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Machine Learning-Based Estimation of
High-Resolution Snow Depth in Alaska Using

Passive Microwave Remote Sensing Data
Srinivasarao Tanniru and RAAJ Ramsankaran

Abstract—Snow depth (SD) knowledge is significant in many ap-
plications related to hydrology, climate, and disaster management.
Many SD models are developed using multifrequency spaceborne
passive microwave (PMW) brightness temperature (Tb) observa-
tions because of their sensitivity to SD. The sensitivity of Tb to SD
is affected by snow metamorphism, which constrains the utility of
several empirical and conceptual models for estimating SD. For the
first time, extremely randomized trees (ERT), a machine learning
algorithm, which is less susceptible to data noise, is used in this
study for estimating SD at high resolution (1 km×1 km) for Alaska.
Different ERT SD models (i.e., Alaska wide model, zonal model)
are developed using Advanced Microwave Scanning Radiometer-2
data and auxiliary datasets for various Alaska regions during
2012–2021. These models are evaluated using three different cross-
validations (i.e., sample, spatial, and temporal). Further, ERT mod-
els’ predictive power assessment is performed using independent
spatial, temporal datasets. The results indicate that: 1) inclusion of
auxiliary parameters improves the accuracy of ERT SD estimates;
2) there is no substantial difference between the zonal and Alaska
wide ERT model estimates; 3) when SD >30 cm, the ERT models
have outperformed the AMSR-2 product, the GlobSnow product,
and the Chang model; 4) the mean absolute error in SD estimates
increases with a decrease in latitude, an increase in elevation, and
from early winter to late winter across Alaska. Overall, this study
shows that the ERT SD model has good potential for improving
moderate to deep SD estimates.

Index Terms—Machine learning, passive microwave remote
sensing, snow depth (SD).

I. INTRODUCTION

SNOW is a critical climatic variable that exerts both positive
and negative effects on earth systems [1] under different

conditions. Snow, with its high albedo feedback, is frequently
associated with arctic amplification, which has resulted in a
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rise in temperature that is almost double the global average [2].
Snow is a significant resource for different water bodies serving
approximately (1/6)th of the worldwide population. The chang-
ing hydrological, ecological, and natural ecosystems pertaining
to climate change in snow-covered regions are predominantly
attributed to the variations in snow cover area (SCA), snow
depth, and snow water equivalent (SWE) [3], [4], [5], [6], [7], [8].
Numerous applications related to climatology, meteorology, hy-
drology, and disaster management require the spatiotemporal
information of snowpack parameters such as snow cover, snow
depth, and SWE [9], [10], [11], [12], [13], [14], [15].

Space-borne passive microwave remote sensing (PMW) has
been extensively used for over four decades (1980–2020) for
monitoring various spatiotemporal characteristics of the snow-
pack including snow depth at different scales all over the
globe [16], [17], [18], [19]. PMW radiation penetrates the snow-
pack, and offers cloud free snow data under all weather condi-
tions with high temporal resolution [20]. PMW emission from
a snowpack primarily contains two components, i.e., emission
from snowpack volume and underlying ground. The combined
emission from these two components is recorded as passive
microwave brightness temperature by the sensors onboard the
various platforms [21]. The emission from the ground is sub-
jected to both volume scattering, and absorption depending on
the state (i.e., dry or wet), microstructural characteristics of the
snowpack [21], [22]. In dry snow, where grain size is comparable
to PMW wavelengths, internal volume primarily takes place.
Snowpacks having a higher depth constitute higher number of
snow grains, thereby attenuating more PMW radiation. Larger
attenuation of PMW radiation occurs at higher frequencies as
compared to lower frequencies [23], [24], [25]. In the case of
wet snow, for a given snow depth with increase in wetness,
the brighntess temperature increases. Whereas with an increase
in grainsize, the PMW brightness temperature decreases [26].
Therefore, brightness temperature observations collected by
passive microwave satellites at different frequencies are sensitive
to snowpack characteristics such as snow depth, density, and
grain size [19], [27], [28], [29], [30], [31], [32], [33], etc.
Depending on snowpack conditions, the snow depth penetration
of PMW waves varies from 10 to 100 times its wavelength [21],
[29]. As a result, PMW brightness temperature data offers valu-
able insights into understanding snowpack depth. Snow depth
is positively related to PMW scattering and negatively related
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to brightness temperature [34]. Thereby, PMW brightness and
temperature observations are extensively used in many studies
for estimating snow depth over different parts of the world [16],
[18], [35], [36], [37], [38]. Further, PMW observations are
also used for the development of hemisphere scale operational
snow products, i.e., AMSR-2 snow depth [39], GlobSnow snow
water equivalent (SWE) [40], etc. AMSR-2 product is developed
using a dynamic approach consisting of polarization ratio to
account for snowpack microstructure variation [41]. Whereas,
the GlobSnow product [40] is developed through the assimi-
lation of synoptic snow depth observations into the Helsinki
University of Technology (HUT) snow emission model [42].
The forward brightness temperature simulations from the HUT
model, and PMW observations from various instruments on-
board the NIMBUS-7 and Defense Meteorological Satellite
Program (DMSP) satellites are used in the Bayesian difference
minimization scheme to retrieve snow depth. However, both
products have problems with overestimation of shallow snow
depth, and underestimation of deep snow depth as demonstrated
by several studies [38], [43], [44].

Many algorithms for snow depth estimation were devel-
oped using an empirical relationship between snow depth and
brightness temperature difference of different frequencies and
polarizations [16], [18], [41], [45], [46], [47]. However, the
relationship between snow depth and brightness temperatures is
not linear and is affected by various other snowpack properties,
topographic, and environmental variables [14], [19], [23], [32],
[48], [49]. The nonlinear and conceptual models developed by
different researchers [32], [42], [50], [51], [52] to account for the
limitations of linear models also have drawbacks in estimating
snow cover thickness due to saturation of microwave response
with increasing snow depth, and snowpack conditions [53].

Snow depth estimation using PMW brightness temperatures
is an ill-posed problem that requires knowledge of various
variables related to snowpack microstructure [22], [52], to-
pography [54], [55], and landcover characteristics [29], [41],
[47]. Data on all these variables are scarcely available; hence,
many linear [16], [18], nonlinear [32], [56], and conceptual
models [42], [52] were developed by generalizing the unknown
parameters. Therefore, these models can result in biased esti-
mates if the study region does not relate well with the generalized
parameters. In this regard, the potential of data-driven techniques
comprising various machine learning models such as support
vector machines, random forests, etc., have been explored in
several studies [33], [44], [57], [58], [59], [60], and these tech-
niques have resulted in improved snow depth estimates. For
example, Wang et al. [58] have developed a deep learning model
for estimating snow depth over Alaska. Their method has shown
good accuracy in snow depth estimations, with a mean absolute
error (observed in cross-validation results) as low as 10 cm.
However, their method [58] is not evaluated independently in
different regions. Further, no inference was made on the model
performance on spatially and temporally independent data loca-
tions. Though machine learning models have shown potential in
estimating snow depth, these models also have limitations such
as poor explainability, complex architecture, high computation
time, extensive data requirement for training, etc. For example,

machine learning models such as random forest and support
vector machines in their default settings are susceptible to noise
and outliers in the data resulting in high bias and variance in the
machine learning model estimates [61].

