TP

TP + FP + FN
(10)

where TP indicates that the prediction result is consistent with
the label, which are both changed pixels. FP indicates that the
unchanged pixels are incorrectly predicted as changed pixels.
Correspondingly, FN indicates that the changed pixels are in-
correctly predicted as unchanged pixels.

C. Experimental Results

In this section, we present the experimental results of our
method and the comparison methods on two datasets, and
illustrate the superiority of our method from both quantitative
and qualitative perspectives.

1) Comparison on Lebedev Dataset: The quantitative eval-
uation result on Lebedev dataset is given in Table I. It can be
seen that the overall performance of our method outperforms
the others. Among them, the method of randomly initializing
network parameters, which has not been pretrained with pretext
task, has a relatively poor performance, and the corresponding
precision, recall, F1, and IoU are 63.30%, 43.10%, 47.71%,
and 34.21%, respectively. The results of the Multiview are not
satisfactory, mainly due to the fact that the downstream change
detection is realized by feature differencing and threshold anal-
ysis rather than network training. It is difficult to accurately
distinguish the changed regions from the unchanged regions
by using the features extracted with the pretraining parameters.
Compared with the above two methods, other methods based on
contrastive self-supervised pretraining all achieve greater perfor-
mance gains. This also implies that the pretext task pretrained
in a contrastive manner can capture some additional discrimi-
native features from the unlabeled data that are beneficial for
downstream change detection, and transferring the pretrained
parameters to the downstream network can significantly im-
prove downstream task performance. And it can be seen from
the results of the methods based on contrastive self-supervised
pretraining, including the proposed approach, that there are great
differences in the impact of different contrastive self-supervised
network architectures on the performance of downstream task.
Among them, the comprehensive performance of our method is
the best, with precision, recall, F1, and IoU of 75.23%, 60.44%,
65.79%, and 50.61%, respectively. It is worth noting that the
precision, F1, and IoU indexes are optimal in all methods.
Moreover, although the highest recall of SimCLR is 61.02%,
which is 0.58% higher than our method, it is much worse than
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Fig. 4. Qualitative results of different methods on the Lebedev dataset. Black indicates unchanged regions and white indicates changed regions.

our method in terms of precision. It is also worth noting that
compared with the FC-EF supervised method, which takes 130
labeled samples as the complete training set, the precision, recall,
F1, and IoU of our method are improved by 38.10%, 29.12%,
33.52%, and 30.65%, respectively. This shows that it is difficult
to extract effective features for the supervised method with
simple structure when there are only a few labeled samples,
which seriously affects the accuracy of change detection. Com-
pared with the ChangeFormer, our method improves 11.35% and
13.21% in F1 and IoU, respectively; this also further validates
the effectiveness and necessity of introducing self-supervised
pretraining before few-sample change detection.

To better visualize the superiority of the proposed method,
we show the visualization results of all methods on the test set
in Fig. 4, where black and white indicate the unchanged and
changed regions, respectively. As can be seen from the figure,
there are many missed and false detections in the change map
obtained by the FC-EF and ChangeFormer, and the overall de-
tection effect is not satisfactory. There are many false detections
in the change maps of the Multiview, which identify shadow,
vegetation changes, and other pseudochange as changed regions.
This indicates that in high-resolution remote sensing images, it
is difficult to identify changed regions of interest by relying
only on the feature representation extracted by the contrastive
pretraining. Except for that, the change maps obtained by other
methods are more consistent with labels, but there are also some
missed and false detections. Among them, the random initializa-
tion method has relatively more false alarms, such as mistakenly
treating the shadow as changes in the detection results of the
second and third rows in Fig. 4. And compared with the BYOL,
SimCLR and MoCo v2 have higher accuracy in identifying the

changed regions and can identify most changed regions with
relatively fewer missed detections. However, there is a lot of
noise in the prediction results of the above three methods, which
incorrectly classify many unchanged pixels as changed pixels.
As in the last two rows, the above methods are not ideal for the
distinction between changed buildings and unchanged roads and
grass, resulting in the false detection of many unchanged pixels.
The proposed method in this work can suppress the influence of
noise, reduce the false and missed detections to a certain extent,
and get the prediction result closer to the label. Specifically, as
shown in the first row, our method can effectively identify the
unchanged gaps between multiple buildings. And in the last two
rows, the boundary between the changed and unchanged pixels is
also clearer. All of the above-mentioned results demonstrate the
effectiveness of the proposed contrastive self-supervised pretext
task and the VIB constraint.

