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Multispectral Image Noise Removal With Adaptive
Loss and Multiple Image Priors Model

Yang Chen”, Wenfei Cao ", Meigiao Bi, Jing Yao

Abstract—Multispectral image (MSI) denoising is a crucial pre-
processing step for various subsequent image processing tasks,
including classification, recognition, and unmixing. This article
proposes a novel image denoising model that integrates both noise
modeling and image prior knowledge modeling. Specifically, to
account for the complexity and nonuniformity of noise, a non-
independent identically distributed mixture of Gaussian model
is employed for noise modeling, and a weighted loss function is
obtained. The weights used in the loss function are adaptively
learned from noisy MSI and employed to adjust the denoising
strength of each pixel. In additionally, the model leverages the
prior knowledge of the image by utilizing a nonlocal low-rank
matrix model that captures the spatial-spectral correlation and
nonlocal spatial similarity priors of the image. Moreover, our model
adopts the weighted spatial-spectral TV model to encode the local
smoothness prior of the image. Both prior models are translated
into regularization terms in the denoising model. The efficacy of
the proposed method is demonstrated through both simulated and
real image experiments.

Index Terms—Adapative loss function, multispectral image
(MSI) denoising, MSI priors, total variation model.

1. INTRODUCTION

MULTISPECTRAL image (MSI) is a 3-D image consist-

A ing of a set of 2-D images, each of which is the imaging
result of a certain spectral band. MSIs are used extensively in
mineral exploration, pharmaceutical counterfeiting, and food
safety due to their ability to provide richer information than tra-
ditional 2-D images [1], [2], [3]. However, noise contamination
is inevitable in MSIs due to sensor sensitivity, calibration errors,
and physical mechanisms. The noise distribution is complex and
the noise intensity varies across spectral bands [4], [5], [6], [7],
leading to significant degradation in image quality and negative
impacts on subsequent processing, such as classification, un-
mixing, and target detection. As a result, MSI noise reduction is
a critical and challenging task within the MSI processing field.
In recent decades, there has been a significant advancement
in MSI denoising methods. These methods can be broadly
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classified into two categories: 1) deep learning-based methods
and 2) traditional machine learning-based methods. The deep
learning-based methods rely heavily on data and require the
design of complex network structures to extract deep prior
knowledge from images. For instance, Chang et al. [8] first
introduced the deep convolutional neural network (CNN) for
MSI denoising. Later, Yuan et al. [9] proposed a deep residual
CNN with multiscale and multilevel feature representation for
bandwise denoising. To encode the spatial-spectral correlation
of image, Zhang et al. [10] presented a deep CNN by incorpo-
rating the spatial-spectral gradient information; Shi et al. [11]
proposed a 3-D attention network with two separate branches.
Pan et al. [12] and Wei et al. [13] introduced a quasi-recurrent
network to capture the correlation of spatial features among
the spectral domain. Dong et al. [14] presented a modified 3-D
U-net architecture, and Cao et al. [15] proposed global reason
network with three well-designed modules. More recently, some
transformer-based approaches have been applied to HSI and
have performed well [16], [17]. Although they provide outstand-
ing denoising results, they lack theoretical support and often do
not generalize well to new datasets.

In contrast, the traditional machine learning-based methods
do not rely on training data and usually have good theoretical
support, and demonstrate better generalization. This type of
denoising models typically consists of two primary components,
i.e., the loss function term and the regularization term. The
loss function term measures the deviation between the ground
truth image and the observed image. Most denoising models
use the /5 norm as the loss function, which is simple and
convex, leading to fast and efficient algorithms for obtaining
the global optimal solution. However, the /s norm loss function
assumes that the noise obeys an independent identically (i.i.d.)
Gaussian distribution, which deviates from the true MSI noise
distribution, resulting in the lack of robustness in removing
mixed noise. To address this issue, many denoising models have
proposed a Gaussian noise plus sparse noise assumption, which
treats the non-Gaussian noise as sparse noise and embeds it
as a parameter to be learned into the model [18], [19], [20].
This improves the robustness of the algorithm, and thus, have
been widely used in MSI denoising task. However, this noise
model roughly treats all non-Gaussian noise as sparse noise,
which still deviates from the real mixed noise distribution. To
alleviate this issue, the mixture of Gaussian (MoG) distribution
noise model was proposed [21], [22], which can theoretically
approximate any distribution as long as there are enough Gaus-
sian components. The MoG model derives the weighted /3 norm
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loss function based on the maximum likelihood principle. How-
ever, the approximation ability of MoG model is often limited
by the small number of Gaussian components in practice. To
solve this problem, Cao et al. [23], [24] proposed the mixture
of exponential power (MoEP) distribution model, which results
in a weighted [, norm loss function. In addition, Chen et al.
[25] proposed a non.i.i.d. mixture of Gaussian (NMoG) noise
model considering the non.i.i.d. statistical characteristics of MSI
noise and came up with the weighted /5 norm function. Further,
Barron [26] proposed a more general noise model that can obtain
a general loss function by incorporating a set of robust loss
functions.

