
5514 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Deep-Learning-Based Sea Ice Classification With
Sentinel-1 and AMSR-2 Data
Li Zhao , Tao Xie , William Perrie , and Jingsong Yang

Abstract—In the era of big data, how to utilize synthetic aperture
radar (SAR) and passive microwave radiometer data for better sea
ice monitoring by deep-learning technology has recently attracted
wide attention. In this article, we first propose a universal and
lightweight multiscale cascade network (MCNet) for Sentinel-1
SAR-based sea ice classification. In comparison with the previous
local inference methods that split SAR images to small patches, our
proposed global inference method MCNet is able to segment whole
SAR images directly. Then, taking MCNet as a basis, we investigate
four different fusion methods for Sentinel-1 SAR and the advanced
microwave scanning radiometer-2 data. These are the early fusion,
deep fusion, late fusion, and the hybrid method, which fuse data
at the input level, feature level, decision level, as well as both
feature and decision levels, respectively. Experiments demonstrate
that MCNet performs better than the commonly used U-Net in
terms of accuracy, memory usage, inference speed, and in cap-
turing small-scale local details. As for data fusion, compared with
MCNet, significant improvements have been achieved for all data
fusion methods, except the early fusion method. Both deep fusion
and late fusion methods have their own advantages in classifying
certain sea ice types. By combining them together, the proposed
hybrid method achieves optimal performance. Finally, with regard
to the class imbalance problem, we recommend the application of
self-supervised learning to mine the value of massively unlabeled
SAR images.

Index Terms—Advanced microwave scanning radiometer-2
(AMSR-2), data fusion, deep learning (DL), sea ice classification,
Sentinel-1, synthetic aperture radar (SAR).
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I. INTRODUCTION

ARCTIC sea ice plays an important role in maintaining the
energy balance of the Earth’s climate system and is a key

indicator of global climate change. Therefore, it has become a
hot topic to develop automatic algorithms to obtain accurate,
high-resolution sea ice-type maps from satellite remote sensing
data, especially given the present and anticipated future climate,
with the accelerating decline in Arctic sea ice cover [1], [2], [3].

Nowadays, the synthetic aperture radar (SAR) and passive
microwave radiometer (MWR) have become the most power-
ful tools to monitor sea ice due to their powerful ability to
work day and night, almost without regard to weather. SAR
images have the advantage of high resolution (<100 m) and
can, therefore, catch the fine spatial and texture details of sea
ice, especially in the marginal ice zone (MIZ). However, the
backscattering signatures of open water (OW) and different sea
ice conditions are quite complex in SAR images; especially
at high wind conditions, where the backscattering signatures
turn out to be more easily ambiguous, compared with low wind
conditions. Specifically, in high winds, various sea ice types and
OW can have very close backscatter signatures. This is a great
challenge for making high-accuracy sea ice maps. Compared
with SAR images, MWR data, such as advanced microwave
scanning radiometer-2 (AMSR-2) brightness temperature (BT),
exhibit very distinct differences between OW and sea ice, but
at poor spatial resolution (∼10 km). Therefore, the potential
benefit is large for sea ice classification, by combining SAR
with AMSR-2.

In this work, a new lightweight deep-learning (DL) architec-
ture is proposed for Sentinel-1 SAR-based sea ice classification.
This architecture is different from previous methods. It adopts
multiscale SAR images as input instead of small patches cropped
from SAR images. This architecture has significant advantages
over the commonly used U-Net model in terms of prediction
accuracy, memory usage, and inference speed. Based on this, we
investigate four different DL-based data fusion methods, includ-
ing early fusion, deep fusion, late fusion, and the hybrid method,
for Sentinel-1 SAR and AMSR-2 fusion. Experiments demon-
strate the advantages that the hybrid method has compared with
the three other methods. We also investigate the effect of label
errors on model performance and find that a small number of
wrong labels does not harm model performance significantly.
However, we also find that the class imbalance problem harms
model performance severely. A solution is proposed to deal with
this problem.
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Fig. 1. Study area and footprints of Sentinel-1 SAR images.

The rest of this article is organized as follows. The study area
and data are described in Section II. Related work is introduced
in Section III. Our method is presented in Section IV. Results and
discussion are given in Sections V and VI, respectively. Finally,
Section VII concludes this article.

II. STUDY AREA AND DATA

To capture a variety of sea ice conditions in this work, the
Western Canadian Arctic (see Fig. 1) is chosen as the region
of interest. This is one of the five regions where the Canadian
Ice Service (CIS) carries out long-term sea ice monitoring and
provides digital operational sea ice charts. At present, sea ice
charts produce the most precise sea ice-type estimates and
can, therefore, be used as ground truth for model training and
validation, although some subjective errors may exist. This area
is monitored by Sentinel-1 SAR and AMSR-2 satellites, day and
night, which are also widely used for Arctic sea ice monitoring.
More details about these data are introduced in the following
sections.

A. Sentinel-1 SAR Imagery

The Sentinel-1 mission consists of two polar-orbiting SAR
satellites: Sentinel-1A and Sentinel-1B, operated by the Eu-
ropean Space Agency. The revisit cycle for each Sentinel-1
satellite is 12 days. The two-satellite constellation shortens the
revisit period to six days. Unfortunately, the Sentinel-1B mission
ended on December 23, 2021, due to an anomaly related to the
instrument electronics power supply provided by the satellite
platform.

