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Reducing Moisture Effects on Soil Organic Carbon
Content Estimation in Vis-NIR Spectra With a Deep

Learning Algorithm
Wudi Zhao , Zhilu Wu , Zhendong Yin , and Dasen Li

Abstract—When estimating soil organic carbon using visible and
near-infrared spectra measured in situ, the interference of soil
moisture content (SMC) needs to be eliminated. The existing SMC
removal methods are mainly based on spectral transformation,
but they change the original form of the soil spectrum. In this
article, a new deep-learning-based SMC influence removal network
(MIRNet) is proposed to establish the relationship between the
spectra of moist soil and that of dry soil. This method constructs a
spectral extraction module with two 1-D ghost modules to extract
soil spectral characteristics and a context extraction module with
a two-layer dilated convolutional neural network to extract the
context information of the spectra. Then, these extracted features
are combined to reconstruct the SMC influence with a two-layer
deconvolution using residual learning. Finally, a new loss function
that combines spectral distance and spectral shape measurement
(D-S loss) is proposed. The input of MIRNet is the moist soil spectra,
and the output is the dry soil spectra. Black soil collected from
Harbin and yellow-brown soil collected from Nanjing are selected
as the research objects. The R2 reaches 0.703, 0.747, 0.907, 0.892,
0.866, 0.907, and 0.926, respectively, when using spectra processed
by external parameter orthogonalization, orthogonal signal cor-
rection, support vector regression, convolutional neural network,
deep neural network, denoising convolutional neural network, and
MIRNet. Therefore, the proposed MIRNet achieves competitive
results compared with these state-of-the-art methods.

Index Terms—Deep learning, estimation, soil moisture content
(SMC) influence removal, soil organic carbon (SOC), visible and
near-infrared (Vis-NIR) spectra.

I. INTRODUCTION

SOIL organic carbon (SOC) content is an important indicator
to measure soil fertility [1]. Rapid and accurate monitoring

of SOC is of great significance to soil resource surveys, precision
agriculture, and soil digital mapping [2], [3]. Hyperspectral
remote sensing technology, with its advantages of a wide spectral
response range and high spectral resolution, can quickly obtain
the fine spectral characteristics of surface soil. In recent years,
the estimation of SOC content by using the soil reflectance
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spectral characteristics measured by spectrometers has become
a difficult and important task in soil science [4]. At present,
researchers have established a relatively complete theoretical
system for estimating soil properties by visible and near-infrared
(Vis-NIR) spectra under stable observation conditions for dif-
ferent soil types [5], [6].

However, whether static in situ observations or real-time dy-
namic observations are used in the field, factors such as soil mois-
ture content (SMC), temperature, and soil surface roughness
will all affect the acquisition of soil Vis-NIR spectra. Among
them, SMC is the most important factor affecting hyperspectral
measurement in the field. It can cover the spectral absorption
characteristics of SOC, and result in low accuracy of SOC
content estimation using Vis-NIR spectral data of in situ soil
directly [7]. Therefore, it is necessary to eliminate the influence
of SMC on Vis-NIR spectra to achieve real-time measurement of
SOC content in the field. In recent years, researchers have tried
various methods to achieve a more accurate estimation of soil
properties by eliminating the influence of SMC on soil spectra.

Some researchers study soil property estimation by looking
for windows in spectral bands that are less affected by moisture.
Wu et al. [8] found that within specific wavelength ranges in the
NIR spectra, at 800–1400 nm, 1600–1700 nm, 2100–2200 nm,
and 2300–2500 nm, the first derivative of the spectra seems
insensitive to the moisture content of the soil samples. These
observations suggest the potential of focusing on these regions to
determine the SOC content without any interference from SMC.

Some researchers have used SMC hierarchical modeling to
study the estimation of soil properties under the influence of
SMC. Notica et al. [9] and Hong et al. [10] both chose the soil
moisture-based cluster method. They classified the soil samples
by spectrum according to the normalized soil moisture index
and the SOC content was predicted by subsection modeling.

Some researchers improved the similarity among spectra
using spectroscopic preprocessing or transfer algorithms. At
present, the direct standardization (DS) method introduced by
Wang et al. [11] and piecewise direct standardization (PDS)
were successfully used to remove the effects of SMC. Ji et al.
[12] derived the DS transfer matrix, which characterizes the
differences between field and laboratory spectra, and used it
for the correction of field spectra. Orthogonal signal correction
(OSC) is an optimization method proposed by Wold et al. [13],
which enables the removal of systematic variation from field
spectra that is orthogonal to the reference data [14]. Biney
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et al. [15] verified the effectiveness of the OSC across three
different agricultural fields for both lab-dry and in-field spectra
and obtained good estimation accuracy.

Another way to approach this problem is to remove the
effects of SMC on spectral parameters from the calibrations. The
most widely used is the external parameter orthogonalization
(EPO) algorithm. This method was first proposed by Roger
et al. [16] and applied to the removal of temperature as an
influencing factor when spectral prediction of sugar content in
fruits was made. Minasny et al. [23] extended this method to
remove the influence of SMC on field spectral measurements.
The prediction of SOC was successfully made by using the
spectra after orthogonalization treatment [17]. Since then, there
have been many studies on SMC influence removal using EPO
methods [18], [19], [20], [21], [22].

However, all the aforementioned methods have some prob-
lems in dealing with the removal of the SMC influence. The
method using impervious spectra loses a large amount of ef-
fective information in soil Vis-NIR spectra, resulting in low
accuracy of the estimation results even though some external
factors are excluded. The hierarchical modeling method requires
ensuring a uniform sample quantity at different water content
levels, and the accuracy of SOC estimation depends on the
accuracy of grouping. Neither method eliminates the effect of
SMC on soil spectra directly. The DS and PDS algorithms
based on spectral conversion perform correction for the whole
band, which easily leads to the problem of overcorrection when
spectral curves are similar. For the most commonly used EPO
and OSC algorithms, the original spectra need to be prepro-
cessed, such as multiplicative scatter correction, standard nor-
mal variate, detrend, and first derivative. This process requires
several experiments to determine the most suitable pretreatment
method, which has relatively low efficiency. It will destroy the
structure of the original spectra, so it is impossible to simulate
the corresponding dry soil spectra from the wet soil spectra.
Moreover, these two methods are based on the premise that SMC
and SOC content are independent, so it is difficult to simulate the
interaction between SMC, SOC content, and soil spectra [23].
In view of the problems of the aforementioned methods, this
article tries to apply deep-learning-based methods in the field of
removing the effects of SMC.