Extremely randomized trees (ERT) [62] is a machine learning
algorithm that partially addresses the long training time and high
bias-variance problems associated with conventional tree-based
models in the case of large noisy datasets. It has been suc-
cessfully implemented in many studies, such as estimating soil
moisture, PM 2.5 [56], [63], [64], etc. However, the potential
of the ERT algorithm in estimating snow depth has not been
investigated so far. PMW TB observations for a given snow
depth can vary depending on the snowpack conditions (i.e.,
snow grain size, density, wetness, etc.). Thus, the PMW TB
data used for developing snow depth models generally contains
significant noise. This is more prominent in the case of thicker
snowpacks, as the TB saturates with an increase in snow depth.
The heterogeneity in TB resulting from contributions from
mixed land canopy, diverse snowpack microstructures involving
larger grain size, and density can lead to noise in the data, thereby
affecting the training and testing of snow depth estimation mod-
els. Therefore, the present article presents ERT-based approach
for snow depth estimation in the Alaska region. While many
studies based on machine learning techniques are carried out
to estimate and understand snow depth using PMW [33], [44],
[58], studies addressing the variation associated with climato-
logical zones are not present. Alaska is a large and important
region in the Arctic region with a diversity of environments,
from coastal to interior and from temperate to arctic. In this
regard, this article also investigates if there is any advantage to
implementing zonal models (explicitly developed for different
regions in Alaska) over the Alaska wide model (designed for
the whole of Alaska). The performance of a machine learning
model can be affected by model drift resulting from conceptual
and data shifts that may occur temporally [65]. This is very
important in earth science problems [66], where many variables
such as temperature, precipitation, etc., tend to have cyclicity and
spatiotemporal variations. Hence, spatial and temporal valida-
tion of the models is essential. However, previous studies [58],
[67] conducted over Alaska for snow depth estimation using
machine learning have not conducted such an evaluation while
developing the snow depth model. Localized spatiotemporal
variation in attributes affecting the PMW response may impact
the machine learning model (Alaska wide snow depth model), as
the model generalization related bias can impact the predictions.
Hence, this article also presents an overview of how MAE in
model estimates of snow depth vary with different auxiliary
parameters.

Accordingly, the current study has the following four
objectives.

1) Development of new snow depth models using ERT algo-
rithm for Alaska, the study region.

2) Evaluating the performance of models on spatially and
temporally independent observations.

3) Assessment of the zonal, Alaska wide ERT snow depth
models, AMSR-2, GlobSnow, and Chang snow depth
products in different regions within the study area.
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Fig. 1. Alaska map representing the grouped climatic zones, mean LST (2012–2020), and mean snow depth (2012–2020).

4) Analysis of MAE of ERT snow depth model estimates in
the study area with respect to the auxiliary variables.

The rest of this article is organized as follows. Section II de-
scribes the study area’s geographical, topographical, and climate
attributes. Snow season climatology is also briefed in Section II.
This emphasizes why the assessment of zonal regional models is
carried out in this study. Section III describes different datasets
used in the study. Following that, Sections IV and V present
the methodology and discuss the results, respectively. Finally,
Section VI concludes this article.

II. STUDY AREA

Alaska is present between the latitudes of 51 ◦N to 71 ◦N and
longitudes of 130 ◦W to 180 ◦W, as shown in Fig. 1. Geograph-
ically, it is located in the higher latitude region of the northern
hemisphere; hence the cold climate is present for most of the
months of the year. Alaska has a long coastline of 53 100 km as
a boundary shared with three oceans, i.e., the North Pacific, the
Bearing Sea, and the Arctic Ocean, in the north, south, and west
directions, while the east side boundary is shared with Canada.
Brooks and Alaska mountain ranges located in the north and
south-central areas, respectively (see Fig. 2), are the prominent
topographical features of Alaska state. The southeast of the
Alaskan range is characterized by steep terrain.

Alaska’s geography and coastal configuration strongly define
the climate of various regions in Alaska. Bieniek et al. [68]

have identified 13 different climatologically consistent regions
in Alaska. In the current study, for developing machine learning
models these 13 regions are grouped into six zones based on
the previous climatological regions [69], adjacency, and land
surface temperature (LST) variation. There exists a substantial
variation of LST across various Alaska zones. Different climatic
zones of Alaska, mean LST variation (2012–2020), and average
snow depth observed over each zone during 2012–2021 are
shown in Fig. 1. The northern region has lower temperatures
and less precipitation. In contrast, southern and western coastal
parts experience relatively higher temperatures and higher pre-
cipitations. Northern Alaska has a polar climate, Central Alaska
has a continental climate, and Southern Alaska has a maritime
climate.

Snow cover and snowfall are prominent features of the climate
in Alaska. The snow season constitutes all months of the year
except May through September. However, strong interannual
variation exists in the snow pattern across various zones of
Alaska. Mountainous and northern locations have stable snow-
pack that does not melt out until late May or June. In contrast,
snowmelt events are common in interior regions from late April
to early May and march to April in low-altitude regions of
southern Alaska. Further, even during the winter, some of the
Aleutian Islands and coastal areas of southeast Alaska do not
have consistent snow cover. This diverse climate and topograph-
ical conditions prevailing in Alaska pose significant challenges
in estimating snow depth using remote sensing.



6010 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 2. Elevation map of Alaska.

III. DATASETS

Auxiliary features such as vegetation and elevation can im-
pact the accuracy of snow depth estimations from snow depth
models [54], [70], [71]. Hence, along with passive microwave
data, various other auxiliary datasets are used in this study for
constructing the ERT snow depth model. The details of different
datasets are given in the following Sections III-A to III-D.

A. In Situ Snow Depth Observations

The Global historical climate network (GHCN) compiles
the daily summaries of in situ weather observations such as
air temperature, precipitation, snow depth, and others from a
network of more than 10 000 worldwide stations. The daily
snow depth datasets contain information about the station, such
as station id, latitude, longitude, elevation, quality flags, and
snow depth. Daily snow depth observations for the snow sea-
son, i.e., from September of each year to May of next year
during 2012–2021 from 167 stations over the Alaska region
are collected from the GHCN archive of climate data online
portal (https://www.ncei.noaa.gov/cdo-web/). Quality control
of observations is carried out before storing the data in the GHCN
archive. A total of 135 348 snow depth observations collected
during the study period are used for developing and evaluating
different snow depth models. These observations are separated
into six groups based on the zones divided (see Fig. 1).