We use the medium-resolution Sentinel-1 ground range de-
tected products in HH/HV polarization in this study. The pixel
spacing is 40 m and an extra wide swath of over 400 km
is used. The processing includes internal calibration, Doppler
centroid estimation, as well as range and azimuth processing.
The Sentinel-1 SAR images were downloaded from the Alaska
Satellite Facility. We collected 574 Sentinel-1 SAR images for
the period from October 2019 to September 2020. The footprints
of all SAR images are shown in Fig. 1.

B. Sea Ice Charts

Weekly regional CIS ice charts are available from the National
Snow and Ice Data Center. These charts are made by ice forecast

TABLE I
SEA ICE-TYPE DEFINITION AND CODE

experts based on the manual interpretation of satellite data,
visual observations from ships and aircraft, and weather and
oceanographic information. Satellite data are collected over
several days in order to have complete coverage of any given
area. The charts are provided as digital shapefiles encoded in
SIGRID-3 format.

The charts provide the ice concentration estimates in incre-
ments of 10% (0, 10%, 20%, …, 100%) and ice-type estimates.
Ice information is coded using the World Meteorological Orga-
nization (WMO) standards. Based on the ice thickness, the sea
ice is divided into OW, new ice (NI), gray ice (GI), gray–white
ice (GWI), thin first-year ice (ThinFYI), medium first-year ice
(MFYI), thick first-year ice (ThickFYI), old ice (OI), second-
year ice (SYI), and multiyear ice (MYI). Their thickness and
corresponding WMO codes are shown in Table I. More detailed
definitions can be found at Environment and Climate Change
Canada.

Although many studies have reported high classification ac-
curacy, the number of classified sea ice types is quite different
among these many studies. Some studies focus on discriminating
sea ice from OW [4], [5]. Most studies can discriminate about
3–5 sea ice types [6], [7], [8], [9]. Clearly, without doubt, the
difficulty in solving the sea ice-type classification task increases
as the number of sea ice types to be estimated increases. This is
because sea ice types are associated closely with stages of sea
ice development; these can be close to one another and have very
similar visual appearances in SAR images.

In this study, we focus on identifying more refined sea ice
types according to the sea ice development stage: OW, NI, GI,
GWI, ThinFYI, MFYI, ThickFYI, OI, SYI, and MYI. Since the
ice charts also provide a land mask, we also estimate the land
locations.

C. AMSR-2 Data

The AMSR-2 is a dual-polarized (vertical and horizontal) pas-
sive MWR onboard the Japan Aerospace Exploration Agency’s
(JAXAs) GCOM-W1 spacecraft. AMSR2 takes the measure-
ments of BT from the Earth’s surface and the atmosphere at mul-
tiple frequency bands (6/7/10/18/23/36/89 GHz). The AMSR-2
data have been used to generate routine sea ice products, such
as the ASI sea ice concentration products by Bremen University
and the global sea ice-type product by OSISAF.

We use the AMSR-2 L3 BT product at 10 km resolution,
which can be freely downloaded from the JAXA G-Portal. These
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Fig. 2. Sea ice-type distributions for training and test datasets.

data include daily ascending and descending BT fields for all
channels. For convenience, we only use the ascending BT data.
In general, TB at low-frequency bands, such as 18 and 36 GHz,
is more often used for sea ice classification [10], [11]. TB at
89 GHz is also used for sea ice classification [12], but it is more
sensitive to atmospheric effects. In this study, BT at all bands of
the Sentinel-1 SAR images is used to conduct the data fusion.

D. Dataset Construction

To construct the dataset for model training and validation, we
first follow a generic workflow to process SAR images. Radio-
metric corrections and thermal noise removal are applied to both
HH- and HV-polarized SAR images to obtain the normalized
radar cross section (NRCS) in dB. The size of the original SAR
images is about 10 000 × 10 000 pixels. For convenience, all
SAR images are cropped to a uniform size of 9000 × 9000
pixels. To reduce the speckle noise and computational load, we
downsample all SAR images to different spatial scales of 200,
400, and 800 m by boxcar averaging, corresponding to an input
size of 1800 × 1800, 900 × 900, and 450 × 450 pixels. Then,
the sea ice-type labels are mapped onto the SAR image grids
by nearest neighbor interpolation. The AMSR-2 BT data are
resampled to 800 m. We normalize the NRCS and BT values by
their mean and standard deviation (SD), respectively, using the
Z-score method. Then, the whole dataset is randomly split into
training and test datasets at a ratio of 7:3. The sea ice distributions
for training and test datasets are illustrated in Fig. 2.

III. RELATED WORK

A. SAR-Based Sea Ice Classification

Nowadays, popular methods for SAR-based sea ice classi-
fication can be summarized as two types: statistical machine
learning (SML) based methods and DL-based methods.