2) Comparison on SenseTime Dataset: The quantization re-
sult on the SenseTime dataset is given in Table II. We can observe
that the performance on the SenseTime dataset is basically the
same as that on the Lebedev dataset. Under the supervised
training with 1% of all samples, i.e., 30 labeled samples, the
FC-EF performs the worst. Although it has the highest precision,
it also corresponds to the lowest recall. The reason for this
is that under the supervision of a small number of labeled
samples, the model focuses on regions with significant color
or shape changes, which make the model to have relatively high
precision in identifying such changes. However, in this case, the
model cannot extract enough semantic features, which makes it
difficult to identify changes of land use types, resulting in low
recall. The ChangeFormer is a change detection model based on
transformer. Compared with convolutional neural network, it has
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TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE SENSETIME DATASET

a larger number of parameters and usually requires a large num-
ber of data training to take advantage of it. With only 30 training
samples, the correct induction bias cannot be obtained, resulting
in poor performance. The results of the above-mentioned two
methods indicate that the fully supervised method is unable
to obtain sufficient prior knowledge from a small number of
labeled samples, resulting in the model being unable to form
a description of the entire data and lacking the power of dis-
crimination. In general agreement with the results on Lebedev
dataset, the Multiview has a higher recall but poorer precision.
Other methods based on contrastive pretraining have the best
overall performance, which confirms the claim that pretraining
methods can bring improvement for downstream tasks. It can be
seen that the F1 of the proposed method is 52.21%, which is an
average improvement of 26.47% and 5.74% over the supervised
method and other methods based on contrastive self-supervised
pretraining, respectively. And the IoU also increased by 21.20%
and 5.45%, respectively. It shows that the proposed contrastive
self-supervised pretraining architecture is more suitable for the
scenario where the downstream task is change detection and
can effectively transfer the prior knowledge from unlabeled
samples to the downstream network to improve the detection
accuracy. Moreover, the proposed VIB regularization method
provides explicit selectivity constraint for the model, making the
features learned under this additional guidance more focused on
the change information provided by the labels, further improving
the overall change detection performance. In addition, compared
with Table I, the detection performance on the SenseTime dataset
is worse than that on the Lebedev dataset. This mainly has two
aspects of reasons. On the one hand, the training sample size
of SenseTime and Lebedev differs greatly, which largely affects
the detection performance of the model on the two datasets.
On the other hand, compared with the Lebedev dataset, the
training objective on the SenseTime dataset is to identify the
changes of different land use types, which is more diverse and
complex on the images. Therefore, there are some differences

in the results on the two datasets, and the overall performance
on the SenseTime dataset is lower than that on the Lebedev
dataset.

Fig. 5 shows the performance of the different methods
on the SenseTime dataset. In general, the result of FC-EF
method is unsatisfactory. And the change maps predicted by
the ChangeFormer cannot reflect the changed and unchanged
regions basically. This demonstrates that the training results of
the supervised method depend on the number of labeled samples,
and the detection performance cannot meet the requirements
of practical applications when there are few available labeled
samples. And the method based on transformer has higher
requirements on sample size, which makes it difficult to apply to
few-sample change detection. Since the Multiview uses feature
difference and threshold analysis to identify changed regions, it
is difficult to distinguish pseudochange from semantic change
of interest, and there are many false detections. In addition to
the above-mentioned methods, the change maps predicted by
other methods have a good overall performance and can basically
locate the changed regions. However, except for the method in
this work, other methods have relatively more false detections,
which is consistent with the low precision and high recall of
these methods in Table II. Specifically, they cannot locate the real
changed regions under the influence of scale, view, illumination,
and other factors, and this problem has been improved to some
extent in the proposed method. For example, in the first and
fourth rows, compared with other methods, our method can de-
tect the real changed land types and buildings under the influence
of noise. Overall, the proposed method is more robust under
the influence of pseudochanges and can effectively balance the
precision and recall obtaining the best change map.

D. Ablation Experiments

1) Ablation Experiment of the Pretraining Model: In order
to take into account the global and local, deep and shallow
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Fig. 5. Qualitative results of different methods on the SenseTime dataset. Black indicates unchanged regions and white indicates changed regions.