B. AMSR-2 PMW Brightness Temperature Data

Advanced Scanning Microwave Radiometer -2 (AMSR-2) is
a PMW sensor onboard the JAXA Global Change Observation
Mission 1st-Water (GCOM-W1) SHIZUKU satellite launched
in May 2012. AMSR-2 sensor records microwave emissions
from the earth in 14 different channels operating at seven differ-
ent frequencies (6.9, 7.3, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz).
It has global spatial coverage with different spatial resolutions
at different frequencies and a temporal resolution of 1 d. The
selected specifications of AMSR-2 are given in Table I. More
details about the GCOM-W mission and AMSR instrument
are available in the JAXA portal (https://suzaku.eorc.jaxa.jp/
GCOM_W).

AMSR-2 level-3 gridded brightness temperature data of the
descending pass at 10 km resolution in 14 channels (7 frequen-
cies, with H and V polarizations) during 2012–2021 for the snow
season (September to May) is used in the current study. The
AMSR-2 snow depth product is also collected to compare with
the ERT snow depth product and in situ snow depth observations.

C. Elevation Data

Topographic information such as elevation, slope, and aspect
affect the characteristics of snowpack [54], [70], [71]. Further,
in a given region, high altitude mountain ranges typically have
higher snow depth compared to less altitude regions. Hence,
elevation and its derivatives are used in different studies for

https://www.ncei.noaa.gov/cdo-web/
https://suzaku.eorc.jaxa.jp/GCOM_W
https://suzaku.eorc.jaxa.jp/GCOM_W
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TABLE I
GCOM-W1/AMSR2 CHANNEL SPECIFICATIONS

Fig. 3. Vegetative cover fraction map of Alaska.

improving the accuracy of snow depth estimates [32], [33],
[58]. GTOPO30 is a global elevation model dataset that provides
elevation at a spatial resolution of 30 arc seconds (approximately
1 km) and is used in this study along with other datasets for
estimating snow depth.

The topographical elevation variation over different regions
is shown in Fig. 2. The highly elevated regions in Alaska are
typically underlain by the presence of mountains, which act as
natural boundaries between different climate zones and define
the regional climate in the respective regions. Apart from moun-
tain ranges, almost 50% of the area is relatively flat and present
within 400 m elevation.

D. Vegetative Cover Fraction

Forest cover fraction intercepts PMW emission from the
snowpack beneath the ground and contributes its own emission,

resulting in inaccurate model estimates of snow depth [17].
Hence, many studies have attempted to account for the effect of
forest canopies while estimating snow depth using PMW remote
sensing [17], [19], [72], [73].

In the current study, continuous vegetation product from
MODIS, i.e., MOD44B - Version-6 [74] is used to account for
the vegetation cover in the study area. MOD44B dataset provides
information on the tree and nontree vegetation cover fraction at
250 m. In the Alaska region, the north slope region is devoid
of vegetation, while continental Alaska comprising the south,
central, and north interior regions has extensive forest cover,
i.e., as much as 50% in some locations, as shown in Fig. 3.

E. AMSR-2 SD Product

AMSR-2 SD product is developed using brightness tempera-
ture observations from ASMR-2 sensor onboard the GCOM-W1
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satellite. The SD retrieval algorithm initially checks for the snow
depth condition, i.e., shallow or snow. The polarization factor
that is used to control the effect of snow grain size is optimized
throughout the product development [41]. Following that, the
snow depth is retrieved based on the landcover condition using
brightness temperatures (at frequencies of 10, 18, and 36 GHz),
polarization factor [75]. In this study, AMSR-2 SD product
during 2018–2021 is used to compare with ERT snow depth
estimates.

F. GlobSnow Product

Global Snow Monitoring for Climate Research (GlobSnow)
is a satellite-based daily SWE product for the northern hemi-
sphere [40], [76]. GlobSnow SWE products were developed
using PMW data from the Scanning Multichannel Microwave
Radiometer (SMMR, 1980–1987), Special Sensor Microwave
Imager (SSM/I), and the Special Sensor Microwave Im-
ager/Sounder (SSMI/S) (1988–till). The SWE estimation in
GlobSnow consists of three essential steps: 1) estimation of
snow grain size for in situ locations using an inversion scheme
with HUT model; 2) generation of background snow depth and
snow grain size using Kriging; and 3) SWE estimation using a
Bayesian assimilation scheme. The near real time GlobSnow
SWE product (during 2018–2021) is used in this study for
comparing with ERT snow depth model estimates. The Glob-
Snow SWE is converted to SD by adopting a density value of
240 kg/m3.

IV. METHODOLOGY

The present study implements the ERT algorithm for develop-
ing different snow depth models using the PMW brightness tem-
perature data and auxiliary data consisting of geographical and
topographical attributes. A large-scale ERT snow depth model
(i.e., Alaska wide model) for the entire Alaska is developed
utilizing the data from the whole of Alaska. Similarly, a zonal
ERT model is developed separately for each of the six different
climatic zones (see Fig. 1) of Alaska to understand if there is any
advantage in using these zonal models. The Alaska wide model
is implemented with two different configurations, i.e., with and
without auxiliary attribute data, to emphasize the importance
of topographical, vegetation, and location parameters for model
development. Details about the ERT algorithm and a descrip-
tion of the methodology are given in Sections IV-A and IV-B,
respectively.

A. Extremely Randomized Trees

An extremely randomized tree [62] is an ensemble of decision
trees and is a variation of the random forest tree technique. ERT
combines multiple fragile learners to generate a strong predictor
using the ensemble process. In high noise datasets, traditional
tree-based algorithms such as random forests have drawbacks
such as high bias and variance caused by the optimal cut-point
selection [62] at each node. ERT attempts to address the high
variance in the predictions from a noisy dataset by randomizing
both the cut-point and attribute selection at each node. Unlike

Fig. 4. Scheme of the extremely randomized tree model.

bagging models, where boot-strapped data are used for learning,
entire samples are used for learning in each decision tree of
the ERT. Thus, several decision trees generated from the entire
training sample are ensembled to ascertain the final result of
the model. The random split-point selection and usage of the
entire training data for tree development helps to reduce the bias,
while ensembling aids to prevent the model from overfitting and
making it insensitive to noise in the data. Another advantage
is that ERT offers a considerable reduction in training time,
i.e., as much as 50%–60% compared to other tree models such
as random forest and tree bagging depending on the training
samples and attribute space. A simple figure illustrating the
extreme randomized tree model is shown in Fig. 4.