Typically, SML-based methods can be considered as having
two steps. First, polarimetric and texture features are extracted
from the SAR images and then an SML model is applied to make
sea ice classification. The polarimetric features can reveal the
scattering mechanisms or statistical properties of sea ice well.
The latter properties can be extracted from SAR images based
on the transformation of polarimetric channels [13], [14], [15],
[16] or eigendecomposition methods [13], [15], [17]. For texture
feature extraction, gray-level co-occurrence matrices [15], [18],

[19], [20], [21] are the most popular texture analysis method.
Based on these extracted features, various SML models can be
employed to classify sea ice, such as supporting vector machine
(SVM) [18], [19], [20], [21], random forest (RF) [21], k-means
[13], [15], maximum likelihood [13], decision tree [14], and
Bayesian methods [22].

The combined use of different methods is often the most
effective. Leigh et al. [23] proposed the map-guided ice classi-
fication system that combines the iterative region growth using
semantics algorithm and a pixel-based SVM method using a
nonlinear radial basis function. By integrating the SVM results
into a conditional random field (CRF), Zhu et al. [24] developed
the SVM-CRF algorithm for the classification of five different
ice types.

Although many achievements have been obtained for SML-
based methods in sea ice classification, there are some notable
limitations. First, these methods need a high level of professional
knowledge in order to implement their rather complicated fea-
ture engineering methodologies and they can, therefore, easily
experience robustness problems. Second, their computation ef-
ficiency cannot meet the requirements of processing immense
amounts of high-resolution SAR images in the era of big data.
Last but not the least, the performance of the traditional SML
methods becomes steady when the amount of data increases
beyond a certain number, whereas the performance of DL meth-
ods keeps increasing with respect to the growing amounts of
data [25].

To deal with these problems, DL has attracted wide attention
recently due to its powerful ability to learn low- and high-level
semantic features from SAR images automatically, without the
need to perform complex hand-designed feature extraction. At
present, the most commonly used DL architecture in SAR-based
sea ice classification is CNN [26]. Typically, CNN consists of
a series of convolutional layers, pooling layers, fully connected
layers, and activation functions. To reduce the computation load
and prevent overfitting, the convolutional layers consist of a set
of filters, which share the same learnable weights. Usually, they
are followed by an activation function, which is usually rectified
linear units (ReLU), which help introduce strong nonlinearity
into the model, thereby enabling the model to learn complex
semantic features. After this, the extracted semantic features are
downsampled by the pooling operation, e.g., maximum pooling,
to further decrease the calculation requirements. Finally, the
fully connected layers are applied to make classifications based
on the extracted semantic features.

In recent years, many studies have developed SAR-based
sea ice classification methodologies using CNN. Boulze et
al. [9] trained LeNet with Sentinel-1 SAR data and sea ice
charts for four ice-type classifications and achieved accuracy
that exceeded that of the RF algorithm based on the texture
features. Khaleghian et al. [8] utilized data argumentation tech-
nology to handle the class imbalance problem and significantly
improved the classification performance. Zhang et al. [6] used
MobileNetV3 as a backbone network and combined a multiscale
feature fusion method to establish the Multiscale MobileNet
model for sea ice classification based on Gaofen-3 SAR data.
Lyu et al. [7] combined RADARSAT Constellation Mission data
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and the normalizer-free residual network (ResNet) for sea ice
detection and classification. Thus, the superior capacity of the
DL model approach over the traditional SML models was again
confirmed.

Recently, a more general way has been proposed to design a
DL model for sea ice classification, which follows two steps.
First, classical CNNs are used as the backbone for feature
extraction. Second, a specifically designed neural network is
applied to make predictions based on the extracted representa-
tions. For example, Song et al. [27] extracted spatial features
of SAR imagery based on the ResNet model and then fed them
into the so-called “long short-term memory” network to learn
complementary temporal features for final prediction.

Although CNN-based methods have shown good perfor-
mance, they have some inherent disadvantages in dealing with
high-resolution SAR images. On the one hand, in order to make
sea ice classification at the pixel level, SAR images should be
first split into small patches based on a sliding window strategy.
Then, the patches are fed to the model in order to predict the
labels. Therefore, the time complexity is with respect to the
size of the SAR image. According to Song et al. [27], it takes
about 15–20 min to process one SAR image, which is quite
time-consuming. On the other hand, the CNNs can only “see”
the small patches instead of the whole SAR image, ignoring the
relationships among adjacent patches. As a result, this signifi-
cantly restricts the performance of CNN methodologies in sea
ice classification due to the lack of global information.

To overcome these shortcomings, fully convolutional net-
works (FCNs) [28] have been applied to SAR-based sea ice
classification [5] and sea ice concentration estimation [29], [30].
By replacing fully connected layers in CNNs with 1× 1 convolu-
tional layers, FCNs are able to make predictions at the pixel level.
Benefiting from this, FCNs can take inputs of arbitrary size and
then make predictions with the corresponding size efficiently.
Unfortunately, due to GPU memory limitations, it is difficult for
the existing FCNs, such as U-Net [31] and DeepLabV3 [32], to
directly deal with the entire high-resolution SAR images because
they are not specially designed for high-resolution images. To
reduce the computational load, the common practice is to reduce
the resolution of SAR images by, e.g., 200 m [29], [30], and then
divide the SAR images into small patches to further reduce the
input size. As mentioned above, this also confines the ability
of FCNs to learn global information and, therefore, degrades
model performance.

To solve this problem, we develop a lightweight FCN model
based on the idea of a multiscale cascade [33], [34]. The pro-
posed model consists of three network branches with different
depths to learn multiscale representations from multiresolution
SAR images. In this way, our model achieves better performance
in accuracy, memory usage, and inference speed.