TABLE III
ABLATION EXPERIMENT OF THE PRETRAINING MODEL ON TWO DATASETS

features, the proposed contrastive pretraining network inte-
grates multilevel and multigranularity contrastive learning to
provide sufficient priori knowledge for downstream change
detection. To verify its effectiveness, a series of ablation ex-
periments are conducted, and the results are reported in Ta-
ble III. And “N_shallow” indicates that only the deep features
of global and local contrasts are retained in the pretraining
network. Correspondingly, “N_Global” and “N_Local” indicate
that only local and global contrasts are retained, respectively.
It should be noted that since the backbone and feature fu-
sion encoder of the change detection fine-tuning network is
consistent with those of the pretraining network, the change
detection model of “N_shallow” only contains change detec-
tion of deep level, while the other two models are multilevel
change detection with a combination of deep and shallow
levels.

As can be seen from Table III, the combining contrastive
pretraining of different levels and granularity can effectively
improve the model performance on both datasets, and the
proposed complete model achieves optimal result. In addition,
the model without shallow contrastive module has relatively
poor performance on both datasets, which indicates the
importance of shallow texture information in locating changed
regions. On the other hand, the results from the models without
global and local contrastive module reveal that the importance
of local contrastive information for change detection is more
prominent. This may be due to the fact that on both datasets,
the changed regions are mostly represented as local change
in the image, and the global feature has a relatively weaker
impact on the recognition of changes. These quantitative results
demonstrate not only the effectiveness of the different modules
but also the gain effect of their combination.
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TABLE IV
ABLATION EXPERIMENT OF VIB REGULARIZATION TERM ON TWO DATASETS

2) Ablation Experiment of the VIB: In this section, to further
illustrate the role of the regularization term, the VIB, the ablation
experiments on two datasets are conducted. Specifically, only the
change detection loss combined with cross entropy and dice loss
is used to train the network. And the rest settings are consistent
with the proposed method. In addition, for simplicity, the change
detection model without the constraint of VIB is denoted by
“N_VIB” in the subsequent experiments.

It can be observed from the results in Table IV that the addition
of VIB constraint can improve the overall model performance.
More specifically, with the addition of VIB, the precision, recall,
F1, and IoU of Lebedev dataset are improved by 1.16%, 1.37%,
1.30%, and 1.65%, respectively. Correspondingly, the improve-
ments on SenseTime dataset are 0.46%, 3.82%, 2.10%, and
2.01%, respectively. These quantitative results show that the ad-
dition of VIB constraint can improve the problem of insufficient
priori information of few samples to a certain extent and alleviate
the influence of various types of noise in high-resolution remote
sensing images on the change detection results. And it further
confirms that it is reasonable and effective for us to introduce
VIB into the field of high-resolution remote sensing images
change detection.

E. Effect of the Amount of Fine-Tuning Data

Since the number of labeled samples is one of the keys affect-
ing the performance of deep learning methods, this section is
mainly used to analyze the relationship between the performance
of different methods and the number of labeled samples. For
this reason, 1%, 10%, and 20% labeled samples are randomly
selected from all samples in both datasets and the change de-
tection network is fine-tuned. In this case, all the methods adopt
the same pretrained model in the experiments with different data
amounts. Since the Multiview does not require sample training
for change detection, the experimental results remain the same
for different data amounts. The experimental results are shown
in Fig. 6.

Fig. 6(a) and (b), respectively, shows the change detection
performance of different methods on Lebedev dataset and Sense-
Time dataset using different numbers of samples. It can be seen
that the performance of the ChangeFormer does not improve
significantly with the increase in the number of training samples
on SenseTime dataset. The main reason for this is that the
transformer-based model requires a larger number of samples to
take advantage of it. There are only a small number of training
samples in the experiment, which limits the model performance.
Besides, the performance of different models improves to some

extent as the number of training samples increases. This shows
that a larger number of samples can provide more sufficient
prior knowledge, which makes the trained model have bet-
ter generalization performance. And among all methods, the
improvement of the proposed method is relatively more obvious.
It performs well in all four-evaluation metrics and obtains the
most advanced performance. In addition, it can be observed
that compared with SenseTime dataset, the performance im-
provement on the Lebedev dataset is more significant and the
overall detection effect is better. The reason may be that, first, the
total number of samples in Lebedev dataset is much larger than
that in SenseTime dataset, so there are relatively more labeled
samples used for fine-tuning the network in the above experi-
ment, which further confirms that the network performance is
related to the number of samples. Second, the changed objects
in SenseTime dataset are transformations between different
land types, and some transformations with higher texture and
shape similarity increase the difficulty of detection to a certain
extent.