Deep-learning-based methods have shown their advantages in
many research areas, such as image classification [24], natural
language processing [25], speech recognition [26], and remote
sensing [27]. In recent years, many deep-learning-based models,
including stacked autoencoder [28], deep belief network [29],
convolutional neural network (CNN) [30], recurrent neural
network [31], deep neural network (DNN) [32], and residual
network (ResNet) [33], have been explored for hyperspectral
image processing. To fully extract the features in soil spectra that
contain considerable redundancy, deep-learning-based methods
have recently been proposed for the estimation of soil component
content. With their powerful feature extraction capability, these
methods can express the spectral signal effectively [34], [35],
[36]. This fully demonstrates the potential of deep-learning-
based methods to analyze the effect of SMC on the spectra
of in-field moist soil. Deep-learning-based methods are also

widely used in denoising problems that are similar to the removal
of SMC influence. Such studies include desert seismic data
denoising [37], [38], [39], image denoising [40], [41], [42], and
speech enhancement [43], [44], [45].

In this study, an end-to-end moisture content influence re-
moval network (MIRNet) is proposed for improving the SOC
content estimation accuracy of soil with different SMC levels.
The proposed MIRNet consists of two branches, namely, the soil
spectral feature extraction module (SEM) and the soil spectral
context information extraction module (CEM). In SEM, as it is
not easy to obtain spectral data of soil with different moisture
contents and the number of samples is limited, a 1-D ghost
module is used to extract spectral features. Because of the fast
feature extraction, independent learning, fast optimal solution,
and accurate fitting of complex nonlinear mapping of a deep
CNN [46], [47], it is used in the basic structure in this module.
In CEM, due to the high spectral resolution of hyperspectral data,
information redundancy exists between adjacent bands. There-
fore, a dilated convolutional neural network (DiCNN) is used
to learn spectral context information contained in nonadjacent
bands. Furthermore, according to the idea of a ResNet [40], the
SMC effect is directly studied as a residual (Res) from moist soil
spectra to obtain better accuracy. Finally, a new loss function
combining spectral distance and spectral shape measurement
(D-S loss) is proposed to better promote the learning and op-
timization of this network. The spectral distance measurement
is the standardized Euclidean distance. The spectral shape mea-
surement is the proposed sliding correlation coefficient.

The main contributions of this article are summarized as
follows.

1) A dual-network is designed and implemented to extract
and remove the influence of environmental factors on soil
spectra. By making full use of the information of adja-
cent and nonadjacent spectra, the network can effectively
extract the influence of soil moisture on soil spectra.

2) The idea of ResNet is integrated into the network to study
the influence of SMC on the moist soil spectra directly,
rather than establish the relationship between moist soil
spectra and corresponding dry soil spectra. The effective-
ness of this improvement is verified by experiments.

3) We proposed a new loss function, D-S loss, in this article
to balance the spectral distance and spectral shape differ-
ence, which improves the training accuracy by judging the
similarity of two soil spectra more accurately.

The rest of this article is organized as follows. Section II
presents the preparation process of the experimental data used
in this article in detail. Section III is a description of MIRNet.
Experimental settings, analyses, results, and discussions with
Vis-NIR spectral data prepared with multiple SMC levels are
shown in Section IV. The discussion is given in Sections V, and
finally, Section VI concludes this article.

II. DATA PREPARATION

A. Soil Sample Collection and Sample set Division

In this study, 200 soil samples with a depth of 0–20 cm were
collected in 2021. Among them, 100 soil samples were black
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TABLE I
SUMMARY STATISTICS OF THE SOC IN THREE DIFFERENT SUBSETS (S0, S1, AND S2) IN THIS STUDY

soil collected in Harbin, Heilongjiang Province, and 100 soil
samples were yellow-brown soil collected in Nanjing, Jiangsu
Province. After each soil sample collection, the soil samples
were processed to remove small gravel, dry branches, fallen
leaves, animal residues, and other sundries. After that, the soil
samples were brought back to the laboratory for air-drying,
grinding, and sieving (≤ 2 mm) [48]. After the aforementioned
treatment, each soil sample was divided into two parts. One
of which was stored in a glass jar for the determination of
VIS-NIR spectral data. The other portion was used to determine
the SOC content by the K2Cr2O7-H2SO4 oxidation method after
sieving with 60 mesh screening [49]. In this study, these samples
were further divided into three nonoverlapping subsets. They are
described as follows, and notations similar as to those in [50]
were used. The summary statistics of SOC content in the three
different sets are given in Table I.

1) Dry ground set (S0)—This set consisted of 50 samples to
develop dry ground multivariate models for the estimation
of SOC content. Samples in this set were scanned once
under dry conditions.

2) MIRNet development set (training set) (S1)—This set
consisted of 100 samples for MIRNet development. Each
sample in this set was scanned 11 times: one scan under dry
ground conditions and ten scans at ten different moisture
levels (1100 scans in total). A detailed description of the
soil rewetting procedure is provided in the next section.

3) Testing set (S2)—This set consisted of 50 samples for
independent MIRNet validation and testing of the SOC
content estimation model. The samples in this set were also
scanned 11 times and under the same moisture conditions
as S1 (500 scans in total).

B. Rewetting Procedure and Vis-NIR Spectra Scanning

In this study, the soil gravimetric water content rate is used
as SMC, and 11 SMC gradients (0%, 4%, 8%, 12%, 16%,
20%, 24%, 28%, 32%, 36%, and 40%) are designed to conduct
spectral observation experiments on the S1 and S2 soil samples.
Approximately 150 g of soil from each sample was placed in a
Petri dish and scanned under the air-dried conditions first. After
that, 4% SMC was added to each soil sample as a standard,
that is, 6-g water was sprayed evenly on the soil. It was then
quickly sealed to prevent moisture evaporation and left for 8
h to distribute moisture evenly in the soil. At this point, the
moist soil spectral data were immediately measured, and the
soil was reweighed. The water addition process was repeated
until spectroscopic measurements of all SMC levels were com-
pleted. Although there was a small difference in soil moisture
at different depths within the soil sample, such small variations

Fig. 1. Average reflectance spectra of soil samples inS1 andS2 under different
SMC levels.

do not have a significant impact on the measurement of spectral
data, so it is ignored.