B. DL-Based Data Fusion Techniques

The overall objective of data fusion is to combine the advan-
tages of multiple data sources in order to improve the derived
data products, compared with only using a single data source.
With a large amount of Earth observation satellites present in

Fig. 3. Generic DL architectures for early fusion, deep fusion, and late fusion.

orbit, it is of great value to develop DL-based data fusion tech-
niques in this era of big data. In methodologies for DL-based data
fusion, one can distinguish three common types: early fusion,
deep fusion, and late fusion.

Fig. 3 illustrates the generic DL architectures for early fusion,
deep fusion, and late fusion. In the early fusion strategy, raw data
are fused at the input or data level. By directly concatenating
these raw data inputs in the original input space, they are fused
channel-by-channel as the multichannel inputs that are used to
learn a fused semantic feature representation. In the deep fusion
strategy, each raw data input is used as a single input to train the
individual DL model, and then these learned semantic features
are fused for the final task. In the late fusion strategy, similar to
the deep fusion strategy, each raw data input is inputted into an
individual DL model. The single DL model can better dig for
the unique information of the corresponding data. The outputs
of each DL model will then be integrated to generate the final
output. Therefore, it has been concluded that DL-based data
fusion methods can be put into three categories: input/data level,
feature level, and decision level. One can refer to recent review
articles for an overview of these activities [35], [36], [37].

Based on the FCN model for SAR-based sea ice classification,
we explore four different fusion methods: early fusion, deep
fusion, late fusion, and a hybrid method (combining deep fusion
and late fusion), for Sentinel-1 SAR and AMSR-2 data fusion,
for the first time.

IV. METHOD

A. Multiscale Cascade Network (MCNet) for SAR-Based Sea
Ice Classification

In general, deeper networks usually lead to better perfor-
mance. However, their huge memory usage makes it difficult for
them to deal with full-scale SAR images. To reduce the memory
burden, previous methods have usually cropped SAR images
into small patches, which harms model accuracy due to the lack
of global information. In contrast, we try to segment entire SAR
images directly. Taking into account the computation efficiency
and prediction accuracy, MCNet adopts a multiscale cascade
architecture [33], [34] to extract low- and high-level semantic
features from multiscale SAR images. As shown in Fig. 4, this
approach consists of two shallow network branches and one rel-
atively deep network branch. The shallow network branches are
used to extract low-level spatial features from high- and medium-
resolution SAR images, while the deep network branches are
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Fig. 4. Overall architecture of MCNet. Numbers are the ratios of the image or
feature map size, compared with the highest resolution of the input data. Dotted
lines and boxes represent modules that are only used in the training stage.

designed to extract complementary high-level semantic features
from relatively low-resolution SAR images. Thus, the RAFF
module [34] is employed to fuse semantic features deeply from
adjacent network branches. Finally, lightweight decoders are
utilized to make predictions based on the fused features. The
essential structure of the encoder, RAFF module, and decoder
are described in detail in the following sections.

1) Encoder: For high- and medium-resolution branches, we
only use the first three and four stages of the original short-
term dense concatenate network (STDCNet) [38], respectively.
Each stage of STDCNet consists of several blocks, including
one convolutional layer, one batch normalization layer, and the
ReLU activation layer in each block. The convolutional kernel
size of the first stage is 1, and the kernel sizes of the others are
3. The resolution of the feature map in each stage is reduced by
half by using a stride of 2. As a result, the output resolutions of
the encoder for high- and medium-resolution branches are 1/8
and 1/16 of the SAR image resolution, respectively. For stages
1–4, the number of output channels is 32, 64, 256, and 512,
respectively.

The encoder for the deep network branch is DeepLabv3 [32],
including four ResNet18 [39] blocks and one atrous spatial
pyramid pooling (ASPP) module. ASPP is composed of one
1 × 1 convolution and three 3 × 3 convolutions, with rates of
12, 24, and 36. The output resolution of DeepLabv3 is 1/32 of
the SAR image resolution.

2) RAFF: How to fuse these multiscale semantic features,
extracted from SAR images, is one of the key problems in this
study. Common methods employ simple addition or concate-
nation approaches to perform feature fusion. However, this ig-
nores the complex relationships between features from adjacent
branches [34]. Therefore, we introduce the RAFF module pro-
posed by Guo et al. [34] to learn the relationship automatically.

The overall structure of the RAFF module is shown in Fig. 5.
Let FC×H1×W1

1 and FC×H2×W2
2 denote the feature maps from

two different branches, where C, H1/H2, and W1/W2 denote
the channel size, height, and width of feature maps, respectively.
Channelwise attention att is calculated as follows:

att = Conv (GAP (F )) (1)

where Conv denotes the convolution operation with kernel size
and stride assumed to be 1, and GAP represents the global

Fig. 5. Overall structure of the RAFF module. Light blue and light red indicate
feature maps from two adjacent branches.

average pooling. Thus, attention vectors attC1 and attC2 can be
computed by (1), and attC1 and attC2 are divided into K groups
with length L, i.e., GK×L

1 and GK×L
2 .