Another critical component of denoising model is the reg-
ularization term, which is modeled based on the image prior
knowledge. To date, the most significant prior knowledge that
have been demonstrated include spatial and spectral correlation,
nonlocal spatial similarity, and local smoothness. Extensive
research has been dedicated to exploring more accurate and
efficient methods for modeling these prior knowledge compo-
nents. For spatial and spectral correlation prior, the low-rank
matrix decomposition model [18], [27], [28], [29] and low-rank
tensor decomposition model [30], [31], [32], [33], [34] have
been proposed. To incorporate nonlocal spatial similarity prior,
it is common practice to partition the image into small blocks,
which are then grouped into subimage groups based on their
similarity. The model is then applied to each subimage group
separately, such as BM4D [35] applies 4-D filtering on each
subimage group, Chang et al. [36] arranged each group into a
matrix and then applied a low-rank matrix model. In addition,
Xue et al. [32] and Zhang et al. [37] reorganized each subimage
group into a 3-D tensor and 4-D tensor, respectively, and applied
a low-rank tensor model on it. For local smoothness prior, a
commonly used approach is to apply 2DTV band by band and
then sum them together [38]. However, this method does not
account for the smoothness of the image along the spectral
dimension. So, the 3DTV model [39] was transferred to MSI
and named spatial-spectral total variation (SSTV) [7]. In order
to address the large difference in pixel scale and noise intensity
across spectral bands in MSI, an adaptive SSATV model was
developed by introducing weights into the SSTV model to adjust
the denoising strength of each pixel [40], [41]. In addition, to
protect image boundary information, Chen et al. [42] presented
an adaptive SSTV model. Furthermore, Peng et al. [43], [44]
confirmed that the gradient domain of an image is also low-
rank, which resulting in the development of enhance TV and
CTV models. To achieve improved denoising performance, the
denoising model often incorporates multiple prior knowledge
models. These may include a combination of spatial and spectral
correlation priors with local smoothness priors [45], [46], [47],
or a combination of spectral correlation priors with nonlocal
similarity priors [48]. Moreover, some models integrate all the
three priors completely or partially [7], [49], [50], [51], [52].

The denoising methods mentioned above, which incorporate
multiple prior knowledge models, have demonstrated excep-
tional performance. However, to improve model efficiency, these
methods often use relatively simple loss functions, such as
l> norm. Unfortunately, noise in MSI is often complex and
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noni.i.d., which limits the performance of these methods since
they assume independent and identically distributed statistical
characteristics. In this article, we propose a novel MSI denoising
method that combines noise modeling methodology with prior
modeling methodology to address this issue.

We begin by assuming a non-i.i.d. noise structure for MSI and
use the NMoG to model it. Based on this noise model, we derive
an adaptive weighted /> norm loss function, the weight reflects
the noise intensity of each pixel, and the pixel with high noise
intensity has small weight to reduce the adverse impact of strong
noise on the model results. On the contrary, the pixel with low
noise intensity has large weight to protect the information in the
original image from being distorted. The weight information can
be efficiently and adaptively learned from noisy images using the
variational expectation maximization (VEM) algorithm. Next,
we build the regularization term by completely integrating the
previously mentioned three image priors. Specifically, we use
the nonlocal low-rank matrix model to capture the nonlocal
similarity and the spatial-spectral correlation prior. In addition,
we adopted an edge preserving total variation model to encode
the nonlocal smoothness prior of HSI. Finally, we develop
an effective ADMM algorithm to solve the denoising model.
We validate the effectiveness of our proposed method on both
synthetic and real HSI datasets, and our results indicate that
our approach achieves competitive or superior performance
compared to other state-of-the-art methods.

II. NOTATIONS AND PRELIMINARIES

A tensor is a multidimensional data represented by decorated
letters, such as X € RT1xT2xxIN and its element is denoted
by &, i,.....in - In addition, the matrices, vectors, and scalars are
represented by nonbold upper case letters X, bold lower case
letters @, and nonbold letters z, respectively.

The MSI data cube can be treated as a 3-D tensor X €
RM*NxS with two spatial modes and a spectral mode, where
M, N,and S represent the spatial height, spatial width, and spec-
trum number, respectively. The MSI tensor X can be unfolded
into a matrix along the spectral mode, denoted as X3y with the
element (X(3));,s corresponding to the element X ; ;, where
is given by (i — 1) M + j.

The observed MSI is often corrupted by complex types of
noise, including Gaussian noise, stripe noise, deadline noise, and
others. To simplify the noise model, the noise was assumed to
be additive, and therefore, we can express the noise degradation
model as follows:

YV=X+¢& (1)

where ) represents the noisy MSI tensor, & is the clean MSI
tensor, and £ is the noise tensor.