By default, the entire attribute space is used while developing
the ERT model to get highly randomized trees in an ensemble,
producing less variance. While the minimum number of leaves
for split depends on the nature of the dataset, in general, a
higher number for split leads to smaller trees with higher bias
and variance. The optimal number for this shall be set based
on the noise present in the dataset. The number of trees is
another parameter, where error monotonically decreases with
an increase in the number of trees. However, a large number of
trees increases computation time. Hence, these parameters need
to be configured carefully as each setting produces a result with
varying training time and accuracy.

B. Model Development

Detailed information involving various processes such as
pre-processing, model development, etc., are given in following
subsections from 1 to 3. Various steps implemented for the
development of the model are shown in Fig. 5.

1) Data Preprocessing: All datasets are processed to match
the resolution and coordinate system. Elevation, slope, and
aspect data are of 1 km resolution, and vegetation fraction data is
of 250 m resolution, whereas AMSR-2 brightness temperature
data is at 10 km resolution. Accordingly, in this study all datasets
are resampled to 1 km × 1 km resolution. The direct resampling
of AMSR-2 TB will not change the TB values within the area
occupied by the original 10 km pixel. Consequently, for the
entire 10 km× 10 km grid of AMSR-2, TB values would remain
the same. However, the distribution of snow depth at a given
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Fig. 5. Flowchart representing the methodology.

location can be greatly affected by topographical parameters.
The data for these parameters (i.e., elevation, slope, aspect,
and vegetation fraction) exhibit considerable spatial variation
at 1 km resolution. Therefore, the snow depth model developed
by incorporating the auxiliary parameters will show variation at
1 km. After resolution matching, information from these datasets
for selected GHCN stations is retrieved (based on latitude and
longitude) for further processing comprising data standardiza-
tion and transformation. Standard techniques in exploratory data
analysis and feature engineering of machine learning such as
data cleaning, logarithm transformation, one-hot encoding, etc.,
are implemented on relevant features during the data processing.
The in situ snow depth observations are screened for missing val-
ues and error values in the initial processing. The microstructure
characteristics of snow can vary with snow accumulation, stabi-
lization, and melt processes, which are temporal activities [77].
Hence, in this study, the time information is used along with
other variables for training the ERT model. The snow depth
distribution in different zones of Alaska (see Fig. 7) is analyzed
to understand and prepare the snow depth data for training the
machine learning model. The results of the snow depth analysis
are given in Section V-A.

2) Screening of Snow Pixels: The identification of snow-
covered pixels in the study region is conducted using Grody’s
decision tree [78]. Different filters are applied to the bright-
ness temperature data of AMSR-2 for identifying the pixels
representing precipitation, wet snow, frozen desert, etc. These
nonsnow pixels are removed from the data to contain only snow
pixels.

TABLE II
PARTITION OF TRAINING, AND VALIDATION DATASETS FOR EVALUATION, AND

ASSESSMENT OF PREDICTIVE POWER OF THE MODEL

3) Training the ERT Model: The standardized and prepro-
cessed data from GHCN stations is partitioned into different
groups (i.e., group-A, group-B) as given in Table II for the
development and testing of the model. Approximately 10% of
stations from each zone are randomly selected to form group-B
stations, and the remaining stations are considered as group-A.
Data for the snow season, i.e., from 1st September of each year to
31st May of next year during 2012–2021 (9 years), is considered
for developing and evaluating different models. The ERT model
is trained using the screened snow pixel data from Grody’s
tree to fit the relationship between snow depth and multiple
selected independent variables, i.e., brightness temperature data,
topographical data, location, and time. Different datasets, i.e., in
situ snow depth, PMW brightness temperature data, and topo-
graphical information, are processed and divided into six groups
(i.e., one group for each zone of Alaska) to develop different
snow depth models. The data grouped for each independent zone
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Fig. 6. Relative feature importance score calculated based on gini impurity index from random forest.

is used in training the respective zonal ERT snow depth model.
Further, Alaska wide single snow depth model is developed by
training the model using data from all zones.

Most of the early studies used 18 and 36 GHz brightness tem-
peratures to estimate snow depth [16], [18], [29]. However, few
studies have also reported that based on snowpack conditions,
brightness temperature of 10 and 89 GHz correlates with snow
depth [79]. Henceforth, the correlation of brightness temperature
from a particular frequency with snow depth is highly variable
and largely dependent on the snow depth conditions, which vary
from place to place, and sampled subsets. Further, in data-driven
models, the physical/conceptual relation between attribute space
is not essential for the development of the models. Therefore, un-
like previous studies, where only brightness temperature data of
selected frequencies are used, in this study, all seven frequencies
in both polarizations (H and V) are supplied to the ERT algorithm
to construct the snow depth model. However, before developing
the model, the parameters which have high mutual correlation
(>0.9) are identified. Following that, different SD models are
developed using all single parameters from each correlated
group. The feature resulting in the lowest mean absolute error
is selected from each group in addition to the other variables for
the model development. Thus, feature optimization is carried out

during the development of all SD models. The relative feature
importance score (based on gini-impurity reduction) calculated
for different parameters is depicted in Fig. 6. These results
indicate that each of the single parameter used in the model has a
weak connection with SD for deriving the model. This can lead
to a lot of uncertainty in estimating SD from the developed SD
model. However, the optimal model configuration, together with
feature combination, can address this problem to a certain extent.
Further, the selected machine learning approach, i.e., ERT is
reliable in these situations [62], where generalization of the
models is highly necessary. Therefore, for the development of
the model, snow depth is considered as a function of brightness
temperature at different frequencies, location, and topographic
information such as altitude, slope, aspect, vegetation cover
fraction, etc. Along with these parameters, time is also con-
sidered an important parameter as it can have an impact on the
characterization of snowpack microstructure

Snow depth = f(Tbi, La, Lo,H, S,A, F, T ) (1)

where Tbi = Brightness temperature of frequency i (where i
varies as 6, 7, 10, 18, 23, 36, and 89 GHz), La = latitude,
Lo = longitude, H = Elevation, S = Slope, A= Aspect, F = for-
est cover fraction, and T = month.
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TABLE III
DESCRIPTIVE STATISTICS OF OBSERVED SNOW DEPTH IN DIFFERENT ZONES

In each zone to develop the ERT snow depth model, the
training dataset is considered as a set of n-number of observation
samples, i.e., Si = S1, S2, ..., Sn, where each observation sample
Si = f1, f2, ..., fp is a p-dimensional vector, with f1, f2, ..., fp
representing the value of p no of characteristic features such as
brightness temperature, elevation, slope, vegetation, etc. Though
ERT is less sensitive to outliers and multicollinearity, removing
multicollinearity can improve the training time [62]. Hence,
before training the ERT model, highly correlated variables
(above 0.9) are identified and filtered in each model’s dataset to
remove multicollinearity. The ERT model has three important
user-defined parameters, i.e., 1) number of trees (M); 2) number
of attributes selected at each node (K); 3) minimum number of
samples required for splitting the node (nmin). Adding more trees
does not necessarily mean a significant improvement to the ERT
model, as the gain in the predictive performance of the algorithm
would be small with the addition of more trees [80]. Further,
the model/errors cost also stabilizes after a certain number of
trees. Hence, hyperparameter tuning is used to select M and nmin

values. For training the model, as suggested by [62], all features
and the entire training data sample are selected at each node for
creating M number of independent decision trees. In the current
study, M and nmin values varied from (150–200) and (4–8),
respectively, across different regions for different ERT models.
The mean of the results computed from all trained decision
trees is considered as the snow depth estimate for the given
sample.