The relationship matrix R between G1 and G2 can be defined
by an inner product for each of the group pairs

R = G1 G
T
2 (2)

where T denotes the matrix transpose. After that, R is flattened
to a 1-D vector R′, which is then imputed to the multilayer
perceptron (MLP). The output of MLP is defined as follows:

M = LN (ReLU (LN (R′))) (3)

where LN and ReLU denote the linear layer and activation
function, respectively.

Finally, the fused feature Ff is calculated as follows:

Ff = β1 · F1 + Upsample (β2 · F2) (4)

where βC is the modulation factor, defined as follows:

β = σ (att + αM) . (5)

3) Decoder: An identical lightweight decoder is employed
for each branch to make final segmentations. It sequentially
consists of one 3 × 3 convolution, one batch normalization
layer, one ReLU activation layer, and one 1 × 1 convolution.
During the test stage, the decoder of the last two branches can
be discarded.

B. Data Fusion Methods

On the basis of MCNet, we propose four different methods
for fusing Sentinel-1 SAR and AMSR-2 data: early fusion, deep
fusion, late fusion, and a hybrid method. We describe these
methods in detail in the following sections.

1) Early Fusion: Typically, the early fusion method fuses
data at the input level. However, it will increase both the com-
putation and memory load seriously, making it difficult to carry
out large-scale training. Therefore, we concatenate AMSR-2
data and the multiscale features extracted from SAR images
for early fusion, following the work of Malmgren-Hansen et al.
[40]. Although they declare that this is a feature-level or deep
fusion method, we consider it an early fusion approach because
no features are extracted from AMSR-2 data. Based on MCNet,
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Fig. 6. Overall architecture of MCNet-E.

Fig. 7. Overall architecture of MCNet-D.

we just concatenate AMSR-2 data and the features extracted
from SAR images for early fusion. The overall architecture of
MCNet-E is shown in Fig. 6.

2) Deep Fusion: The deep fusion method fuses data at the
feature level. Inspired by the basic idea of MCNet, an additional
network branch is utilized to extract semantic features from
AMSR-2 data. Then, these semantic features are fused with
the multiscale features extracted from Sentinel-1 SAR images
by the RAFF module. The overall architecture of MCNet-D is
illustrated in Fig. 7. DeepLabV3 is used as the encoder to extract
features from AMSR-2 data and this decoder is the same as that
of MCNet.

3) Late Fusion: The late fusion method fuses data at the deci-
sion level. To be specific, the classifiers MCNet and DeepLabV3
are used to obtain sea ice maps from Sentinel-1 SAR images and
AMSR-2 data, respectively. Then, we fuse their results for the
final classification. Many fusion methods have been proposed for
late fusion, such as averaging the confidence of the individual
networks [41] or the naive Bayes (NB) method [42]. We find that
the performance of the NB method is more stable and robust than
that of the averaging-based approach. Therefore, we adopt the
NB approach for late fusion.

The NB method assumes that the classifiers are mutually in-
dependent, given a certain class label. This is called conditional
independence, which allows for the following formula:

p (s|wk) = p (s1, s2, . . . , sL|wk) =

L∏

i=1

p (si|wk) ,

k = 1, . . . , c (6)

where si represents the output label of the ith classifier and wk

is the ground truth label. L and c are the numbers of classifiers of
classes, respectively. p(si|wk) denotes the probability that the
ith classifier labels the sample in class si.

According to the Bayesian theory, the posterior probability
needed to label a certain sample can be calculated as follows:

p (wk|s) = p (wk) p (s|wk)

p (s)
=

p (wk)
∏L

i=1 p (si|wk)

p (s)
. (7)

It is obvious that the denominator is independent of wk and,
therefore, can be ignored. Then, the support for class wk can be
computed as follows:

μk ∝ p (wk)
L∏

i = 1

p (si|wk) . (8)

The final class is determined by the maximum value of μk.
Based on the confusion matrix calculated for each classifier on
the training dataset, (8) can be rewritten as

μk ∝ 1

NL−1
k

L∏

i = 1

CMi
k,si

(9)

where CMi
k,si

denotes the confusion matrix with regard to the
ith classifier. Nk is the number of elements of the dataset from
class wk.

4) Hybrid Method: We find that the combination of deep
fusion and late fusion is more effective, compared with the
other possible approaches. Specifically, the classification re-
sults obtained from MCNet (SAR), DeepLabV3 (AMSR-2),
and MCNet-D (SAR + AMSR-2) are fused for final predic-
tions based on the NB method. In essence, this is also a late
fusion method. To discriminate this method from the late fusion
method, above, we give an explanation in this separate section.

C. Evaluation Metrics

We evaluate model performance for three aspects: prediction
accuracy, GPU memory usage, and inference time on GPU/CPU.
We follow the common practice to use mean intersection over
union (mIoU) as the accuracy metric of the semantic segmenta-
tion task. To compute mIoU, we first calculate intersection over
union (IoU) for each class as follows:

IoU =
TP

FP + FN+ TP
(10)

where TP, FP, and FN represent the true positive, false positive,
and false negative, respectively, which can be derived from the
confusion matrix.