The distribution of £ is complex and unknown. To model this
type of distribution, a mixture of Gaussian (MoG) distribution is
often used. However, since the noise types and intensity between
different bands can vary significantly, a more effective approach
is to apply the MoG model to the noise of each band. This
results in different model parameters for each band, and the
parameters for all MoG models are generated from the same
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prior distribution. This approach is referred to as NMoG and
can be expressed as follows [25]:

K

p 1_]s ZaskN z]s‘msky sk) (2)
k=1

where ag; and 74 are the proportion and precision of the kth
Gaussian component for the sth band, with the constraint that
Zszl askr = 1, K is the total number of Gaussian components.
To capture the common properties of noise across bands, the
precision T4 was assumed to sample from the following prior
distribution:

Mk Tsk ~ N(mig|ao, (boTsr) ™ )Gam (7|0, )

7y ~ Gam(v|po, o) 3)

where Gam(-) represents the Gamma distribution, 79, p, and
1 are the hyperparameters.

III. PROPOSED METHOD

In this section, we propose a new denoising model, which
falls under the category of traditional machine learning and has
the following expression:

rr%n Loss(Y, X) + AR(X) 4)

where Loss(), X') presents the loss function which measures
the deviation between observation MSI and the ground truth.
And R(X) is the regularization term which encodes the prior
information of MSI. We will introduce the proposed method in
detail from two aspects: 1) loss function and 2) regularization
term.

A. Adaptive Loss Function

To construct a more appropriate loss function, it is crucial
to have a comprehensive understanding of the noise and then
reasonably model the distribution characteristics of the noise,
which in turn will help to measure the deviation between ob-
served data and ground truth. Moreover, since the noise in each
data point can vary, the loss function must be adaptive to cater
to the specific noise characteristics. To meet these requirements,
we have selected the NMoG noise model and used the VEM
algorithm to estimate the model parameters. This has enabled us
to derive an explicit loss function that is suitable for our purposes.
We have simplified the NMoG model slightly by assuming that
the noise is zero-mean. To solve this model, we have introduced
a hidden variable Z in the noise model. The NMoG model can
be expressed as follows:

I
>

P(Vis) N (Vs | i, 7)™
k=1
p(Tsk) = Gam(7sk|n0, Vsk)
p(zijs) = Mul(z;;5] ;)
p(dsk) = Gam(dik|po, vo)
p(a) = Dir(as|ag) (5)
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where Mul(.) and Dir(.) represent the multinomial distribution
and the Dirichlet distribution, respectively.

The maximization of marginal likelihood p(Y|X) can be
transferred to maximize the variational lower bound (ELBO)
as follows [53]:

ELBO = / ¢ (01X Inp(Y, ©|X)dO (6)

where © = (Z,a, 7, 1), Z = {2}, o = {osr}, 7 = {Tsr}
and v = {7,x}. The distribution ¢*(©]X°9) is the estimated
posterior distribution.

V Step: We employ the variational inference algorithm to
solve the approximate posterior distribution of the parameters
involved in (6). The estimated posterior distribution is assumed
to have the following decomposition form:

a(2,07.1) =[] a(Z) [, aled) [T, a(mat)a(Tar).

The posterior distribution of parameter 7, can be updated using
the following equation:

q* (Ts) = HGam(Tsk|nsk’7 P)/sk) (7)
k

where the parameters involved in the estimated posterior is
obtained as follows:

Nlsk = 1o + = Z
Yk = (Ysk) + % {Z” g§j5<zijsk>} )

where (-) represents the expectation operator.
The posterior distribution of latent variable Z is

7,75 H Qlj |_|sk
where the closed-form solution of distribution parameter gjjq is
as follows:

= Pijsk/ Zk Pijsbk
In pijs = (Inagp) — In V2« + (InTgp)/2

— & (k) /2. (11)

The posterior distribution of the mixing proportion s is as

Usk (8)

(10)

Oijsk

follows:
=11, a5 (12)
where oz = g + Zij (Zijsk)-
The posterior distribution of hyperparameter =y is
0" (ysk) = Gam(ys |, v) (13)

where 1 = pio + co XS and v = vg + > ;. (Ter).

Next, we present the necessary expectations required for the
above update equations, based on the current posterior distribu-
tions. The details are provided as follows:

<Zijsk> = Oijsk

(da) =L
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(In o) = Y(ask) — P(a)
Csk
dsk:
where t(-) is the digamma function.

E Step: We calculate the evidence lower bound (ELBO) of
the logarithm of likelihood p(Y|X) as (6). Note that we only
focus on the components related to X" and others were treated as

constants. Therefore, the ELBO can be denoted as a fucntion of
X with respect to X°'9, We denote the function as Q (X', X°¢)

Q(x, x°)

(Tsk) = (14)

_ / ¢'(01X%) In p(y, ©]X)dO

1
= - Z §<Zijsk><7'sk>(yijs — Xjjs)? + const. (15)

04,8,k

M Step: We maximum the ELBO function Q (X, X°) with
respect to X, the loss function of this optimization problem can
be reformulated as follows:

Loss(V, &) = |[W o (Y - &)|%

>

k=1

(Zijsk) (Tsk) (16)

[N

Wis =

where © represents elementwise product.