Two spectrometers with a halogen lamp that can provide par-
allel light were used to acquire Vis-NIR reflectance spectra from
321.37 to 2598.2 nm in this experiment. The spectral range of the
visible spectrometer is 321.37–1104.83 nm (spectral sampling
interval of 0.82 nm). The spectral range of the near-infrared
spectrometer is 890.74–2598.2 nm (spectral sampling interval
of 6.6 nm). A standard white plate was used as a white refer-
ence to convert radiometric digital numbers to reflectance. Each
spectrum was an average of 20 instantaneous internal scans.
In the process of acquiring soil spectral data, spectral range
of 321.37–450 nm, 1000–1200 nm, and 2350–2598.2 nm were
found with very low signal-to-noise ratios. Therefore, these parts
of the bands were excluded from data analysis. Spectra were re-
sampled with 10-nm intervals to reduce the dimensionality of the
data. Finally, the Savitzky-Golay 11-point filtering smoothing
method (polynomial order 2) was used to smooth and denoise
the resampled soil data [51]. After a series of operations, the final
obtained spectral range of the soil spectra are 450–1000 nm and
1200–2350 nm. The soil spectral dataset for analysis and mod-
eling was obtained, in which 50 soil spectral data (50 samples)
were obtained for S0, 1100 spectral data (100 samples, 11 SMC
gradients) for S1, and 550 spectral data (50 samples, 11 SM
gradients) for S2. Fig. 1 shows the average reflectance spectra
of soil samples in S1 and S2 under 11 different SMC levels.
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Fig. 2. Framework of the proposed MIRNet.

As shown in Fig. 1, with the increase in the SMC level, the
soil Vis-NIR spectral reflectance curves present a downward
trend. This decline is based on a certain pattern. The soil re-
flectance spectra show reflective valleys in three bands (1410 nm,
1930 nm, and 2210 nm), which are the absorption peaks of soil
water. The change in SMC also has the greatest influence on
the reflectance spectra of these three bands. In addition, when
the SMC reaches more than 24%, the range of spectral changes
becomes decreases, because the soil tends to be saturated with
water.

III. METHODOLOGY

A. Framework of the Proposed Method

The framework of the proposed MIRNet method is shown
in Fig. 2. This network has three core parts: a SEM composed
of a 1-D ghost module, a spectral CEM composed of dilated
convolutional layers, and a spectrum reconstruction module
composed of deconvolutional layers. The input of the network
is the spectrum of the moist soil. After that, spectral features and
context information are extracted from the original spectral data
through SEM and CEM, respectively. Then, the two extracted
pieces of information are combined to reconstruct the effect
of SMC on the spectrum through the spectrum reconstruction
module. At this time, the obtained is the SMC influence spectrum
contained in the moist soil spectrum. Based on the idea of
residual learning (Res), the input moist soil spectrum is used
to subtract the learned SMC influence spectrum, namely, the
estimated corresponding dry soil spectrum is obtained. Finally,
the estimated and measured corresponding dry soil spectra are
used to calculate the D-S loss value for adjusting the weight and
offset in back propagation.

B. Data Preparation Process

The main objective of this study is to eliminate the effects of
SMC on soil spectra, which need to be validated by estimating

SOC content. To better understand the use of these three datasets
(S0, S1, and S2) in these two phases, several definitions are
elaborated as follows.

The function of S0 is to establish the SOC content estimation
model using its dry soil spectra. Let the dry soil spectra in S0
DS0

∈ RNS0
×B , NS0

and B represent number of the samples
and the number of spectral bands, respectively. Therefore, a sam-
ple set of DS0

= {D1
S0
,D2

S0
, . . . ,D

NS0

S0
},D i

S0
∈ R1×B is con-

structed, and D i
S0

represents the spectrum of the ith sample. The
corresponding label set is composed of the SOC content value
of the samples, which is defined as yS0

= {y1S0
, y2S0

, . . . , y
NS0

S0
}.

S1 and S2 are applied to establish MIRNet using their moist
soil spectra and dry soil spectra. They are also used to eval-
uate the accuracy of the removal of the SMC influence. This
evaluation is achieved by comparing the spectral similarity
before and after removal and computing the accuracy of SOC
content estimation using the soil spectra after removal. S1 and
S2 are defined with reference to S0. Let the moist soil spectra
in S1 and S2 MS1

∈ R(n×NS1
)×B and MS2

∈ R(n×NS2
)×B ,

NS1
and NS2

represent the number of samples in S1 and S2,
respectively, and n represent the number of SMC levels in S1
and S2. Therefore, moist-soil sample sets of S1 and S2 are con-

structed asMS1
= {M 1

S1
,M 2

S1
, . . . ,M

(n×NS1
)

S1
},M i

S1
∈ R1×B

and MS2
= {M 1

S2
,M 2

S2
, . . . ,M

(n×NS2
)

S2
},M i

S2
∈ R1×B , M i

S1

and M i
S2

represent the spectrum of the ith sample in S1 and S2,
respectively. Let the dry soil spectra in S1 and S2 M i

S2
, DS1

∈
RNS1

×B and DS2
∈ RNS2

×B . To match the moist soil sample
sets of S1 and S2, the dry soil spectra in S1 and S2 are extended
to DS1

∈ R(n×NS1
)×B and DS2

∈ R(n×NS2
)×B , respectively.

Therefore, dry soil sample sets of S1 and S2 are constructed as

DS1
= {D1

S1
,D2

S1
, . . . ,D

(n×NS1
)

S1
},D i

S1
∈ R1×B and DS2

=

{D1
S2
,D2

S2
, . . . ,D

(n×NS2
)

S2
},D i

S2
∈ R1×B , D i

S1
and D i

S2
repre-

sent the spectrum of the ith sample in S1 and S2, respectively.
These dry soil spectra sets are the corresponding label sets for
the establishment of MIRNet. To verify the SOC estimation
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model, the corresponding label sets are composed of the SOC
values of the samples in S1 and S2, which are defined as yS1

=

{y1S1
, y2S1

, . . . , y
(n×NS1

)

S1
} and yS2

= {y1S2
, y2S2

, . . . , y
(n×NS2

)

S2
},

respectively.