Then, mIoU can be calculated by averaging the classwise
IoU. To evaluate the accuracy of models more objectively, we
adopt a fivefold cross-validation method. The training dataset
is randomly divided into five equal-sized subsets. Of the five
subsets, a single subset is retained as the validation data for
validating the model, and the remaining four subsets are used as
the training data. The cross-validation process is then repeated
five times, with each of the five subsets used exactly once as the
validation data. Thus, we get five trained models. We evaluate
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TABLE II
PERFORMANCE COMPARISON BETWEEN GLOBAL INFERENCE AND LOCAL

INFERENCE METHODS

their performance on the test dataset. Their mean and SD values
are used to measure the model performance.

Memory and GPU inference time are measured on a GPU
with a batch size of 1. We also provide the CPU inference time,
in case the GPU is not available.

D. Implementation Details

All experiments are performed on a Ubuntu workstation with
four RTX 3090 GPUs (24 GB memory) and two Intel Xeon
Gold 6248R CPUs. We employ the AdamW [43] optimizer with
a weight decay of 0.01 and a cosine learning rate schedule,
gradually decaying from 5 × 10−4 to 10−6. The batch size is set
to 4 per GPU. Therefore, the total batch size is 16. To improve
generalization ability and reduce the risk of overfitting, random
horizontal flip, random vertical flip, and random rotation by 90°,
180°, and 270° are applied to the training dataset, as the data
augmentation. We train all experiments for 100 epochs and use
warm up [44] for the first two epochs to improve training stability
and reduce early overfitting.

V. RESULTS

A. Global Inference Versus Local Inference

We first evaluate the performance of the proposed MCNet
method for SAR-based sea ice classification. This is a global
inference method since MCNet can segment whole SAR images.
In comparison, the previous work on this topic usually splits
SAR images into small patches as model input due to the
limitations of GPU memory and computational power. We refer
to this method as a local inference method.

We compare MCNet with the generic local inference methods,
which train and test their models on cropped patches. We select
U-Net [31] as the baseline model because it has been widely
used in sea ice classification and sea ice concentration estimation
[5], [30], and has achieved good performance. The evaluation
results are shown in Table II. The number in the “Model name”
column represents the patch size of the model input. As expected,
the performance of U-Net improves with increasing patch size.
But at the same time, the GPU memory increases greatly with
patch size, which makes training and prediction difficult for
large-scale SAR images. The inference time on GPU/CPU is
determined by both patch size and patch number. This can
explain why U-Net-400 achieves faster inference speed than

Fig. 8. Classwise IoU of U-Net-800 and MCNet, and corresponding perfor-
mance differences between them. Error bars represent SD.

Fig. 9. Confusion matrices of U-Net-800 and MCNet.

U-Net-100 and U-Net-800. Our proposed MCNet achieves the
best performance indicators. At the cost of very small memory
requirements, MCNet achieves the highest mIoU and the fastest
inference speed. To evaluate the effectiveness of our proposed
model architecture further, we also assess the performance of
the medium-resolution branch (MCNet-M) and low-resolution
branch (MCNet-L). It can be seen that both medium- and
high-resolution branches can benefit from the fusion of seman-
tic features extracted from multiscale SAR images. This can
demonstrate that our proposed architecture is effective.

Fig. 8 shows the classwise IoU of U-Net-800 and MCNet, and
the corresponding performance differences between them. It can
be seen that MCNet outperforms U-Net-800 in detecting all sea
ice types, except NI. In general, it is much harder to discriminate
sea ice types with close development stages because they present
very similar visual features in SAR images. By increasing the
patch size, MCNet is able to utilize more information to identify
sea ice types with similar visual representations. Especially,
for the identification of first-year ice with different thicknesses,
significant improvements are observed for MCNet.

The confusion matrices of U-Net-800 and MCNet are shown
in Fig. 9. Obviously, it is more difficult for both U-Net-800 and
MCNet to discriminate sea ice types with close development
stages, as mentioned above. Initially, it seems strange that for
NI, GI, and GWI, a large proportion (>10%) is misclassified
into OI and MYI. We, subsequently, check all data carefully
and find that these misclassified sea ice types usually appear
near OI and MYI. Because they suffer from the serious class
imbalance problem, it is difficult for U-Net-800 and MCNet to
learn sufficiently good feature representations from inadequate
samples. We will discuss this problem in detail in Section VI.
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Fig. 10. Cases of segmentation results. The columns from left to right represent
RGB (R: HV, G: HH, B: HH/HV) SAR imageries, ice charts, and classification
results from U-Net-800, MCNet, and MCNet-L. In this article, the colors indicate
differing sea ice types following WMO standards.

Qualitative comparison results are given in Fig. 10. In case (a),
the classification result from MCNet has good agreement with
ice chart data, except that very few parts of GI are misclassified
as MFYI. By contrast, U-Net-800 misclassifies some ThinFYI as
GWI and MFYI. Moreover, some GIs are misclassified as GWI,
ThinFYI, and MYI. In case (b), U-Net-800 fails to recognize
GWI, while MCNet identifies GWI correctly. A large part of
MFYI at the bottom left corner is misclassified as ThickFYI by
both U-Net-800 and MCNet. Objectively speaking, it is quite
difficult to distinguish FYI with different thicknesses because
they are presented by very similar visual representations in SAR
images.

