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A Denoising Network Based on Frequency-Spectral-
Spatial-Feature for Hyperspectral Image
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and Fansheng Chen , Senior Member, IEEE

Abstract—The quality of hyperspectral images seriously impedes
subsequent high-level vision tasks such as image segmentation,
image encoding, and target detection. However, the frequency, spec-
tral, and spatial properties of the hyperspectral noise pictures are
not utilized fully by existing image denoising algorithms. To address
this issue, a novel convolutional network based on united Octave
and attention mechanism (UOANet) is proposed to extract the
frequency-spectral-spatial-feature for denoising the actual noise of
HSIs. In particular, the negative residual mapping embedded in
Unet is proposed for multiscale abstract representation and two
modules are designed for modeling global noisy HSI features in the
frequency-spectral-spatial domain. First, with the use of residual
Octave convolution module, our model can focus on the intrinsic
properties of HSI noise distribution for desirable noise removal.
Next, a parallel spatial-spectral attention module is used to fully
utilize the rich spectrum data and the various spatial data of each
band in HSI, which improves the richness of HSI details after
denoising. Experimental results on both synthetic and real HSIs
demonstrate the validity and superiority of UOANet compared with
the state-of-the-arts under various noise settings.

Index Terms—Frequency-spectral-spatial domain, hyper-
spectral image denoising, octave network, spatial-spectral attention
mechanism.

I. INTRODUCTION

COMPARED with the human eye, which can only observe
information in the visible spectrum, the hyperspectral
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image can collect the signal of the whole electromagnetic spec-
trum, allowing researchers to obtain the spectral characteristics
of various substances in the specific wave band and to analyze
physical properties of the substance. Therefore, hyperspectral
images are widely used in various fields, including ground
object recognition [1], [2], [3], water retrieval [4], [5], and target
tracking [6], [7]. However, hyperspectral images inevitably suf-
fer from various corruptions and degenerations. Contaminated
observations will seriously impede subsequent high-level vision
tasks. As a result, it is of great importance to denoise HSIs before
performing high-level tasks.

A. Related Work

This section briefly introduces the recent hyperspectral de-
noising works and the Octave-based approaches. Hyperspectral
denoising has always been an ill-posed problem. Effective con-
ditions that assist the denoising are required to address this issue,
and various denoising approaches have been suggested to handle
different types of noises. The existing methods can be coarsely
divided into two categories: 1) Model-based approaches and 2)
CNN-based approaches.

1) Model-Based Approaches: Most of the early hyperspec-
tral remote sensing images are denoised by filtering techniques,
which can be divided into spatial domain filtering and transform
domain filtering. Spatial filtering is the most direct method
for image denoising, and it works by combining the adjacent
pixels in the window to achieve local smoothing. For example,
Dabov et al. [8] proposed BM3D algorithm, which is used
for three-dimensional (3-D) data denoising and can be directly
used in hyperspectral image denoising. In order to enhance
the denoising impact, Maggioni et al. [9] proposed BM4D,
which extend BM3D to BM4D by employing 3-D cubes of
voxels, and then stacks into a 4-D group and models bandwidth
correlation by the joint processing of multidimensional image
data. In addition, 1-D signal or 2-D image filtering method can
be extended to denoise Hyperspectral Data Cube. Heo et al.
[10] proposed a joint bilateral filter for hyperspectral image
denoising. The bilateral filter and the fused image are applied to
the hyperspectral image denoising after all bands of the picture
have been weighted.

These filter-based approaches are simple and efficient. The
key is the filter design and the selection of noise threshold. The
periodic noise can be used to separate the signal components
accurately. However, the mixed noise without obvious distri-
bution features can easily lead to the spatial loss such as local
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oversmoothing and detail blurring. Additionally, both the filter
design and the selection of noise threshold are dependent on
expert priors, which cannot satisfy the demands of intelligent
data processing.