C. Spectral Feature and Context Information
Extraction Module

The basic purpose of SEM and the CEM is to extract the
influence of SMC implied in moist soil spectra. In the SEM,
hierarchical spectral features are obtained by convolution cal-
culation. The moist soil samples in S1 are fed into the 1-D
ghost module. The basic feature extraction structure of the
ghost network is convolutional layer. These layers constitute
the feature extractor. In the training process, the convolution
kernels learn to obtain reasonable weights. A pooling layer is
added after each ghost module to further control the number
of parameters. The pooling layer can be regarded as a special
convolution process that can reduce the parameters of the model.
The convolutional layer can be defined as follows:

pl
j =

k∑
a=1

pl−1
a ∗ w l

j + blj (1)

where pl−1
a is the ath feature map of the previous (l − 1)th layer,

pl
j is the jth feature map of the lth layer, and k refers to the

number of input feature maps. The weight w l
j and bias blj denote

the descriptions of the jth convolutional filter in the lth layer.
In the 1-D ghost module, a small number of convolutional

filters are used to generate the feature maps. Then, the cheap op-
eration of linear transformation is used to obtain the ghost feature
maps. The linear transformation can be defined as follows:

p̂lj = Φ
(
plj
)

(2)

where p̂lj is the jth feature map of the lth layer and Φ is a linear
transformation. Finally, the real feature maps obtained by the
convolutional layer and the ghost feature maps are combined to
form a complete output.

In the CEM, dilated convolutional layers are used to capture
context information from the separated spectral channels. There
is high similarity between adjacent bands of soil spectra, so it
is possible to learn redundant information by using a traditional
convolutional layer. Therefore, the conventional approach is to
enlarge the receptive field by increasing the size of the convolu-
tion kernel. However, this will increase the amount of calcula-
tion. Due to this limitation of the traditional convolutional layer,
a dilated convolutional layer has been derived to obtain a larger
receptive field without increasing the amount of calculation.

To illustrate the difference between the 1-D dilated convolu-
tional layer and the traditional convolutional layer, a convolution
kernel with a size of 3 is taken as an example. The process of
the 1-D dilated convolution is shown in Fig. 3. The dilation
rates of the dilated convolution in Fig. 3(a)–(c) are 1, 2, and 3,
respectively.

In these figures, the yellow boxes are the equivalent convo-
lution kernel sizes.The blue dot indicates the value of the cor-
responding position of the convolution kernel when the dilation

Fig. 3. Analytical diagram of 1-D dilated convolution with dilated rate (a) 1,
(b) 2, and (c) 3.

rate is equal to 1. The white point in the yellow box represents the
injected hole, and the value is equal to 0. From the perspective
of the size of the receptive field, the receptive field increases
with increasing dilated rate of the dilated convolution. From
the perspective of computational complexity, compared with
the standard convolution, in the case of the same receptive field
(excluding the dilated rate equal to 1), the parameters required
for the dilated convolution training are less than the standard
convolution and the greater the difference between the two
parameters with the increase of the dilated rate. The relation-
ship between the size of convolution kernel r and equivalent
convolution kernel r′ can be defined as follows:

r′ = r + (r − 1) (d− 1) (3)

where d is the dilation rate.
When the dilation rate is equal to 1, the dilated convolution

result is consistent with the standard convolution results. When
the dilated rate is equal to 2, the receptive field of dilated
convolution with convolution kernel size 3 is equivalent to the
standard convolution with size 5. Therefore, the expression of
the receptive field is

Ri+1 = Ri + (r′ − 1)Ti (4)

where Ri is the receptive field of the ith layer, Ri+1 is the
receptive field of the (i+ 1)th layer, and Ti is the product of
strides of all previous layers, which can be defined as follows:

Ti =

i∏
k=1

stridek. (5)

The size of the output feature map is not affected by the dilated
convolution. Therefore, the receptive field can be increased by
using dilated convolution, while the size of the output feature
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map can remain unchanged. This also means that dilated con-
volution can expand the receptive field to obtain the context
information of the spectra and avoid the information loss caused
by the pooling layer.

When the moist soil spectrum of S1 (M i
S1

) is extracted by the
SEM and the CEM, the spectral characteristicsFsiS1

and spectral
context information FciS1

are obtained, respectively. Then, the
two features are concatenated by the concatenate layer, and result
in a multiscale feature F i

S1
as

F i
S1

=
[
FsiS1

,FciS1

]
. (6)

D. Spectrum Reconstruction Module and Residual Estimation

After extracting multiscale features, the proposed MIRNet
reconstructs the spectra through the spectrum reconstruction
module. This reconstruction of the spectra is achieved by de-
convolutional layers and upsampling layers. Since the proposed
MIRNet adopts the idea of Res, through the spectrum reconstruc-
tion module, the influence of SMC on soil spectra is generated
by F i

S1
. This learned influence of SMC can be expressed as

Ê i
S1
, Ê i

S1
∈ R1×B . The basic idea of Res is to build a complex

nonlinear mapping relationship between the moist-soil spectrum
and the SMC influence on the soil spectrum (noise). This rela-
tionship can be defined as follows:

Ê i
S1

≈ E i
S1

= M i
S1

−D i
S1

(7)

where E i
S1

represents the measured value of the SMC influence
on the soil spectrum. The output of the proposed MIRNet is the
estimated dry soil spectrum D̂ i

S1
.

During the training process, we minimize the distance be-
tween the estimated dry-soil spectrum D̂ i

S1
and the measured

soil spectrum D i
S1

by a proposed D-S loss function. The D-S
loss evaluates the similarity of two spectra from two aspects:
spectral space distance and spectral shape. The D-S loss function
is constructed as follows:

L
(
D i

S1
, D̂ i

S1

)
= ds

(
D i

S1
, D̂ i

S1

)
+
(
1− rK

(
D i

S1
, D̂ i

S1

))
.

(8)
In this study, the distance between the soil spectra of samples
is measured by the standardized Euclidean distance. Therefore,
the distance ds(D i

S1
, D̂ i

S1
) can be defined concretely as follows:

ds

(
D i

S1
, D̂ i

S1

)
=

√√√√√∑B
k=1

(
D

i(k)
S1

− D̂
i(k)
S1

)2
(
σi
S1

)2 (9)

where D
i(k)
S1

and D̂
i(k)
S1

are the reflectance values of the spectra

of D i
S1

and D̂ i
S1

in a certain band, respectively. And σi
S1

is the
corresponding variance.