The loss function obtained here takes the form of a weighted
12-norm. The weight is calculated adaptively based on the es-
timated noise from the denoising process. It can be seen that
the high-intensity noise receives small weight, reducing the
negative impact of strong noise on model results. Conversely,
the low-intensity noise receives large weight to preserve the
structure information in the original image.

B. Multiple Image Priors Model-Based Regularization

As mentioned previously, the nonlocal spatial similarity, the
spatial and spectral correlation, and the local smoothness are
the most significant priors knowledge for MSI restoration. The
regularization term in our denoising model will completely
encode all these priors with the following form:

R(X) = [|X]Insc + [ X |Ls (17)

where || X ||nsc represents the regularization related to nonlocal
spatial similarity and the spatial-spectral correlation priors. And
|| X ||Ls represents the regularization related to local smoothness
prior.

To model the nonlocal spatial similarity prior, it is necessary
to divide the images into overlapping patches for matching and
grouping. In order to simultaneously encode the spatial-spectral
correlation prior, the MSI is divided into overlapping full-band
patches to ensure that the correlation exists in each patch. This
allows the low-rank model to be applied to each group of
full-band patches, enabling both nonlocal spatial similarity prior
and the spatial-spectral correlation prior modeling. Note that
Chang et al. [36] demonstrated that, for MSI, the low-rank
property between patches is much more significant than between
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bands. To simplify the model, each patch in the group is vector-
ized to form a matrix, which is then subjected to low-rank matrix
decomposition. Therefore, the regularization related to nonlocal
spatial similarity and spatial-spectral correlation priors can be
expressed as follows:

P
1¥lxse = D 1P|,
i=1

(18)

where P; represents the operator to group the similar patches for
the ¢th patch and rearrange it into matrix, P denotes the number
of patches, and || - ||, represents the weighted nuclear norm.

The local smoothness prior is not only present in two spa-
tial modes but also extends to the spectral mode. To capture
such prior, the spatial-spectral total variation (SSTV) model is
commonly used. Due to significant variations in noise intensity
and pixel values, it is necessary to impose TV regularization
constraints with different strengths on each pixel. To address
this, we introduce a weighted SSTV model that allows for the
application of varying regularization strengths on each pixel,
which defined as follows:

3
1X[Ls = D 1ISi @ (DiX)|x

i=1

=[S © (DX)|1 19)
where the operator D = [D1, D4, D3] represents the 3-D first-
order forward finite-difference operator. In addition, the op-
erators D1, D, and D3 correspond to the first-order finite-
difference operator along the spatial horizontal, spatial vertical,
and spectral mode, respectively. The parameter S = [Sy, S, S3]
is the weight tensor, which is used to preserve image texture
while enforcing sparsity constraint on the pixels. We can esti-
mate the weight tensor from gradient maps of image. Although a
large amount of noise has been removed from the denoised image
X, the SNR is not enough to extract the texture information
of the image. To alleviate the situation, we carry out low-rank
approximation with rank setting as 1 to further denoise to get X
with higher SNR, so the texture information of the image can be
effectively obtained from the gradient maps of X)y. Therefore,
the weight tensor is obtained from restored MSI during the
denoising process as follows [42]:

Xo = LRy ()
G, — D%l

" max(]D;Xo))

=, 1=1,2 2
S/L 5+ gz, Z b 73 ( 0)

where LR is the low-rank approximation operator using a low-
rank matrix decomposition model with a fixed rank of 1. X
represents the restored MSI data during denoising processing,
and the threshold ¢ is utilized to prevent undesirably large values
in the weight tensor. Typically, it is set to the first quartile of G;.
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C. Denoising Algorithm

Based on the adaptive loss function and regularization term
introduced above, the denoising model can be represented as
follows:

X = argmin WO (V= X)[[F + A1[|S © (DX)lx

P
+22 ) [P

i=1

21

where A and A, is the tradeoff parameters.

In order to solve this model, the auxiliary variables are in-
troduced, and thus, (21) can be rewritten into the following
optimization problem:

P
min W (Y= X)[5+mlS 0Bl + i) [Cilu.s

,B,C;
i=1

st. A=X
B=DA
Ci=P,X, i=1,...,P. (22)

The ADMM methodology can be used to minimize the opti-
mization problem mentioned above by transforming it into an
augmented Lagrangian function as follows:

L(X, ABAC}H ) = W o (V= X)|F + 1S © Bl

P
K1 Ly
+ A2 Z [Cillw,« + 7”“4+ o X%
i=1

fho Lo
+7”D~A+E—B”% ZHPX‘F*—CHF

(23)

where pi1, 1o, and pg are penalty parameters, and L1, Lo, and
Lj are the lagrange multipliers.