Hyperspectral image has abundant space spectrum and space
information, which can help to remove noise while preserving
and restoring detail information. In recent years, many scholars
have designed several effective regularizations for denoising,
such as total variation (TV) based method [11], [12], [13],
sparsity-based method [14], [15], [16], nonlocal-based method
[17], [18], [19], dictionary-learning-based method [20], [21],
[22], and matrix/tensor-based low rank method [23], [24], [25].
Among these approaches, ITS-Reg [26], LLRT [27] and a new
iterative projection achieve state-of-the-art performance due to
their extensive efforts on modeling intrinsic HSI properties.

In general, since the structural characteristics of HSI are
utilized, these regularization-based approaches are more flexible
and can be used for different types of noises. The key is the design
of prior term and the selection of optimal regularization param-
eters. However, due to the limitation of artificial noise model
and prior information, the generalization performance of single
model is limited, making it difficult to apply to different types
of noise pollution in real scene. What is more, it is challenging
to fulfill the practical processing requirements of the massive
high-dimensional hyperspectral remote sensing images.

2) Convolutional Neural Network (CNN) Based Approaches:
With the development of deep learning technology, the CNN
has recently seen widespread use in several low-level vision
tasks of HSIs due to its excellent nonlinear fitting capability
and automatic feature selection. In the latest research progress,
many scholars are attempting to build an appropriate denoising
network by training the network to learn the relationship between
the model parameters and the noisy image implicitly. By doing
this, effective noise reduction can be achieved without relying
on manual constraints. Zhang et al. [28] proposed the 2-D
image denoising architecture DnCNN to remove various noises
in HSIs. They argued the learned filters can well extract the
spatial structural information. Furthermore, utilizing residual
learning based on DnCNN, Chang et al. [29] proposed an
HSI-DeNet, which can remove many types of noises. There are
also methods that include adding image gradient information to
a network, such as the networks proposed by Maffei et al. [30]
and Yuan et al. [31], which takes the spectrum data and image
direction gradient information as the network input to remove
noise. Recently, the attention mechanism plays a critical role in
computer vision tasks. Many works have applied it to explore
the correlation between the spatial and spectral properties in the
field of HSI denoising. For example, Zou et al. [48] proposed
an enhanced channel attention to make the network focus on
features that are more conducive to spectral reconstruction.
Wang et al. [49] applied the attention mechanism is used to
select distinctive pixels in the feature maps for HSI denoising.
Li et al. [50], [51] applied the vision transformer to capturing
the nonlocal self-similarity of HSIs. On the other hand, given
that deep learning is lack of interpretability, some scholars
combine the model based and learning based models [52], [53],
[54]. However, currently, these studies mainly focus on simple

Fig. 1. Octave convolution kernel.

Gaussian noise situations, which are difficult to handle complex
real noisy HSIs acquired by different sensors with varying
numbers of bands.

To sum it up, although many CNN- based methods have
been developed for hyperspectral image denoising, most of these
approaches rely heavily on a large amount of HIS data, resulting
in low generalization and a significant amount of parameter re-
dundancy. Therefore, fully mining the structural characteristics
of real hyperspectral remote sensing image is an important task
to improve the denoising effect of CNN-based approaches.

3) Octave-Based Approaches: Usually, a natural image can
be defined as a discrete frequency signal, and the frequency
distribution of noisy image y can be expressed as a combination
of high-frequency information and low-frequency information,
represented as F (Y) = {FH(Y), FL(Y)} . Based on the Oc-
tave convolution (Octave convolution) proposed by Chen et al.
[37], we can separate the feature channels of an image by
convolution, and get the high-and-low-frequency information
of the image to obtain the frequency distribution of noise.

As shown in Fig. 1, in the Octave kernel, the ratio α repre-
sents the low-frequency proportion. The low-frequency features
are represented by α × c channels, whose spatial resolutions
are decreased to 0.5 H × 0.5 W. The high-frequency features
are represented by the (1 − α) × c channels, whose spatial
resolutions remain H × W.