In the MIZ corresponding to case (c), MCNet can better
characterize the shape and structure of the MIZ than U-Net-800.
Due to the class imbalance problem, both fail to distinguish NI.
Compared with MCNet, MCNet-L performs worse in identi-
fying small-scale sea ice characteristics. This is because some
detailed information is discarded during downsampling.

In summary, compared with the local inference methods, our
proposed global inference approach, MCNet, achieves more
accurate and refined classification results, as well as higher
inference speed with fewer requirements for memory usage. Due
to its strong ability for learning multiscale semantic features,
MCNet can better capture the small-scale local details, which
are very important for sea ice applications, such as ice nav-
igation and high-resolution and high-precision climate model
developments.

B. Evaluation of Different Data Fusion Methods

Based on MCNet, we implement four different data fusion
methods. Their performances are evaluated comprehensively
and given in Table III. Compared with MCNet, the accuracies of
all fusion methods show obvious improvements, except for the
early fusion method, which is even slightly poorer than MCNet.
The hybrid method achieves the highest overall accuracy. Due
to the need to deal with additional AMSR-2 data with up to

TABLE III
PERFORMANCE COMPARISON AMONG DIFFERENT DATA FUSION METHODS

Fig. 11. Top: classwise IoU; bottom: classwise IoU difference between four
data fusion methods and MCNet. Error bars represent SD.

14 channels, there is a significant increase in the GPU memory
usage for these four data fusion methods. But the difference in
GPU memory usage among them is quite small. Moreover, the
inference time of the early fusion and deep fusion methods is
comparable with that of MCNet, while the inference time of the
late fusion and hybrid methods increases significantly by four
times for GPU and one–two times for CPU, respectively. This
is because both the late fusion and hybrid methods need to do a
fusion of classification results from multiple models, resulting
in the increase of computational requirements.

To further analyze their classification performance in each
class in detail, the classwise IoU (Top) results for all fusion
methods and MCNet are shown in Fig. 11 (Top). Combined
with Fig. 2, we can see that there is a high correlation (Pear-
son correlation > 0.7) between sea ice-type distribution on
the training dataset and classwise IoU distribution on the test
dataset. The high correlation indicates that the data imbalance
has a significant negative effect on model performance over the
minority classes.

Fig. 11 (Bottom) illustrates the classwise IoU difference be-
tween different fusion methods and MCNet. The early fusion
method slightly improves the classification accuracy of OW,
NI, GWI, MYI, and land, whereas the classification accuracy
of other sea ice types is reduced. Notably, the classification
accuracy of MFYI decreases by up to 4.97%. This demonstrates
that the early fusion method is not an ideal approach for fusing
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Fig. 12. Cases of segmentation results. The columns from left to right represent
RGB (R: HV, G: HH, B: HH/HV) SAR imageries, ice charts, and classification
results from MCNet, early fusion, deep fusion, late fusion, and the hybrid
method.

Sentinel-1 SAR and AMSR-2 data for sea ice classification. By
contrast, the deep fusion method gains a significant improvement
(>4%) in classifying OW, NI, GI, and GWI. Meanwhile, the
classification accuracy of ThickFYI, OI, MYI, and land also
increases slightly. But the classification accuracy of ThinFYI,
MFYI, and SYI drops slightly. Overall, the deep fusion method
is obviously superior to the early fusion approach. This indi-
cates that it is more effective to extract semantic features from
AMSR-2 data for feature fusion, instead of simply concatenating
AMSR-2 raw data and features extracted from SAR.

In contrast with the early fusion and deep fusion methods,
the late fusion approach is more stable because no decrease
in classification accuracy is observed for all sea ice types. By
comparing the IoU difference between the deep fusion and late
fusion methods, we can conclude that the deep fusion method
performs better in the classification of OW, NI, GWI, Thick-
FYI, and land, while the late fusion approach performs better
in the classification of other sea ice types. Each has its own
advantages. Therefore, it is possible to make full use of their
particular superior characteristics in order to get better data
fusion. Following this idea, we propose a hybrid method for
Sentinel-1 SAR and AMSR-2 data fusion by combining the deep
fusion method and the late fusion method together. As shown
in Fig. 11 (bottom), the classwise classification accuracy of the
hybrid method achieves a good balance between that of the deep
fusion method and the late fusion method.

To better illustrate the difference among different fusion meth-
ods, four cases are given in Fig. 12. The early fusion method can
hardly help improve the classification results and can even make
the results [case (a)] worse. In cases (a) and (d), the deep fusion
method performs better than the late fusion method, while in
cases (b) and (c), the results are reversed. By absorbing the
advantages of the deep fusion and late fusion methods, the
hybrid method achieves better results, overall. Both cases (a)
and (b) demonstrate that we can obtain more confident results
at large spatial scales by data fusion. Moreover, it is proven
by case (c) that data fusion can help improve the results in the
MIZ. We also observe that data fusion is able to help identify

Fig. 13. Effect of label errors on model performance. Error bars represent SD.

small-scale local details in case (d). This is surprising because
the spatial resolution of AMSR-2 data is coarse, on the order
of 10 km. A reasonable explanation is that additional AMSR-2
data can enhance the generalization ability and robustness of the
proposed DL models.