The ADMM framework provides an alternative approach
to optimize the augmented Lagrangian function by fixing all
variables except one and optimizing it.

Update A: The suboptimal problem for optimizing the vari-
able A is derived from (23) by removing the terms not related
to A
All% + HB - *52 — DA%

1
min [|X¥ — —L; — (24)
A 1

This problem can be treated as solving the linear system

<I+ uzD*D) A—x_tr +P2p (B - /:2>
251 251 H1 M2

where D* represents the adjoint operator of D. The fast Fourier
transform is adopted to efficiently solve this problem, and the
closed-form solution to A can be obtained by the following
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equations:

_ _ 1 M2 Y)*
K=X—-1r,+%2D (

— i£2>

= |fftn(Dy,)|? + |fftn(D,,)|? + |fftn(D,)|?

A = ifftn ( ffin() )

1+527

(26)

where | - |? represents the elementwise square, the operators
fftn(-) and ifftn(-) are the fast 3-D Fourier transform and its
inverse transform, respectively, and 1 is the tensor with all
elements 1.

Update B: The suboptimal problem with respect to 3 is as

follows:

1 1 A
S|DA+ —L>— B3+ — .7
m81n2|| A+M2£2 B”F+M2”S®B”1 (27
This suboptimal problem can be solved by using the known
soft-thresholding operator [54] as follows:
1
B = Russiy (DA+ £2> (28)
) H2

where R, (+) represents the sofi-thresholding operator with pa-
rameter A.

Update C;: The suboptimal problem concerning C; is as
follows:

1 1 Ao
min = ||P;X + —Ls — Ci[|% + = ||Cillw..  (29)
nin o | o % MSII [,
To solve this subproblem, we utilize the off-the-shelf algorithm
WNNM [55]. The optimal solution of C; is deduced as the

following equations:
1
(U,X,V) =svd (Pi)( + L3>
3

¢ — ysivT (30)

where the diagonal elements of X correspond to the singular
values of P; X + iLg arranged in decreasing order. In addion,

the 3 is the diagonal matrix, and the diagonal elements are
calculated as follows:

0o if as <0
"9‘:{&1;@, if 0220 @b
where the parameters vy and o are expressed as follows:
o] =0; — €
s = (05 +€)? — 4V/2. (32)

Update X : The subproblem with respect to X can be written as

min [W o (¥ - )%+ 2 ||A+ - X%

Bpc— = - x| (33)
where C = {Ci}f;l, and the operator P! represents the in-
verse operator of P. Its function is to arrange each patch back

to its original position in the MSI while also averaging out the
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Algorithm 1: Denoising Algorithm.

Input: The observed MSI tensor ) € RM*NxS 'model
parameters K, A1, Ao, and the maximum number of
iterations 7.

Output: The denoised MSI X'.

Initialization: The hyperparameters (cq, do, 10, Vo) in
noise prior. The restored MSI X by PCA-based
denoising method. A = X, L1, Lo, L are tensors or
matrices with all elements 0. ¢t = 1.

while t < T do
Update loss function by (7)—(16).
Update A, B, {C;}2_,, X by (25)~(34).
Update S by (20).
Update lagrange multipliers £, Lo, L by (35).
t+—t+1.

end while

A A o

overlapping portions. The solution of X has the close-form as
follows:

V2OV A+ (A - iﬁﬂ +ps(P71C — iLB)

xD — .
W2 + iy + s
(34)
The multipliers are updated as follows:
£§t+1) _ Egt-&-l) o (A—X)
£ = 20 4 (DA - B) (35)

2
L =L Y (P ),

After updating the denoised data, we proceed to update the
weights involved in the loss function using (16). More infor-
mation on this step can be found in Section III-A. The denoising
algorithm is summarized in Algorithm 1.

IV. EXPERIMENTS

To demonstrate the effectiveness of our proposed denoising
method, we compared our method with several state-of-the-
art denoising methods on both simulated and real MSI data,
including BM4D [35], TDL [30], LRTV [38], NMoG [25],
LRTDTV [47],LLRT [36],and RCTV [56]. Specifically, BM4D
is a classical method that utilizes block-matching and 4-D fil-
tering for denoising. TDL utilizes the [5-norm loss function and
spatial—spectral correlation prior model. LRTV is based on the
Gaussian plus sparse noise model, combined with the low-rank
matrix decomposition model. NMoG is a popular method that
uses the NMoG noise model and low-rank matrix decomposition
model. LRTDTV combines the Gaussian noise plus sparse noise
model with the low-rank tensor decomposition prior model and
SSTV regularization. LLRT uses the /s-norm loss function and
combines the nonlocal similarity, spectral correlation, and local
smoothness priors model. RCTV uses the Gaussian plus sparse
noise model, as well as the local smoothness and spectral correla-
tion priors model. Overall, the comparison experiment involved
a diverse range of denoising methods, allowing us to accurately
evaluate the performance of our proposed method against the
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current state of the arts. All experiments were implemented in
Matlab R2021a on a PC with 3.4 GHz CPU and 32 GB RAM.