F. Effect of the Loss Function

The loss function provides a gradient representation for the
network parameter iteration by measuring the difference be-
tween the predicted result and ground truth, and back prop-
agation, which is a key to the performance of the model in
deep learning. As described in Section III, we incorporate dice
loss in the change detection fine-tuning model to reduce the
impact of the class imbalance on the model performance. To
explore the extent of its impact, we remove the dice loss to
conduct comparison experiments on two datasets. In addition,
the loss function combining weighted binary cross entropy and
dice loss has been shown to be effective in alleviating the class
imbalance [63], so it is added to the comparison experiment
to further validate the model performance, and the results are
given in Table V. Note that we named the model “N_diceloss”
and “combined loss,” respectively.

As we can see from Table V, the combined loss combining
weighted cross entropy and dice loss can improve the overall
performance to a certain extent compared to using only binary
cross entropy. This demonstrates that improving the class imbal-
ance problem can effectively improve the model performance
in the change detection. And in our loss function, the addition
of dice loss has greatly improved the detection performance of
the model on both datasets, achieving the best performance.
Specifically, the recall, F1, and IoU on Lebedev dataset improve
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Fig. 6. Change detection performance of different methods with different data amounts on both datasets. (a) Results on the Lebedev dataset. (b) Results on the
SenseTime dataset.

TABLE V
EFFECT OF LOSS FUNCTION ON TWO DATASETS

by 0.87%, 2.66%, and 3.03%, respectively, after the addition of
dice loss. Similarly, the improvements on SenseTime dataset are
8.20%, 1.93%, and 2.82%, respectively. This fully demonstrates
that it can effectively reduce the missed detection of changed
regions, improve the biased prediction caused by the imbalance
between the number of changed and unchanged samples to some
extent, and improve the overall performance of the model.

G. Effect of the Hyperparameter

1) Effect of β: An important hyperparameter of the proposed
method is β in the regularization term of VIB, which controls
the tradeoff between information compression and preservation
of label-relevant information for the extracted latent features. To
investigate its relationship with the detection performance, the

model of different β values is evaluated. The results are shown
in Fig. 7.

It can be seen from Fig. 7 that there is good detection per-
formance on both datasets when the value β is within a certain
range. It benefits from the VIB regularization and makes the
model focus on the real change information and filter out part of
the noise. However, when β is too large, the VIB regularization
focuses on compressing information, resulting in insufficient
information retained to identify the changed and unchanged
regions, and the model performance decreases. As can be seen
from the figure, when β of Lebedev dataset and SenseTime
dataset is set to 10-7 and 10-1, the extracted features have a
good tradeoff between compressing irrelevant information and
guaranteeing predictive ability, and the model has optimal per-
formance. In addition, the different optimal settings of β on
different datasets also indicate that the effect of β is different
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Fig. 7. Change detection performance of different β. (a) Results on the Lebedev dataset. (b) Results on the SenseTime dataset.

Fig. 8. Change detection performance of different K. (a) Results on the Lebedev dataset. (b) Results on the SenseTime dataset.

for different datasets, which may be related to the sample size
or the characteristics of the dataset itself.

2) Effect of Feature Dimension K: In addition to β afore-
mentioned, K in (6) of Section III is the dimension of the
extracted latent feature, which specifies the bottleneck size. And
it works together with β in the tradeoff between information
compression and critical information retention. Both increasing
β and decreasing K increase the restriction on the flow of
feature information. To evaluate the effect of K value on the
experimental result, we train the model for varying values of K
under the condition that β is fixed as the optimal value of the
above-mentioned experimental results on both datasets. And the
results are shown in Fig. 8.

When the K value is 128, the model obtains the best overall
performance on both datasets. When the K value is smaller, that
is, the K value is 64, the model performance is slightly lower
than the optimal result. The reason is that the small feature
dimension has a stronger restriction on the information transfer,
resulting in insufficient ability of the model to encode the feature
information, which leads to the decline of the discrimination
ability. And the model performance is the weakest when the
K value is 256. It is worth noting that in our model, the input
feature of VIB module is 256-dimensional. Therefore, setting
K to 256 means that the feature information is not compressed,
which leads to retaining more irrelevant information, making
the overall performance poor. In conclusion, the experimental
results further confirm that filtering the feature information to a
certain extent can improve the performance of the model. And

the effect of the value of K on the results may slightly vary for
different model architectures.

V. DISCUSSION

In this work, we apply the contrastive self-supervised mech-
anism and the theory of VIB to the change detection in
high-resolution remote sensing images, and aim to improve
model performance with few samples, so as to alleviate the
sample dilemma faced by deep learning methods in practical
application scenarios and the problem that noise in high-
resolution remote sensing images increase the difficulty of
change detection. We will further discuss our method perfor-
mance in this section.