The correlation coefficient r can characterize the similarity
of shapes between two spectra. It can be defined concretely as
follows:

r = B

B∑
k=1

Di(k)D̂i(k) −
B∑

k=1

Di(k)
B∑

k=1

D̂i(k)/

Fig. 4. Framework of the proposed CNNE.

√√√√[B(∑B

k=1
Di(k)

)2

−
(∑B

k=1
Di(k)

)2
]
/

√√√√[B(∑B

k=1
D̂i(k)

)2

−
(∑B

k=1
D̂i(k)

)2
]
. (10)

The proposed sliding correlation coefficient rK introduces the
sliding coefficient K. The estimated spectra D̂

i(k)
S1

move in the
direction of decreasing and increasing K wavelength, the corre-
lation coefficients with D

i(k)
S1

are calculated in the wavelengths
overlap region, and their average is taken as rK .

E. SOC Content Estimation

In this study, a CNN estimation (CNNE) method is proposed
for establishing the SOC content estimation model. This esti-
mation model is used to evaluate the effectiveness of the SMC
influence removal model. The framework of the proposed CNNE
method is shown in Fig. 4. A two-layer CNN is constructed to
extract useful features from the soil Vis-NIR spectra.

Dry soil spectra in theS0 set (Ds0 ) are used to establish CNNE
in this study. The input of the network is the original spectra
Ds0 . The output of the network is the predictive SOC content
ŷs0 . The estimated SOC content and the measured SOC content
ys0 are used to calculate the loss value for adjusting the weight
and offset in back propagation. The loss function can be written
as the following formula:

LCNNE (ys0 , ŷs0) =

NS0∑
i=1

∣∣yis0 − ŷis0
∣∣ . (11)

In this study, moist soil spectra in S2 (M s2 ) are applied to
MIRNet to obtain the estimated dry-soil spectra D̂s2 . Then,
M s2 , D̂s2 , and M s2 are used for CNNE to estimate the SOC
content. The estimation accuracy of the SOC content can be used
as an index to evaluate the accuracy of SMC influence removal
methods.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Design

In the experiments, MIRNet development set S1, which con-
tains 1500 moist soil spectra is split into two nonoverlapping
subsets, including the training set and the validation set. Specif-
ically, the samples in the training dataset are selected from all the
labeled samples in S1 by the stratified random sampling method.
Four SOC intervals (less than 2%, 2 % to 3.5%, 3.5% to 5%,
and more than 5%) are set for the samples in S1. Then, different
proportions of samples are randomly selected from the four
sections. The validation set consists of all the remaining samples.
Here, the validation set is used to evaluate the performance of
the model during the training process. The CNNE development
set S0, which contains 50 dry soil spectra, is split into three
nonoverlapping subsets, including the training set, the validation
set, and the testing set. Specifically, 30 samples in the training
dataset are randomly selected from all the labeled samples in
S0; 10 samples in the validation set are chosen from the leaving
samples; and testing set consists of all the remaining samples.

In the experiments, two classical approaches, EPO [21] and
OSC [15], are adopted for comparison to purposefully illustrate
the validity of the proposed MIRNet. A spectral quantization
method using support vector regression (SVR) is used as a
contrast test to explore the dependence of different methods on
the training sample size. At the same time, three deep-learning-
based methods, DNN, traditional CNN (CNN), and denoising
CNN (DnCNN) [52], are designed to verify the performance
of MIRNet. Specifically, the compared EPO method has one
important parameter named the number of EPO dimensions c.
The optimal threshold value of c is designed to be between 1
and 6 and is chosen to be 2. The compared OSC method has one
important parameter named the number of filter factors k. The
optimal threshold value of k is also designed to be between 1
and 6 and is chosen to be 4. The hyperparameters of the SVR are
set through cross validation. The kernel function is radial basis
function and its coefficient is set to 0.0001. The penalty factor
for the wrong term c is set to 100 and epsilon is set to 0.01.

For deep-learning-based methods, the SEM in MIRNet has
two 1-D ghost modules. Each module contains 32 and 16
convolutional kernels of size 5 and is followed by a maximum
pooling layer of size 5. The CEM in MIRNet used in this study
has two convolutional layers. Each layer contains 64 and 32
convolutional kernels of size 5 and is followed by a maximum
pooling layer of size 5. MIRNet is optimized with Adam and
a learning rate of 0.0001 by minimizing the D-S loss, and the
batch size is 64. The training set and validation set in S1 are used
to determine the parameters and hyperparameters of MIRNet in
the training process. The epoch is set as 3000, and the parameters
received in the last epoch are used in the testing set in S2. For
a fair comparison, the hyperparameter settings of DNN, CNN,
and DnCNN are the same as MIRNet. The experimental results
are reported by averaging the outputs of 20 independent runs.

The CNNE used to estimate SOC content in this study has
two convolutional layers. Each layer contains 64 and 32 convo-
lutional kernels of size 5 and is followed by a maximum pooling
layer of size 5. The CNNE model’s initial learning rate is set

to 0.001. The number of training epochs is set as 1000, using a
batch size of 64 and the Adam optimizer.

In this study, the distance between the spectral vectors is used
to evaluate the accuracy of SMC influence removal. The distance
d is measured by the Euclidean distance d(Di, D̂i) as follows:

d
(
Di, D̂i

)
= sqrt

(
B∑

k=1

d2
(
Di(k), D̂i(k)

))
. (12)

To compare the distance between the spectra before and after
EPO and OSC processing with the deep learning-based methods,
the correlation coefficient r is introduced to judge the similarity.
The normal value range of r is [0, 1]. The closer it is to 1, the
higher the similarity is.

In this study, the determination coefficient R2 score (R2)
and root mean squared error (RMSE) were used to evaluate the
estimation accuracy. The normal value range of R2 is [0, 1]. The
closer it is to 1, the stronger the estimation ability of the model
is. The specific calculation formula of R2 and RMSE is shown
as follows:

R2 = 1−
∑n

i=1

(
yi − ŷi

)2∑n
i=1 (y

i − ȳi)2
(13)

RMSE =

√
1

n

∑n
i=1

(
yi − ŷi

)2
(14)

where yi is the measured SOC content, ȳi is the average of the
measured SOC content, and ŷi is the estimated SOC content.