A. Simulation Experiments

This experiment aims to evaluate the performance of our
proposed denoising method quantitatively. We utilized two MSI
datasets in the simulation experiment: the Balloons data from
the CAVE dataset! [57] with size of 512 x 512 x 31, and the
Washington DC MALL dataset > with size of 1208 x 307 x 191.
We resized the Balloons data to 200 x 200 x 31 and cropped the
main part of the Washington DC MALL dataset to obtain a size
of 200 x 200 x 191. These datasets were used as clean MSI data
since they do not contain significant visual noise and their gray
values were normalized to [0,1].

To simulate the real noise cases, we added four kinds of noise
to the clean MSI data, including the following.

1) Li.d. Gaussian Noise: The i.i.d. Gaussian noise N(0, o%)

with the variance o = 0.1 is added to the clean MSI data.

2) Non-i.i.d. Gaussian Noise: The i.i.d. Gaussian noise
N(0, %) is added to each band of clean MSI data indepen-
dently with different variance, making the SNR value of
each band in the range of [5, 15]dB on Balloons dataset and
[2, 12]dB on Washington DC Mall dataset, respectively.

3) Gaussian + Stripe Noise: The i.i.d. Gaussian noise is
added to each band of clean MSI data with different
intensity. Moreover, 40% bands were randomly selected
to add stripe noise.

4) Mixture Noise: The previously introduced non-i.i.d. Gaus-
sian noise and stripe noise were added to clean MSI. In
addition, 40% (on Balloons dataset) and 45% (on Wash-
ington DC Mall dataset) bands were randomly selected to
add the impluse noise with the percentage of impluse is
from 50% to 70% (on Balloons dataset) and 90% to 100%
(on Washington DC Mall dataset), respectively.

We conducted 20 repetitions of the noise addition and denois-
ing experiments on two datasets for each noise case. In these
experiments, the maximum number of iterations of our method
is set to 10, and the hyperparameters A; and Ay are adjusted
in each noise case. The sensitivity of parameter is analyzed in
Section IV-C. Five quantitative measurements were employed
to evaluate the denoising performance, namely:

1) MPSNR, which is the means peak signal-to-noise ratio

(PSNR) across bands;

2) MSSIM, which is the mean structural similarity (SSIM)
across bands;

3) ERGAS, which stands for Erreur Relative Globale Adi-
mensionnellede Synthese, and

4) SAM, which refers to the spectral angle mapper;

5) time, which is the experimental time cost of each method.

The average results of 20 repeated experiments on the Bal-
loons dataset are presented in Table I. The best value of measure-
ments are marked in bold. LLRT method performs remarkably in

1 [Online]. Available: https://www.cs.columbia.edu/CAVE/databases/
multispectral/

2[Online].  Available:  http:/engineering.purdue.edu/~bichl/MultiSpec/
hyperspectral.html
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TABLE I
PERFORMANCE COMPARISON OF ALL COMPETING METHODS ON BALLOONS DATA

Noisy HSI BM4D TDL LRTV NMoG LRTDTV LLRT RCTV Ours
i.i.d. Gaussian Noise
MPSNR 20.174 39.472 38.045 35.337 30.215 37.612 40.310 38.029 41.524
MSSIM 0.166 0.965 0.953 0.943 0.661 0.952 0.984 0.628 0.984
ERGAS 25.840 2.839 3.310 4.701 8.185 3.511 2.660 3.334 2.222
SAM 0.753 0.122 0.116 0.190 0.359 0.132 0.084 0.123 0.085
Time - 56 6 21 37 91 679 3 356
Non i.i.d. Gaussian Noise
MPSNR 23.470 41.144 33.387 38.199 33.049 39.158 41.041 39.303 41.169
MSSIM 0.286 0.972 0.781 0.967 0.794 0.966 0.986 0.697 0.959
ERGAS 19.553 2.433 6.498 3.339 6.012 3.014 2.465 2.952 3.148
SAM 0.654 0.105 0.266 0.117 0.288 0.126 0.089 0.117 0.144
Time - 59 6 24 49 88 522 2 237
Gaussian + Stripe Noise
MPSNR 22.831 35.839 28.8505 37.897 32.766 38.358 36.263 38.017 40.004
MSSIM 0.272 0.884 0.590 0.963 0.784 0.955 0.951 0.655 0.960
ERGAS 20.862 5.964 11.339 3.461 6.269 3.326 4.262 3.561 3.223
SAM 0.675 0.224 0.406 0.127 0.296 0.143 0.148 0.159 0.142
Time - 43 5 21 33 60 437 2 235
Mixture Noise

MPSNR 21.240 31.272 25.574 36.543 31.861 37.174 32.703 37.057 37.9350
MSSIM 0.236 0.878 0.536 0.959 0.759 0.952 0.898 0.651 0.969
ERGAS 24.296 8.377 15.054 4.076 6.863 3.763 6.392 3.886 3.445
SAM 0.705 0.196 0.417 0.128 0.287 0.132 0.181 0.149 0.114
Time - 43 4 21 33 62 438 2 236

(2

Fig. 1.