Considering the scarcity of pixel-level labeled samples and
the availability of a large number of unlabeled samples in
practical applications, and that the self-supervised pretraining
method is theoretically capable of learning latent knowledge
from unlabeled data, a novel contrastive self-supervised pre-
training approach based on this framework is proposed. As
expected, our experimental results show that it is difficult for the
supervised method to accurately locate regions of change when
only a small number of labeled samples are available. However,
our change detection model retrained on the basis of pretraining
significantly improves the change detection performance, which
shows that our method has greater practical value in the case of
insufficient labeled samples. This result is in line with the per-
formance of contrastive self-supervised learning in few-sample
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TABLE VI
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE LEVIR-CD DATASET

Fig. 9. Qualitative result of different methods on the LEVIR-CD dataset. Black indicates unchanged regions and white indicates changed regions.

image classification [39], segmentation [52], and other fields.
And in comparison with the change detection results pretrained
by different contrastive self-supervised methods, we find that
the performance of different comparative self-supervised net-
work architectures on downstream task varies greatly, with our
approach being optimal. The main reason for this is that our
proposed contrastive self-supervised model architecture starts
from the framework of change detection, thus has a higher adapt-
ability to the actual change detection. In addition, compared with

other methods, our proposed multilevel and multigranularity
contrastive learning can mine more discriminative information
from unlabeled data and can further improve the performance
of downstream change detection.

In addition, we find that the proposed VIB regularization
constraint has significant advantage in improving the perfor-
mance of high-resolution images change detection. As shown
in the visualization results on both datasets, our model is more
robust and the predicted change maps are more refined when
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there are disturbances such as shadows and seasonal changes
in the image. This fully illustrates the importance of reducing
noise information and enhances the attention of the model to
the real change information. In the applications of remote sens-
ing, especially the high-resolution remote sensing images, the
influence of noise inevitably exists. And the introduction of this
theory is of some significance to this situation. Furthermore, the
emphasis and attention to feature should be different at different
stages of model training. Therefore, greater improvements may
be obtained if the hyperparameter β in the VIB regularization
term is dynamically adjusted during model training.

To further validate the robustness of our method on different
datasets, the proposed model is applied to the LEVIR-CD dataset
[64] with change types of building growth and decay, which is a
different change detection task for the two datasets above. In the
dataset, the total number of labeled sample pairs is 10 192, and
the training and test sets in the change detection stage are 1%
and 20% of the labeled sample, respectively, which is consistent
with the other experimental settings. As can be seen from the
quantization results in Table VI, the overall performance of the
proposed method is superior to other methods, with precision,
recall, F1, and IoU being 64.32%, 62.44%, 62.09%, and 46.13%,
respectively. Fig. 9 shows the change results obtained by the
proposed model and the comparison methods. As shown in
the figure, compared with other methods, the change maps
predicted by the proposed method are more consistent with
labels and can correctly identify the changed buildings of interest
from vegetation and light changes and other pseudochanges.
The above-mentioned results show that the proposed method
can obtain better performance under the supervision of limited
samples in different datasets.

VI. CONCLUSION

This work focuses on the change detection with a small num-
ber of labeled samples and proposes an improved framework of
contrastive self-supervised pretraining and a change detection
fine-tuning model based on VIB regularization. In particular, the
contrastive self-supervised pretraining model contains a four-
branch Siamese network feature extractor with multilevel and
multigranularity integration, which can learn latent knowledge
from a large amount of unlabeled data that can bring gains to
downstream task under the constraint of contrastive loss. In
addition, the VIB constraint in the stage of fine-tuning change
detection explicitly adds prior knowledge of suppression noise,
emphasizing change to the model. We performed pretraining and
change detection on three public datasets, and the experimental
results demonstrate the effectiveness of the proposed method.
Specifically, in the quantitative experiments on 1% labeled sam-
ples of Lebedev dataset, SenseTime dataset, and LEVIR-CD
dataset, the comprehensive evaluation index F1 and IoU of our
method achieve 65.79%, 52.21%, 62.09% and 50.61%, 36.58%,
46.13%, respectively, which is superior to other comparison
methods. The proposed contrastive learning framework can
make the extracted features more discriminative, thus providing
a better initial optimization direction for the downstream change
detection. And the VIB regularization constraint can reduce the

noise information in the high-resolution images to a certain
extent and further improve the change detection performance. In
the future, we will further investigate semantic change detection
that can reveal semantic categories before and after the change
for more fine-grained analysis.
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