B. Parameter Analysis

A key parameter dilated rate in the methods using DiCNN is
to affect the level of feature extraction by enlarging or decreasing
the size of the receptive field. Thus, the accuracy of the SMC
influence removal can be affected for the reason. To verify the
influence of the dilation rate, different values of the dilation rate
are analyzed on four DiCNN-based methods with 10, 50, and 90
percent of samples in development set S1. These four methods
include a method using the CEM, a method combining CEM and
Residual Net (CEM+Res), a method combining SEM and CEM
(SEM+CEM), and the proposed MIRNet. The dilation rate is an
integer greater than 0. When the dilated rate is equal to 1, the
dilated convolution is equivalent to the ordinary convolution.
Therefore, the influence of the dilation rate between 2 and 6
on the results is discussed in this experiment. Distance and R2

are used to quantify the effects on the performance of the SMC
influence removal methods.

The related experimental results are shown in Figs. 5 and 6.
As shown in Fig. 5, when the dilation rate is 3, the distance
between the spectra before and after SMC influence removal
is the smallest in all these methods when using different scales
of training samples. This also represents the least difference
between the spectra. As the dilation rate continues to in-
crease, the distance becomes increasingly larger. This is because
when the dilation rate is too large, the size of the receptive field
exceeds the range of the spectral band with greater correlation,
leading to the introduction of meaningless information. Simi-
larly, it can be seen from Fig. 6 that when the dilation rate is 3,
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Fig. 5. Distance on CEM, SEM+CEM, CEM+Res, and MIRNet at different dilated rate when using (a) 10%, (b) 50%, and (c) 90% soil samples in S1.

Fig. 6. Determination coefficient R2 on CEM, SEM+CEM, CEM+Res, and MIRNet at different dilated rate when using (a) 10%, (b) 50%, and (c) 90% soil
samples in S1.

the accuracy of SOC content estimation using the spectra after
removal is also the highest. R2 decreases with the increasing
dilation rate. Therefore, the value of the dilation rate is set to
3 in all the DiCNN-based methods to obtain the most valuable
context information in this experiment. Accordingly, the sliding
coefficient K in the loss function is set to 3.

C. Ratio of Training Samples Analysis

To further evaluate the generalization performance of the
proposed MIRNet, Fig. 7 illustrates the evolution of distance and
R2 when the ratio of training samples in S1 changes. In Fig. 7(a),
the variation of the performance in the proposed MIRNet and
three comparison deep-learning-based methods, SVR, CNN,
DNN, and DnCNN, is analyzed. In Fig. 7(b), EPO and OSC
are added for comparison. The ratio of training samples ranged
from 10 to 90.

As expected, the distance decreases, and R2 increases as the
ratio of training data increases. The DNN method achieves the
best performance using 10% of training samples. However, as
the ratio increases, the performance of the DNN does not show a
significant improvement. This trend may be caused by the small

number of parameters to be fitted for the DNN. Similarly, the
accuracy of SVR is better than that of CNN and DNN on all
numbers of samples, which indicates that the method is less
dependent on the number of samples and has a good fitting
ability. In contrast, CNN, DnCNN, and MIRNet need more
training samples to achieve better results due to the large number
of parameters to be fitted. Therefore, as the scale increases, a
significant performance improvement is shown. As seen from
the experimental results, except at a ratio of 0.1, the proposed
MIRNet obtains the lowest distance and highestR2 compared to
the other methods. This observation demonstrates that MIRNet
has a better generalization performance than the other methods.

Examining the rangeability of distance and R2 as the ratio
increases, although the overall trend indicates an improvement
in performance, there are still subtle differences. The distance
shows a significant decrease with the increase in the ratio on
all these approaches. However, the rise of R2 decreases after the
ratio reaches 0.5. This may be because although the spectra after
removing the SMC influence are very close to the corresponding
dry soil spectra, there is still noise that affects SOC content
estimation in these spectra. Moreover, when the number of
training samples is increased to a certain extent, the remaining
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Fig. 7. (a) Distance and (b) Determination coefficient R2 for EPO, OSC, SVR, CNN, DNN, DnCNN, and MIRNet when using different size of training samples
in S1.

TABLE II
ABLATION EXPERIMENTS FOR COMPONENTS IN MIRNET

noise is increasingly difficult to eliminate even if the number of
training samples continues to increase.

D. Ablation Study

To validate the effectiveness of each component (i.e., SEM,
CEM, and Res) in the proposed method MIRNet, an ablation
study is performed. The mean distance, r, R2, and RMSE on
testing set S2 of different combinations of these modules when
using 90% of samples in S1 are shown in Table II .

From the comparisons of SEM and CEM, it can be found
that the methods using CEM (CEM and CEM+Res) improve the
performance of SMC influence removal by a certain extent com-
pared with the methods using SEM (SEM and SEM+Res). For
example, the values ofR2 increase from 0.892 of SEM for 0.913
of CEM, and from 0.918 for SEM+Res to 0.921 for CEM+Res.
It can be proven that the dilated convolutional layer in CEM can
effectively extract the context information between the spectra.
This contextual information has high guiding significance for
the removal of the influence of SMC on soil spectra.

In addition, combining both SEM and CEM is better than
one component (SEM or CEM) in terms of distance, r, R2, and
RMSE. This is because by using SEM and CEM simultaneously,
spectral features and contextual characteristics can be obtained
at the same time. In this way, the influence of SMC in moist soil
spectra can be fully explored to obtain a better removal effect.

From the comparisons on whether to use Res, it is found
that the methods using Res (SEM+Res, CEM+Res, and
SEM+CEM+Res) achieve a better performance of SMC influ-
ence removal than the methods without using Res (SEM, CEM,
and SEM+CEM). For example, distance achieves decreases of
25.51%, 0.95%, and 46.04% on these three pairs of methods.
Therefore, it is more effective to learn the influence of SMC
through wet soil spectra than to directly fit the corresponding
dry soil spectra.

Based on the conclusions of the aforementioned comparative
experiments, SEM, CEM, and Res in the proposed MIRNet are
found to be effective components for the removal of the SMC
influence. They work collaboratively to render the confidence
level of SMC influence identification and satisfactory removal
performance of the deep-learning-based methods.

E. Spectra Comparison After Removing the SMC Influence

To display the effect of the SMC influence removal by each
method more intuitively, this part draws the soil reflectance
spectral curve after SMC influence removal at different SMC
levels. The removal results of CNN, DNN, DnCNN, and MIRNet
are visually shown in Fig. 8. The removal results shown in Fig. 8
are obtained using 90% of the samples in S1. All the spectral
reflectance curves are averaged on all the samples in the S2
set.
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Fig. 8. SMC influence removal results using (a) SVR, (b) CNN, (c) DNN, (d) DnCNN, and (e) MIRNet when using 90% samples in S1.