(h)

Image of band 23 in Balloons dataset before and after denoising by different methods. (a) Original data. (b) Noisy data, the restored results by method.

(¢) BM4D. (d) TDL. (¢) LRTV. (f) NMoG. (g) LRTDTV. (h) LLRT. (i) RCTV. (j) Ours.

the i.i.d. Gaussian case since their noise assumption matches the
actual noise well. However, as the noise complexity increases,
the performance of LLRT tends to decrease. Similarly, BM4D
and TDL methods that use the [5-norm loss function show a
similar trend. On the other hand, methods utilizing the Gaussian
plus sparse noise model, such as LRTV, LRTDTYV, and RCTYV,
demonstrate more robust performance. However, their denoising
performance is weaker than our method due to the better im-
age priors model adopted in our denoising approach. Although
the NMoG method performs stably under all noise conditions,
but its denoising measurements are worse than others since it
models only the spectral correlation prior, which may not be

the best choice for this dataset with only 31 bands. Overall,
our method exhibits strong robustness and remarkable denoising
performance compared to other methods.

As a specific example, Fig. 1 provides the visual presentation
of the denoising results of one experiment under mixture noise
case. To facilitate comparison, we enlarged a common region
of each figure, marked by a red box. The figures demonstrate
that our method visually achieves best denoising performance
compared with other methods.

Table II presents the denoising results on the Washington
DC mall dataset. It is worth noting that this dataset has a
greater number of spectral bands and exhibits strong spectral
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TABLE II
PERFORMANCE COMPARISON OF ALL COMPETING METHODS ON WASHINGTON DCMALL DATA
Noisy HSI BM4D TDL LRTV NMoG LRTDTV LLRT RCTV Ours
i.i.d. Gaussian Noise
MPSNR 20.172 32914  36.380  35.305 36.192 36.249 37518 35497  37.854
MSSIM 0.448 0.920 0.968 0.954 0.967 0.962 0.977 0.938 0.979
ERGAS 25.934 5.783 3.933 4414 4.082 3.996 3.591 4.309 3.343
SAM 0.559 0.134 0.092 0.099 0.107 0.101 0.080 0.087 0.077
Time - 307 17 154 55 355 2815 10 1554
Non i.i.d. Gaussian Noise
MPSNR 21.445 31.234  26.623  34.634  37.000 36.068 35583 35552 36.755
MSSIM 0.464 0.817 0.670 0.933 0.952 0.946 0.943 0.940 0.953
ERGAS 24.638 9.169 14.635 6.275 5.867 4.491 4.803 4.448 4.186
SAM 0.609 0.284 0.404 0.177 0.205 0.127 0.134 0.103 0.110
Time - 294 19 143 100 346 2667 8 1593
Gaussian + Stripe Noise
MPSNR 20.805 30.147  25.602 30434  36.625 35.619 34.613  35.009  36.347
MSSIM 0.488 0.853 0.691 0.848 0.967 0.958 0.952 0.935 0.966
ERGAS 25.697 9.359 15.938 8.569 5.059 4.541 5.302 4.814 4.260
SAM 0.617 0.276 0.426 0.189 0.164 0.120 0.149 0.104 0.108
Time - 296 19 142 59 351 2679 9 1610
Mixture Noise
MPSNR 19.752 28.835 24318  33.441 34.967 34.572 33754  33.862  34.291
MSSIM 0.444 0.826 0.653 0.944 0.962 0.949 0.950 0.925 0.954
ERGAS 28.261 10.907 18.118 7.013 5.647 5.810 5.650 5.550 5.439
SAM 0.655 0.289 0.466 0.195 0.165 0.175 0.130 0.128 0.135
Time - 288 19 145 62 345 2649 9 2126
(b)
@ (h) (i) ()
Fig. 2. Image of band 90 in Washington DC mall dataset before and after denoising by different methods. (a) Original data. (b) Noisy data, the restored results

by method. (c) BM4D. (d) TDL. (e) LRTV. (f) NMoG. (g) LRTDTV. (h) LLRT. (i) RCTV. (j) Ours.

correlation, making the NMoG method remarkably effective
in all noise cases. On the other hand, the i.i.d. Gaussian noise
model-based method is unstable, while the Gaussian plus sparse
noise model-based method is relatively more stable. Our method
achieves the best or second-best performance under all noise
cases. The visual comparison results of one realization are
illustrated in Fig. 2. From the figure, it is evident that our method
outperforms other methods in removing noise and preserving
detailed information.

B. Real Data Experiments

In this section, we present an evaluation of the performance
of our method on a real MSI dataset, namely, the AVIRIS Indian

Pines dataset® with the size 145 x 145 x 220. This dataset is
corrupted by various types of noise, including Gaussian noise,
stripes, atmosphere absorption, and other unknown noise. In
these experiments, the maximum number of iterations of our
method is set to 10, and hyperparameters are set as A; = 500
and A1 = 5.