The evaluation of the model is carried out using three different
types of cross-validations. Then predictive power of the model
is assessed using spatial and temporal independent datasets.
The detailed information about ERT model(s) evaluation and
assessment of predictive power is described in Section IV.

4) Evaluation Approaches of the Model(s): The performance
of the developed ERT models is evaluated using the K-fold
cross-validation (K-CV) technique [81], [82], where the data
is divided into K-groups, and samples in each group are tested
using the model trained from the remaining groups. Thus, the
model is evaluated for K-times using a different test data fold
each time, thereby testing all samples. The model evaluation
metrics obtained during testing of each fold are averaged to
calculate the final assessment of the model performance. The
CV approach enables checking for problems such as overfitting
and bias-variance variability. However, in the normal K-fold
CV approach, validation is carried out using randomly grouped
equal-sized samples (sample-based K-CV), which are often not
spatially and temporally independent. Hence, sample-based CV
does not indicate the generalized performance of the model.

Fig. 7. Distribution of observed snow depth in different zones of Alaska.

Therefore, in the present study, along with random sample-
based CV two more approaches, i.e., temporal and spatial K-CV
are used to evaluate whether the model is generalized spatially
and temporally. These additional grouped K-CV approaches
have been used for the evaluation of machine learning models
in various other studies [44], [83], and operates similar to the
sample K-CV approach. In these CV approaches, instead of
random samples, year information from the date (time) and
station location id (space) were grouped into K-folds for tem-
poral and spatial K-CV, respectively. For sample-based K-CV,
the K value is set to 10. In contrast, in space and temporal
CV, the K value is set as 3 to facilitate a sufficient amount
of data for training and testing the model. Data from group-A
stations during 2012–2013 to 2017–18, is used for implement-
ing all three types of cross-validation (see Table II). Standard
regression metrics, i.e., mean absolute error (MAE), root-mean-
square error (rmse), correlation coefficient (R), and coefficient
of determination (R2), are used for the evaluation of the model
performance. The grouped K-CV provides an average estimate
of the model performance in different spatial locations and time
periods. However, the drawback of K-CV evaluation is that it
underestimates the variance error [81] of predictions. Hence,
in this study, in addition to three types of cross-validation,
the temporal and spatial predictive power of models is esti-
mated using two different holdout datasets. For assessing predic-
tive power on temporally independent observations, data from
group-A stations (2018–2019 to 2020–2021) is used for testing;
whereas for spatiotemporal predictive power group-B station
observations (2018–2019 to 2020–2021) are used as testing data
(see Table II).
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Fig. 8. Cross-validation results from different models: (a) RMSE, R2. (b) MAE, R.

TABLE IV
RESULTS FROM DIFFERENT TYPES OF CROSSVALIDATIONS

V. RESULTS AND DISCUSSION

A. Spatiotemporal Variation of Snow Depth

In order to develop the machine learning model(s), the char-
acteristics of the observed snow depth in different zones are
analyzed and reported herein. The descriptive statistics and
variation of observed snow depth in different zones are given
in Table III and Fig. 7. The distribution of observed snow depth
is not uniform across the different zones (see Fig. 7). Among
different zones, zone-6 (Z6) has the highest mean snow depth
(i.e., 53.92 cm). The lowest mean snow depth (i.e, 24.90 cm) is
observed in zone-2 (Z2). Except in Z6, in the remaining zones,
almost 95% of the observed snow depth values are below 90 cm,
and 99% of observations are within 120 cm. However, few
stations in Z3 and Z6 have recorded snow depth observations
exceeding 200 cm.

Other than Z6, in the remaining zones mean snow depth is
close to 30 cm. All zones indicate a positive skewness in the data,
with varying interquantile ranges, which indicates the hetero-
geneity in the distribution of observed snow depth values across
different zones. Zone-5 (Z5) and Z6 are geographically located
near the south coast region and experience higher temperatures,
and precipitation (rain, snowfall). Thus, the snow depth in Z5 and
Z6 shows high variation with several of the observations having
significantly higher snow depth values than the mean zonal snow
depth. Thus, the distribution tail (last five percentile) in Z5 and

Z6 indicates a wide snow depth range with a difference of almost
48% between the 95th percentile and the maximum value. This
can lead to high uncertainty in ERT predictions in Z5 and Z6.

B. Effect of Auxiliary Parameters, Model Selection

Two different models, i.e., one with auxiliary parameters and
another without auxiliary parameters, are developed to evaluate
the overall impact of additional parameters i.e., topographical,
landcover, and location attributes on the accuracy of snow depth
estimates. Data from the group-A stations of the entire Alaska
region from 2012–2013 to 2017–2018 was used for developing
ERT snow depth models. The sample-based cross-validation
results indicate that the ERT model with auxiliary parameters
has given better estimates of snow depth than the ERT model
without auxiliary parameters with an improvement in R (R2)
from 0.67 (0.35) to 0.86 (0.74), and a decrease in MAE (rmse)
values from 17.9 (29.43) cm to 11.6 (18.73) cm, respectively.
Hence, auxiliary parameters are included in the development
of both the Alaska wide and zonal models. Along with the
ERT SD model, random forest and support vector machine
algorithm-based SD models are also developed using the PMW
data and auxiliary parameters. The results emphasize that, all
three machine learning models have shown similar performance
with no substantial contrast in the results. The values of R (R2)
are 0.86 (0.71) and 0.83 (0.68) for random forest SD model,
SVM SD model, respectively. Whereas, the MAE (rmse) values
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TABLE V
CHARACTERISTICS OF TRAINING AND TESTING DATA

Fig. 9. Evaluation and comparison of the predictive power of models in different regions using temporally independent data (a) and (b) and spatially independent
data (c) and (d). ERTi (i vary from 1 to 6), ERTall represents alaska wide, zonal ERT model.

of the random forest and SVM SD models are observed to be
12.36 (20.84) cm, and 13.85 (24.49) cm, respectively. Evidently
from these results, the ERT SD model has shown moderately
better performance with a lesser mean square error among the
three models. The cross-validation results observed in this study
are also very similar to those results observed by Wang et al. [58],

where different deep learning models are implemented to esti-
mate snow depth. Therefore, the ERT approach is considered
for carrying out further development, and analysis of different
snow depth models. A comparison of different types of cross-
validation results for Alaska wide and zonal ERT models with
auxiliary parameters is discussed in Section V-C. The detailed
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TABLE VI
PREDICTIVE POWER EVALUATION OF THE DIFFERENT SNOW DEPTH PRODUCTS

comparison of random forest and support vector machine model
results is further given in Annexure-1.