VI. DISCUSSION

A. Effect of Label Errors on Model Performance

Currently, ice charts are produced by experienced ice experts
and are based on the manual interpretation of SAR images.
In SAR images, a large spatial region with homogeneous ice
characteristics is assigned with a single label. The particular
ice type at a specific location may be different from the label
provided by ice charts. Moreover, ice charts have been known
to have biases due to the subjectivity of the ice experts [45].
Therefore, it is necessary to study the effect of label errors
on model performance. However, it is quite difficult to quan-
titatively evaluate the label errors of ice charts. To deal with
this problem, we manually introduce some errors to the train-
ing labels. Specifically, although one SAR image may contain
several ice types, we randomly select only one ice type and
replace its label with ice with similar development stages. This
is reasonable because it is hard to distinguish sea ice types with
close development stages. In this way, we evaluate the effect of
label errors on model performance indirectly. It can be seen from
Fig. 13 that the performance of all models decreases with the
ratio of wrongly annotated SAR images. When 20% of SAR
images have label errors, the mIoU of all models decreases
by less than 2. Therefore, although ice charts may have some
label errors, they are not generally expected to have a significant
negative effect on model performance.

B. Possible Solution to the Class Imbalance Problem

In the computer vision domain, DL models are usually devel-
oped using artificially balanced datasets. However, the datasets
in the real world are usually class imbalanced, such as the sea ice
datasets used in this work (see Fig. 2). As mentioned above, this
problem has a significant negative effect on model performance,
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over the minority classes (see Fig. 11). Therefore, it is necessary
to explore possible solutions to this problem.

A lot of effort has been expended in order to deal with the
imbalance problem in the field of supervised learning (SL), such
as data resampling [46], [47], loss reweighting [48], [49], and
representation and classifier decoupling [50], [51]. We find that
the above-mentioned methods improve model performance on
the so-called “instance-rare classes,” at the cost of the “instance-
rich classes.” To some extent, the majority classes may be more
important since they occupy the largest proportions of data in
the natural world.

From a data-driven perspective, this problem constitutes the
inherent issue in the DL domain. Data have never been a problem
for DL, but the lack of labeled data is a problem. However,
making high-quality ice charts is time-consuming and requires
professional ice forecasting expertise. In fact, the labeled SAR
images only occupy a small proportion, compared with the
whole SAR image world. In order to solve this problem and
to build more robust and more generalized DL models for
SAR-based sea ice classification, we suggest exploiting the value
of huge amounts of unlabeled SAR images by self-supervised
learning (SSL), without significant limitations related to specific
human-designed strong data augmentation in semi-SL [52].

Moreover, some studies have reported that SSL is more robust
in handling the issue of data imbalance [53], [54] compared with
SL. In particular, SSL has established a breakthrough with the
birth of masked autoencoders (MAE) [55]. However, the encoder
for MAE is a vision transformer [56], which is not suitable for
processing high-resolution SAR images due to its huge mem-
ory usage. Besides, MAE will experience a serious overfitting
problem if it is trained on small-scale datasets; the performance
of MAE is 10% lower than that of general CNNs. In practice,
previous studies have demonstrated that MAE performs better
than CNNs for large enough datasets [55], [56]. More recently,
Li et al. [57] proposed an “architecture-agnostic masked image
modeling” (A2MIM) framework, which is compatible with both
CNNs and transformers, in a universal way. Based on A2MIM,
our proposed DL models can also be used for SSL. We will
investigate this in the future.

VII. CONCLUSION

In this article, we present a DL-based automatic sea ice clas-
sification algorithm with Sentinel-1 SAR images. The proposed
MCNet combines three network branches with different depths
to learn low- and high-level features of sea ice from multires-
olution SAR images. Benefitting from an elegant design, it
achieves better performance in overall accuracy, memory usage,
and inference speed, compared with the common U-Net method.
It is able to classify 11 sea ice types with different development
stages and has the advantage of identifying small-scall sea ice
conditions, with the help of multiscale feature fusion.

Based on MCNet, we adopt four different fusion methods:
early fusion, deep fusion, late fusion, and the hybrid method,
to fuse SAR and AMSR-2 data. Their performances are fully
evaluated. The early fusion method, which concatenates AMSR-
2 data and SAR image features for input-level data fusion,

provides little improvement to the classification accuracy. The
deep fusion and late fusion methods fuse data at the feature
level and at the decision level, respectively. Their performance
is significantly improved compared with MCNet. Although each
has its own strengths, their overall accuracy is comparable. The
late fusion method is able to improve the classification accuracy
of almost all sea ice types, whereas the deep fusion method
achieves remarkable advantages in classifying certain sea ice
types. By combing their advantages, the hybrid method achieves
a good balance between these advantages and disadvantages.
Moreover, among all fusion methods, it obtains the highest
accuracy.

However, there are still some limitations in this work. In
particular, the class imbalance problem has not been solved.
Real-world classification problems usually present an imbal-
anced distribution where most classes only have a few samples.
Owing to the lack of samples, performance in such classes is
challenging. In this case, the overall accuracy of NI, GI, and GWI
is quite poor. By investigating various studies in the literature,
we think SSL is a feasible solution through mining the value
of numerous unlabeled SAR images. We will further study this
problem in the future.

The architecture of all DL models proposed in this study has
the advantage of universality. Namely, our methods can be fur-
ther improved by adopting more advanced encoder, decoder, and
feature fusion modules, as the development of DL technology
continues to advance.
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