It is obvious that these deep-learning-based methods effec-
tively eliminate the influence of SMC on the soil spectra. The
spectral reflectance curves after removal are very close to those
of dry soil (SMC = 0). From the whole reflectance spectral
curves, the moist soil spectra after removal by MIRNet are closer
to the dry soil spectra than other approaches. It can be seen from
the spectral reflectance curves that when the SMC is small (SMC
≤ 16), the removal effect is better.

To show the performance of all these methods more intu-
itively, the spectral reflectance curves of two spectral bands
more subjected to soil moisture are amplified in these figures.

These bands are 1350–1550 nm and 2110–2310 nm. In these
ranges of the spectral band, the moist soil spectra treated by
SVR, CNN, and DnCNN have great differences from the dry
soil spectra compared with MIRNet. For the DNN, the treated
spectra are still much lower than the dry soil spectra at almost
all SMC levels. In general, the variation in the average spectral
reflectance curves of each SMC gradient in the S2 set processed
by deep-learning-based methods is relatively consistent. This
demonstrates obvious similarity, and the difference between
these spectral reflectance curves is small. This shows that these
methods can effectively reduce the influence of SMC on soil
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TABLE III
SMC INFLUENCE REMOVAL AND SOC ESTIMATION RESULTS (VALUES ± STANDARD DEVIATION) ON S2 SET

reflectance spectra. Even the difference in 1350–1550 nm and
2110–2310 nm, which are significantly affected by SMC, are
almost eliminated.

F. SMC Influence Removal Results of all the Proposed
Methods

To better verify the performance of the proposed MIRNet, the
SMC influence removal results of MIRNet and other comparison
methods are sorted out in detail in Table III. The evaluation
indices listed in the table include the distance and r between
spectra before and after SMC influence removal and the accuracy
of SOC content estimation by using the spectra before and after
removal on testing set S2. Each removal method is constructed
using 90% of the samples inS1. Since the spectral data processed
by the spectral conversion methods PDS and OSC are no longer
comparable with the original data, the spectral distances of these
two methods are not listed in Table III.

The correlation coefficient r of the dry and moist soil spectra
before SMC influence removal is 0.829. This suggests that there
is some correlation between these spectra. The detailed SOC
content estimation results of soil spectra before SMC influence
removal are presented in the first column in Table III. The
average testing R2 and RMSE on the dry soil spectra in S2
are 0.96 and 0.22, respectively. However, the average testing
results on the original moist soil spectra are far apart from
them. The most accurate testing R2 and RMSE, using spectra
with 4% SMC, are only 0.15 and 1.03, respectively. From the
results, one can see that because of the influence of SMC, it
is very inaccurate to estimate SOC using moist soil spectra. In
other words, if the in-field spectra are directly input into the
SOC content estimation model based on lab-dry spectra, the

prediction accuracy will be very low. This also means that to
establish the relationship between the in-field spectra and the
existing large laboratory-dry soil spectral database, the influence
of SMC in the in-field spectra must be removed first.

The results of the proposed MIRNet are presented in the
last column in Table III. From the results, one can see that the
proposed MIRNet exhibits the lowest distance and the highest
estimation accuracies on all the spectra in the S2 set. MIR-
Net decreases the distance with SVR and other deep-learning-
based methods, CNN, DNN, and DnCNN, by 60.82%, 65.99%,
70.49%, and 61.08%, respectively. It increases theR2 with SVR,
CNN, DNN, and DnCNN, by 2.05%, 3.67%, 6.48%, and 2.05%,
respectively. EPO and OSC obtain low performance compared
to the other deep-learning-based methods, and their mean R2

values are only 0.703 and 0.747, respectively. It is obvious
that these two methods do not obtain a reliable SMC effect
through a spectral transformation in complex moist soil spectra.
Compared with CNN and DNN, the quantitative removal method
SVR shows better accuracy. This indicates that SVR has a good
removal ability on the dataset with small training sample size.
However, this method still has deficiencies in complex feature
extraction, so its accuracy is still unable to be compared with
MIRNet.

To analyze the performance of each method in a more detailed
way, the removal results of the SMC influence of each method
on the moist soil spectra with different levels of SMC are listed
in detail in Table III. According to the data, with the increase in
the SMC, the estimation accuracy of moist soil spectra before
and after treatment shows a decreasing trend. This is because
the high SMC introduces more complex effects, which greatly
reduces the performance of both the influence removal model
and the SOC content estimation model. The proposed MIRNet
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Fig. 9. Measured versus estimated SOC values of the S2 set for (a) EPO, (b) OSC, (c) SVR, (d) CNN, (e) DNN, (f) DnCNN, and (g) MIRNet.

achieves the highest estimation accuracy in all SMC grades
except 28% SMC. From these experimental results, one can see
that the proposed MIRNet has a strong ability to solve the SMC
influence removal problem by making full use of the powerful
feature extraction ability of the CNN and the idea of Res.

To show the SOC content estimation using spectra after SMC
influence removal of each of the proposed MIRNet and other
comparison methods more intuitively, Fig. 9 shows the contrast

between the measured and predicted SOC values of the testing
samples in the S2 set. It is obvious that the compared methods
EPO and OSC exhibit very ordinary estimation accuracy [see
Fig. 9(a) and (b)], especially for the samples with high SMC
levels. In addition, compared to EPO and OSC, SVR and the
deep-learning-based methods (CNN, DNN, and DnCNN) have
more accurate estimated values [see Fig. 9(c)–(f)]. However,
they still have the problem of poor estimation on samples with
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TABLE IV
SMC INFLUENCE REMOVAL AND SOC ESTIMATION RESULTS (VALUES ± STANDARD DEVIATION) ON S2 SET OF DIFFERENT SOIL TYPES

TABLE V
TOTAL NUMBER OF PARAMETERS AND TRAINING TIMES IN DIFFERENT METHODS

high SOC. Besides, the proposed MIRNet shows good estima-
tion accuracy at all SMC levels [see Fig. 9(g)]. From these
figures, it can be seen that the proposed MIRNet has a better
performance in comparison to other> methods.