C. Sample, Spatial, and Temporal Cross-Validation Results of
ERT Models

In addition to the regular sample-based CV approach, spatial
and temporal CV assessments are implemented in this study to
assess the model’s transferability and performance in varying
space and time domains. The results of the tenfold sample,
threefold spatial, and threefold temporal CV in their respec-
tive zones are given in Fig. 8 as well as in Table IV. In the
figure, ERTall, ERT1, ERT2, ERT3, ERT4, ERT5, and ERT6

denote the models developed for respective zones (i.e., the entire
Alaska, and Z1 to Z6, respectively). The model parameters are
configured by implementing hyperparameter tuning for all ERT
snow depth models so that they are trained without any overfit
and generalized within their model regions. A comparison of
the three types of CV results from ERT models developed in
each zone reveals that, with the exception of ERT2, there is
no substantial difference between the rmse, and R2 and other
evaluation metrics for sample, spatial, and temporal validations.
There is a contrast between three different CV evaluation results
in the ERT2 model. This could be due to the Z2, which has a
relatively lesser number of stations with samples having vary-
ing distribution characteristics in different spatial and temporal
domains.

Overall comparison of zonal models indicates, R2 is relatively
consistent in all zones (ranging between 0.7–0.8), whereas rmse
error is considerably varying (ranging between ∼10 and 29 cm)

from one zone to another. This indicates ERT snow depth models
have shown consistent explainability for snow depth estimations,
with varying magnitudes of errors across different regions. The
variation in rmse is positively related to the mean snow depth
(see Figs. 7 and 8) in various zones. The highest rmse (∼29 cm)
and MAE (∼20 cm) are observed in Z6, which is present in
the southeast and southwest coastal regions that has the highest
mean snow depth among six zones, i.e., ∼54 cm of Alaska.
Similarly, the lesser rmse (∼6 cm, ∼8 cm) and MAE (∼4 cm,
∼6 cm) are observed in Z2 and Z4, respectively, where mean
snow depth is lower when compared with other zones. The
Alaska wide model (ERTall) shows MAE of ∼13 cm and rmse
of ∼20 cm in all three cross-validations. The CV results of the
ERTall model are comparable to the previous study carried out
by Wang et al. [58], over the same study region (Alaska) using
different types of neural networks. The results from Wang et al.
[58] indicate an MAE ∼(10–14 cm) and rmse ∼(18–22 cm) for
different neural network-based snow depth estimates. Except
ERT6, all other zonal ERT models (i.e., ERT1 to ERT5) have
lesser rmse, MAE, and higher R, R2 values in their respective
zones when compared with those of the ERTall model across the
entire Alaska. These results demonstrate the need for a compara-
tive assessment of the predictive power of Alaska wide and zonal
models in different Alaska regions. This comparative assessment
enables to understand if there is any merit in using zonal ERT
models. Further, the cross-validation results are often not the
true representation of the predictiveness of a machine learning
model, as the mean square error can be underrepresented [81].
Hence, the predictive power of the ERT snow depth models in
different zones is evaluated as given in Section V-D.
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Fig. 10. Spatial distribution of snow depth over Alaska (on January 10, 2020). (a) AMSR-2 SD product. (b) Glob Snow SD product. (c) ERT SD product.

D. Evaluation and Comparison of the Predictive Power of the
ERT Models

The characteristics of the snow depth data in each zone are
different compared to the snow depth data combined from all
zones (see Table V). Further, each Alaska zone has different
climatological and topographical conditions. This climate vari-
ation can lead to snowpack having the same brightness temper-
ature for different snow depths. These multiple factors together
can impact the feature scaling, feature selection, and training
phases of a machine learning model. In this regard, the predictive
power of the ERT models is examined using spatial, temporal in-
dependent datasets (see Table II). Further, snow depth estimates
from models are analyzed in snow depth bins divided with an
interval of 30 cm. The results from comparison of predictive
power of the models, and snow depth binning are given in the
following sections. Further, an analysis of error in models snow
depth is carried out with respect to different auxiliary parameters
as given in Section III.

1) Comparison of Predictive Power of Different Models:
The trained zonal and Alaska wide ERT models are used to

estimate snow depth for temporally (from group-A stations)
and spatially (from group-B stations) independent observations.
These estimates from the Alaska wide and zonal ERT models,
AMSR-2 and GlobSnow snow depth products, and the Chang
model in each zone are compared with in situ snow depth
observations of spatially and temporally independent datasets.
The results of the comparison are given in Fig. 9. The rmse
(MAE) metrics of different models calculated across the entire
Alaska region for temporally independent data are as follows:
ERTall 30.30 (19.78) cm, AMSR-2 product 49.28 (30.12) cm,
GlobSnow product 57.4 (38.01) cm, and Chang model 55.31
(37.54) cm. Similarly, with spatially independent data the rmse
(MAE) metrics are as follows: ERTall model 28.14 (17.49) cm,
AMSR-2 product 35.37 (22.04) cm, GlobSnow product 47.07
(31.55) cm, and Chang model 42.97 (30.98), respectively. These
results indicate the outperformance of developed ERT models
over other products when evaluated over entire Alaska region.
However, the ERTall model performance is not uniform across
different zones. The analysis of the ERTall model snow depth
estimates in individual zones depicts varying magnitudes of
rmse, MAE, and correlation metrics compared to the average
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performance over all zones. This variation in performance can
be attributed to the change in snow depth observations range,
and diversity of auxiliary parameter characteristics in different
zones. Within a given zone, both Alaska wide and zonal ERT
snow depth models have exhibited similar performance with
comparable rmse, MAE, R2, and R metrics in the temporal
(see Fig. 9(a) and (b) ], and spatiotemporal [see Fig. 9(c) and
(d) ] predictive power evaluations. Overall results indicate both
ERT models have performed better compared to the AMSR-2,
GlobSnow products, and Chang model. The detailed metrics
with regard to predictive power evaluation for temporally inde-
pendent observations, and spatially independent observations is
given in Table VI.

The results from spatial, temporal predictive power assess-
ments of ERT snow depth models show an increased rmse and
MAE, decreased R2, and similar R values when compared with
CV results (see Section V-C). Thereby, it indicates a decrement
in explainability of the model outside the training data in spatial,
and temporal domains. This increment in rmse and MAE across
different zones is excepted as cross-validation underestimates
the variance error in regression [81]. Despite the decrement
in performance compared to CV results, in all zones, ERT
snow depth models have shown better estimates with a lesser
rmse, and MAE, and higher R2, and R values compared to
the AMSR-2 product, GlobSnow product, and Chang model.
A figure representing the spatial distribution of the ERT SD,
AMSR-2 SD, and GlobSnow SD product is shown in Fig. 10.