Figs. 3-5 show the visual presentation of denoising results
on bands 103, 149, and 165, respectively. It is evident that the
TDL method fails to denoise this dataset effectively, and the
BM4D method obviously has residual noise. This is due to the
overly simplistic noise assumption and inadequate image prior

3[Online]. Available: http:/www.tec.army.mil/hypercube
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Fig. 3.

Image of band 103 in AVIRIS Indian Pines dataset before and after denoising by different methods. (a) Original data, the restored results by method.

(b) BM4D. (c) TDL. (d) LRTV. (¢) NMoG. (f) LRTDTV. (g) LLRT. (h) RCTV. (i) Ours.

Fig. 4.

Iimage of band 149 in AVIRIS Indian Pines dataset before and after denoising by different methods. (a) Original data, the restored results by method. (b)

BM4D. (c) TDL. (d) LRTV. (¢) NMoG. (f) LRTDTYV. (g) LLRT. (h) RCTV. (i) Ours.

modeling. Conversely, other methods yield significant noise
reduction. Compared to all the other methods, our approach
exhibits the most substantial noise removal in the spatial domain
and less visual image distortion.

To facilitate further comparison, Fig. 6 displays the spectral
signatures of a pixel located at (24, 88) before and after restora-
tion. The horizontal axis denotes the band number, while the
vertical axis represents the digital number value of the given
location. Due to the presence of noise, the curve exhibits rapid
fluctuations, as shown in Fig. 6(a). After denoising, the fluctua-
tions are substantially suppressed. In addition, we observe that

the NMoG, LLRT, and our method yield the most notable fluc-
tuation suppression, consistent with the visual results depicted
in Figs. 3-5.

C. Parameters Setting

In the proposed denoising model, the parameters A; and Ao
play a crucial role in balancing the loss term and regularization
terms. In our algorithm, we initially estimate the noise variance
o? using the initialized X’ and set .; = A,02 and Ao = Apo?. It

is important to note that the parameter selection for A; and A
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Fig. 5.

Image of band 165 in AVIRIS Indian Pines dataset before and after denoising by different methods. (a) Original data, the restored results by method.

(b) BMA4D. (c) TDL. (d) LRTV. (e) NMoG. (f) LRTDTV. (g) LLRT. (h) RCTV. (i) Ours.

1 1 1 1 1
0.8 0.8 0.8 0.8 0.8
0.6 0.6 0.6 0.6 0.6
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® () () @

Fig. 6.

Spectral signatures of point (24, 88) in AVIRIS Indian Pines dataset before and after denoising by different methods. (a) Original data, the restored results

by method. (b) BM4D. (c) TDL. (d) LRTV. (¢) NMoG. (f) LRTDTV. (g) LLRT. (h) RCTV. (i) Ours.

occurs before multiplying them by o2. To analyze the sensitivity
of parameters, we conducted denoising experiments on the
Balloons dataset under various parameter settings in the case of
mixture noise. The experiment results are presented as contour
maps. In Fig. 7(a), the MPSNR value is plotted against A; and
Ao. It is observed that MPSNR changes slowly with variations
in Ao, suggesting its insensitivity to this parameter. Conversely,
MPSNR exhibits rapid changes with variations in A1, indicating
its sensitivity to this parameter. Similarly, Fig. 7(b) shows that
the value of MSSIM is also insensitive to Ao but relatively
sensitive to ;. However, within a large range, MSSIM remains
stable at a high level. Hence, A5 can be considered insensitive
while X; is sensitive. Furthermore, A1 represents the intensity
of TV regularization. Therefore, its value can be determined

150 150
374 0.965
140 140
372
130 130 A 0.96
120 37 120
g &
110 368 110 0.955
100 - 100
095
wog 364 20
8

0 80
025 05 075 1 125 15 175 025 05 075 1 125 15 175
A A

(@) (b)

Fig. 7. Contour map of (a) MPSNR and (b) MSSIM versus A1 and Az. .

based on the smoothness of the image. A smoother image would
require a larger value of A, whereas a less smooth image would
necessitate a smaller value of 1.
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V. CONCLUSION

In this article, we propose a novel MSI denoising model with
an adaptive loss function and multiple image prior model-based
regularization. Specifically, we apply the NMoG distribution to
model the complex and unknown noise distribution, and then
obtain the weighted [5-norm loss function by solving the noise
model with VAE algorithm. The weight involved in the loss
function is adaptively and efficiently learned from observed
MSI. In addition, we model the nonlocal spatial similarity,
spatial and spectral correlation, and local smoothness priors
comprehensively and integrate them into the regularization term.
Finally, we conduct the simulation and real data experiments to
demonstrate that the proposed method can effectively reduce the
noise compared with the state-of-the-art methods.
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