G. SMC Influence Removal Results of Different Soil Types

In the aforementioned experiment, yellow-brown soil and
black soil samples are considered as a whole. In order to analyze
the effect of the SMC influence removal methods in this study
on the samples of different soil types, the two types of soil are
further trained separately. The sets S0, S1, and S2 of each soil
type contains 25, 50, and 25 samples, respectively. Similarly,
90% samples in S1 are used as training samples to train the SMC
influence removal methods. To better verify the performance of
the methods on different soil types, the SMC influence removal
results of MIRNet and other comparison methods on the two
soil types are sorted out in detail in Table IV.

It can be seen from the experimental results that the removal
accuracy of the two soil types modeled separately still shows the
same results in different methods. The R2 of brown-yellow soil
and black soil using MIRNet are 0.914 and 0.905, respectively,
and are higher than other methods. Simultaneously, one can see
from the results that the modeling accuracy of yellow-brown
soil samples is slightly higher than that of black soil in all
removal methods. This phenomenon may be caused by the fact
that the distribution difference of SOC in yellow-brown soil in
this dataset is smaller than that in black soil.

H. Running Time

The experiments are run on a computer with an Intel Core
i7-6200 U processor with a 2.30-GHz CPU and a GeForce GTX
970 graphical processing unit. Table V reports the total number
of parameters and training time of different approaches when
using 90% of samples in S1.

Compared to the reference methods, the proposed MIRNet
has a similar number of parameters because the structure of
the ghost module effectively reduces the number of parameters

that need to be fitted. For the DnCNN method, the number of
parameters is identical to the ordinary CNN. This shows that Res
does not introduce any more parameters. For the DNN method,
the training time is faster in comparison to other deep-learning-
based methods. Specifically, the training of DNN only takes
160.35 s, but the performance is not optimal. Similarly, PDS
and OSC also have this problem, the training speed is fast, but
with poor results.

V. DISCUSSION

To solve the problem that soil spectra collected in situ will be
affected by SMC and that the estimation accuracy is very low
when such spectra are directly used to estimate SOC content,
this study proposed an SMC influence removal model based on
deep learning. The proposed MIRNet directly fits the influence
of SMC on soil spectra through the idea of Res, which improves
the removal accuracy. Moreover, the soil spectra removed by
MIRNet are closer to the corresponding dry soil spectra through
the proposed D-S loss.

The results of the aforementioned experiments effectively
prove the advantages of the proposed MIRNet from multiple
perspectives. First, MIRNet successfully removes the effects of
SMC on soil reflection spectra. It can be seen from Table III that
the removal effect of this model is not only better than the tradi-
tional EPO [21] and OSC [15] but also better than the relatively
advanced SVR quantitative method and multiple deep learning
models. It is particularly worth mentioning that the processing
effect of this model is better than that of the DnCNN [52] method,
which is widely used in other data denoising fields. Second,
compared with the EPO and OSC methods, MIRNet can directly
obtain reconstructed dry soil spectra. In addition, Table III and
Fig. 9 show that the EPO and OSC methods have poor effects
on the removal of the spectra with high SMC, while the deep
learning method and MIRNet have better effects on these parts.
This is because quantitative methods such as SVR and deep
learning have successfully learned the relationship between the
change in the spectra and SMC. Third, it can be seen from Fig. 8
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that compared with other methods, the shape of the soil spectrum
treated by MIRNet is the closest to that of the corresponding dry
soil spectrum. This is because by using D-S loss in the training,
the spectral shape is also used as an important index in MIRNet
to evaluate the model effect.

The experimental data in this study are all spectral data
collected in the laboratory. However, the important requirements
of smart agriculture at present are rapid and accurate SOC
estimation and large-scale soil investigation. With the rapid de-
velopment of remote sensing technology, many multimodal data
with complex and heterogeneous observations can be obtained.
If these remote sensing data are combined with interpretive data
such as SMC and roughness in large areas, they can form an
excellent data source for large-scale soil investigation. Deep
learning has been successfully applied to multimodal remote
sensing data processing due to its ability to mine deep features
and powerful processing capabilities. Therefore, the proposed
MIRNet provides a theoretical basis for such large-scale soil
investigations.

Admittedly, the main limitation of this study is the relatively
small size of labeled soil samples, as deep learning methods
are highly dependent on the training sample size. Therefore,
when designing the structure of MIRNet, we built a lightweight
network by controlling the number of layers and modifying the
structure. It can be seen from Fig. 7 that when the proportion of
training samples increases to 50%, the distance still tends to rise,
but the range of accuracy improvement is obviously reduced.
This indicates that the current training sample size is sufficient
for the proposed MIRNet. However, such a lightweight network
may have limitations if there are requirements for SMC influence
removal in a large range of soil data. If a network with a more
complex structure is to be trained, the corresponding training
sample size also needs to be expanded. Unfortunately, due to the
complexity of soil sample preparation and the expensive cost of
soil SOC chemical testing, it is difficult to expand the sample
size. Therefore, in future studies, we hope to expand the number
of training samples to try to construct a deep-learning-based
SMC influence removal model that can meet more complex
tasks.

VI. CONCLUSION

In this study, the idea of removing SMC influence with a
deep-learning-based method was investigated for the first time.
MIRNet with three important modules (SEM, CEM, and Res)
was proposed for SMC influence removal. First, SEM explored
spectral feature extraction by building a ghost module, which
provides an excellent SMC influenced characteristic screen-
ing ability and effectively addressed the problem of a limited
number of training samples. Second, CEM explored spectral
context information extraction by building DCNN, which took
advantage of correlations between spectral bands. Third, Res is
used to learn the SMC influence from moist soil spectra rather
than directly fitting dry soil spectra. Finally, MIRNet is used to
build a trustworthy system for SMC influence removal in the
combination of these three modules.

The experimental results showed that the proposed MIRNet
improved the performance of SMC influence removal and SOC

estimation with the processed spectra at the same time. Using
the trained removal model, the effect of SMC on the spectra
can be effectively removed under the condition of unknown
SMC. This study provides a theoretical reference for the rapid
monitoring of soil fertility information under the condition of
unknown SMC in the field with deep-learning-based methods.
In practical application scenarios, the proposed MIRNet can not
only be used for soil property content estimation based on spectra
data collected in the field but also be extended to large-scale soil
properties content monitoring based on hyperspectral remote
sensing data of aviation or astronautics. At the same time, this
method can also be used to remove the influence of other soil
characteristics in soil spectra, which is an important research
direction in future work.
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