The similarity of data characteristics between training and
testing data can aid in getting a better model performance.
But similarity alone does not guarantee that the trained model
will perform better on test data. The characteristics of training
and testing data (i.e., temporally partitioned data) are given in
Table V. The metrics such as mean, standard deviation, skew-
ness, etc., when compared indicates a significant contrast be-
tween the training and testing datasets over different zones.
Other than topographical parameters, landcover, the snowpack
characteristics have an impact on the PMW brightness temper-
ature. Therefore, considering limited parameters without snow
characteristics for snow depth model development can lead to
varied performance of model for similar data in different regions.
Hence, the ERT model(s) prediction performance is expected to
deviate from the CV results, and also from one region to other.

2) Binned Analysis: To comprehend the error associated with
change in snow depth, ERT and other model estimates are
partioned into different bins by considering regular snow depth
intervals (i.e., of 30 cm) of GHCN in situ observations. Snow
depth is analyzed in 5 slabs, i.e., less than 30 cm, 30–60 cm,
60–90 cm, 90–120 cm, and above 120 cm. The MAE of different
models estimated snow depth values in each defined interval
are given in Table VII. The results indicate that in all zones,
both ERT models (i.e., Alaska wide, zonal) have shown better
accuracy at all snow depth intervals with lesser MAE compared
to other products. Further, both models have similar performance
across all snow depth intervals. Below 30 cm snow depth,
AMSR-2, GlobSnow, and the Chang model have also shown
good agreement with observed snow depth values. Between
30 and 60 cm snow depth interval, ERT models have shown

TABLE VII
MAE VARIATION OF DIFFERENT MODELS IN DIFFERENT SNOW DEPTH RANGES

better performance with the moderate improvement compared
to AMSR-2, GlobSnow products, and Chang models. Once
the snow depth exceeds 60 cm, the quality of the AMSR-2
product, GlobSnow product, and the Chang model strongly
deviated showing a larger MAE when compared with actual
observations. AMSR-2 product, Chang models rely primarily on
the brightness temperature difference between 18 and 36 GHz
frequencies, which saturates after a threshold of snow depth. Fur-
ther, the correlation between the snow depth and the brightness
temperature difference is not strong and varies based on multiple
factors such as snowpack characteristics, topography, landcover,
etc. Hence, the snow depth estimates from the Chang model,
AMSR-2 product, and GlobSnow product deviate considerably
from observed snow depth. In the case of the GlobSnow product,
the in situ snow depth observations are used in the HUT model
for optimizing grain size. Hence, in heterogeneous climate re-
gions, and in places where synoptic snow observations are not
available, the GlobSnow snow depth estimates are susceptible to
large errors. ERT models have shown substantial improvement
in accuracy compared to other products even when snow depth
exceeds 60 cm. ERT models have produced improved snow
depth estimates compared to other products, resulting from the
inherent schema of the ERT algorithm; where in situ observa-
tions are grouped into different clusters based on the variation
of randomly selected independent features at different nodes
during the development of the snow depth model. The overall
results from binning analysis demonstrate that ERT models are
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TABLE VIII
MAE VARIATION OF DIFFERENT MODELS WITH RESPECT TO AUXILIARY PARAMETERS

particularly advantageous in estimating thickness of moderate
to deep snowpack, and in places with heterogeneous snow
conditions, where other models have resulted in large errors.

3) MAE Analysis of Model Estimates With Respect to Auxil-
iary Parameters: The change in auxiliary parameters can have
an impact on snow depth characteristics as well as PMW bright-
ness temperature observations. Therefore, it is important to
understand how the variation of auxiliary parameters within
the study region is affecting the model snow depth estimates.
Hence, the change in MAE of snow depth estimates from four
different models/products (ERTall, AMSR-2, GlobSnow, and
the Chang model) with respect to different auxiliary parameters
is analyzed (see Table VIII). The results denote a systematic
variation of MAE in snow depth estimates with latitude, ele-
vation, vegetation, and season. Both ERT models have similar
performance as evident from the results of CV and predictive
power evaluation. Therefore, ERTall model estimates (i.e., from
temporal predictive power assessment) for the entire Alaska
along with other models are considered for this evaluation.

From the north slope region to southern Alaska, with a de-
crease in latitude, the MAE of ERTall model increased from
9.52 to 37.12 cm. A higher mean snow depth is present in the
upper latitude region (68 ◦N–72 ◦N) than the midlatitude region
(60 ◦N–68 ◦N). However, the ERTall model has shown a lesser
MAE in upper latitude region than the midlatitude region. This
can be attributed to a lack of vegetation cover, and stable snow

conditions that are prevailing in the upper latitude region of
Alaska. Though, ERTall has less MAE (i.e.,9.52 cm), AMSR-2,
GlobSnow, and Chang model showed large errors, i.e., 39.08,
61.62, and 47.37 cm, respectively, in the upper latitude region.
In other snow depth products, the MAE varied linearly with the
mean snow depth across different latitude ranges. Higher eleva-
tion (>900 m) regions have higher snow depth (i.e., 84.96 cm)
and MAE (i.e., 37.07 cm), than lesser altitude regions (<300 m)
which have relatively less average snow depth (i.e., 48.72 cm)
and MAE (i.e., 18.27 cm).

There is no substantial variation in the trend of MAE observed
with respect to slope, aspect, and longitude. However, areas
with little to gentle slope (< 10◦) have a relatively lesser MAE
compared to those having a moderate to steep slope (10◦ – 30◦),
i.e., 18.73 versus 23.47 cm. The season plays a vital role in
snowpack microstructure characteristics resulting in changes in
the brightness temperature response of the snowpack. In prewin-
ter (September, October, November) and midwinter (December,
January, February) seasons, where the snowpack is relatively
shallow and more stable than late-winter (March, April, May),
lesser MAE of 14.15 and 16.85 cm are observed, respectively.
Whereas in late winter, the large snowpack grains formed due
to recrystallization from melt-freeze activities of snow have
resulted in a higher MAE of 31.57 cm. Further, the snow depth
has also consistently increased since early winter to late winter,
resulting in a higher MAE as the snow season progresses. In
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the current study, high vegetation areas have less mean snow
depth and a smaller MAE in the model estimates. Whereas, low
vegetation areas (< 20%) are covered with snow of higher depth
and results in higher MAE. Additionally, at most of the locations
near the south coast where low vegetation is present, higher
errors are observed in all models due to multitude of reasons,
such as proximity to water body, mixed pixels causing problems
in the resampling of brightness temperature, complex snowpack
conditions due to warmer temperatures, etc. Therefore, though
low vegetation is present, apparently higher errors are expected
in these locations. The ERT model, AMSR-2, GlobSnow prod-
ucts, and Chang model have almost similar trends of MAE
when analyzed with respect to different auxiliary parameters.
However, higher values of MAE are observed in the AMSR-2,
GlobSnow products and Chang model compared to the ERT
model for each auxiliary parameter.

VI. CONCLUSION

Many of the earlier snow depth models were developed by
mainly using PMW brightness temperature difference of 18,
36 GHz, and snow depth. However, the accuracy of these mod-
els’ estimates is constrained by the challenges posed by the spa-
tiotemporally dynamic snowpack microstructure, and auxiliary
parameters. Usage of additional frequencies and auxiliary data
with machine learning schemes for snow depth estimation have
partially addressed this problem. However, strong spatiotempo-
ral heterogeneity in snowpack microstructure can contribute to
noise in the PMW brightness observations, which can affect the
performance of machine learning models.

To address these problems, in this study, an ERT-based ma-
chine learning scheme is used for the first time in the estimation
of snow depth in Alaska. Alaska has diverse climate and to-
pographical conditions, hence divided into six zones that have
relatively consistent climatic conditions. PMW brightness tem-
perature data from AMSR-2, auxiliary parameters, i.e., location,
elevation, vegetation, etc., and in situ snow depth are used as
inputs for training the different ERT snow depth models. Alaska
wide and zonal ERT snow depth models are developed and
compared to understand if there is any significant advantage
of using independent zonal models for snow depth estimation
in various Alaska regions. The performance of the models is
assessed using three different CV approaches. Further, spatially
and temporally independent datasets are used for the assessment
of the predictive power of the ERT models.

From the results of CV and predictive power evaluation, ERT
model as well as all other SD products have shown larger errors
in Z6 as compared to other zones. The mean snow depth is
highest in Z6. Other than that, Z6 being located on the south coast
of Alaska, experiences more warm temperatures (see in Fig. 1),
receives higher snow fall. The climate in Z6 can potentially lead
to more heterogenous snowpack conditions as compared to other
zones. Further, many stations are very close the to coast line, the
mixed pixel effect results in the inclusion of nonsnow response
in the brightness temperature recorded by AMSR-2. These ef-
fects cannot be accounted by direct resampling of brightness
temperature. Thus, these reasons could have possibly impacted

snow depth retrievals in Z6, which are to be investigated further
in the future research for the betterment of the model.

Overall, results indicate that the ERT snow depth models
have provided improved estimates compared to the operational
AMSR-2, GlobSnow snow depth products, and the Chang
model. The inclusion of auxiliary parameters in the ERT model
has resulted in improved snow depth estimates compared to the
ERT model without auxiliary parameters. The R2 (R) values
improved from 0.35(0.67) to 0.74 (0.86), and MAE (rmse)
values decreased from 17.9 (29.43) cm to 11.6 (18.73) cm by
including the auxiliary parameters in the model. The CV and
predictive power assessment results reveal that there is strong
heterogeneity in the performance of the ERT model across
different zones. However, both Alaska wide and zonal ERT
models have provided similar results with very close rmse,
R2, MAE, and R values. Further, the comparison with other
machine learning approaches, i.e., random forest and support
vector machine also indicates that the ERT model has moderately
better performance over them in most cases. Therefore, it would
be preferable to use the Alaska wide ERT model, as it will be
of more interest to the scientific community. Spatial variability
in the weather conditions and topographical features alter the
snowpack condition, leading to varying snowpack thickness and
heterogeneous PMW response from snowpack between different
regions. Therefore, the accuracy of snow depth estimations is
not uniform across various zones of Alaska. The Alaska wide
ERT model evaluation (i.e., from temporal predictive power
assessment) indicates that the Southern Alaska region (Z6) has
the highest MAE (rmse), i.e., 32.95 (45.64) cm, while the north
slope region (Z1) has a smaller MAE (rmse) of 9.52 (12.25) cm.
The snow depth estimates from ERT model(s) and other products
indicate that the MAE of the modeled snow depth estimates
increase monotonically with an increase in in situ snow depth.
The ERT models have shown considerable improvement in snow
depth estimates compared to the AMSR-2 product, GlobSnow
product, and the Chang model, especially when the snow depth
is above 30 cm in different Alaska zones. Further, the analysis
of MAE in snow depth estimates exhibits a regional pattern,
i.e., high latitude regions have lesser MAE compared to low
latitude regions. Also, the MAE increases from early winter to
late winter, and from low altitude to high altitude regions.

Coming to limitations of this study, varying atmospheric and
climatic conditions, snow grain size, snow stratigraphy, forest
canopy can induce errors in the snow depth retrievals [21], [84].
Though this study considered forest cover fraction as one of
the input parameter, the variability in the forest cover, its type,
density, height, etc., are not considered here. These parameters
can impact the upwelling PMW radiation thereby impacting
SD retrievals. Additionally, the impact of mixed pixels (i.e.,
water, forest, and other nonsnow objects) is not considered while
resampling brightness temperature. This can have an impact
on snow depth retrievals, particularly near coastlines. Further,
atmospheric conditions have an effect on brightness temper-
ature is spectrally variable. Using multifrequency brightness
temperatures is suggested in some studies [10], [60] to partially
address this problem. Discerning the presence of snow under
precipitating clouds is challenging. Considering this, along with
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using brightness temperatures of multiple frequencies, Grody’s
decision tree [78] is used to remove precipitating clouds. Further,
wet snow pixels are also removed using the Grody’s decision
tree. Therefore, SD estimates are not available at these locations.
Further, the SD model is developed using point-based SD mea-
surements within a PMW grid. These point SD measurements
often are not a good representative of spatially varying SD within
the coarse PMW grid. In machine learning models, such as ERT,
the nonavailability of proportionate representative samples at a
particular snow depth interval can impact the accuracy of model
estimates, due to poor learning. Further, the transferability of
data-driven techniques to regions other than the model region is
questionable due to the naive representation of the relationship
between multiple model parameters. Hence, though global snow
depth models can be derived based on the machine learning
schemes, the entrust of regional models could be higher for
snow depth estimation. Additionally, developing a machine
learning model at a global scale is a challenging problem due to
the dynamic nature of the snowpack microstructure associated
with spatial and temporal changes. The snow stratigraphy also
affects the brightness temperature observed in different PMW
channels [21], [85]. Thus, the in situ observation samples devoid
of snow microstructure, and stratigraphy used for training the
ERT model are not fully representative of the snowpack, as the
same signature can be given by another snowpack with a differ-
ent microstructure. Incorporating snowpack microstructure data
into models can enhance the accuracy of snow depth estimates.
Thus, in the future, a combination of different frequencies and
physics information from snow physics models can be employed
to improve the model snow depth estimates with passive mi-
crowave observations.
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