In detail, because of the separation of the eigenvalues of the
input and output, the Octave convolution weight W also needs
to be separated, represented as{WH , WL}

WH =
[
WH→H ,WL→H

]
WL =

[
WH→L,WL→L

]
. (1)

The different frequency feature vectors are fused. Specif-
ically, FH→H(Y), FL→L(Y) means intra frequency forward
propagation and FL→H(Y), FH→L(Y) means inter frequency
forward propagation. The output characteristics of low and high
frequencies are as follows:

FH
out = FH→H (Y) + FL→H (Y)

= Fconv

(
FH (Y) ,WH→H

)
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+ upsample
(
Fconv

(
FL (Y) , WL→H

))
FL

out = FH→L (Y) + FL→L (Y)

= Fconv

(
pool

(
XH ,WH→L

))
+ Fconv

(
XL,WL→L

)
(2)

where upsample(·) represents the up-sampling operation using
the nearest neighbor up-sampling method, pool(·) represents
the down-sampling operation using the average pool method.
Because of the ability to extract high-frequency features, Octave
convolution has been applied in many HSI high-level tasks [55],
[56], [57]. Following this line, we introduce this structure to our
task for more effective HSIs denoising.

B. Motivations and Contributions

To overcome the shortcomings mentioned previously, this
article proposes a denoising method based on the physical char-
acteristics of hyperspectral noisy images to balance denoising
performance and retain the noise-free component.

1) Spectral-Feature: HSI has a large number of spectral
bands with strong correlation, which has an effect on
denoising performance. However, noise randomly spread
across different bands and lacks high spectral correlation.
Therefore, how to capture the strong spectral correlation
is a key issue for better denoising performance.

2) Spatial-Feature: In nature, most of the components in a
picture are similar. Capturing the local and nonlocal spatial
similarities benefit restoring the HSIs structural details.
However, because of its random shape and distribution
over different regions, noise lacks high spatial correlation.
Therefore, it can be easily found that mining high correla-
tion in the HSI spatial domain is of great significance for
denoising.

3) Frequency-Feature: The high-frequency component is
considered to contain more noise and texture details while
the low-frequency component is considered to contain
more content. This feature motivates us to focus the net-
work on the high-frequency parts to better suppress noise
and preserve the HSI content.

From above, the high correlation in the spectral domain and
spatial domain, and also high frequency distribution are signif-
icant factors to be considered. Based on these feature priors,
we propose UOANet to extract the frequency-spectral-spatial-
feature for denoising the real noise of HSIs. Specifically, first,
we introduce the parallel spatial-spectral attention mechanism
to extract the high correlation information in spectral-spatial
domain. Second, inspired by Chen’s work [37], we introduce
Octave convolution to separate the high-frequency and low-
frequency information. This allows the network to focus on
learning high-frequency noise information and minimizing the
computation of solution space. Finally, we train the UOANet
end-to-end to learn all of its parameters. The contributions of
this article can generally be summed up as follows.

1) To better utilize the frequency-spectral-spatial-feature for
HSIs denoising, we propose two noised image feature
extraction modules, residual Octave convolution module

(ResOct) and SSAT. A novel ResOct module is intro-
duced in the encoding phase to extract high-frequency
features, allowing the network to locate the noise in-
formation. Considering the spectral-spatial relationships
between HSI pixels, in the decoding phase, an innovative
spatial-spectral attention mechanism SSAT is proposed for
noise feature learning, which fully captures the correlation
information in feature maps.

2) An end-to-end denoising scheme is proposed based on
the physical characteristics of hyperspectral noisy images,
which considers the frequency of noise distribution, the
spatial and spectral correlation of hyperspectral images.
What is more, we use negative residual mapping to sig-
nificantly reduce the mapping range, ensuring the gener-
alization of the model.

3) Experimental results on both synthetic and real HSI
datasets confirmed that our proposed model can achieve
comparable or better performance compared with other
state-of-the-art methods in the richness of image high-
frequency details and model convergence.

The rest of this article is organized as follows. In Section II,
we introduce the proposed network in detail. In Section III, we
conduct a variety of experiments on synthetic and real HSI
datasets. In Section IV, we prove the effectiveness of each
module design. Finally, Section V concludes this article.

II. PROPOSED MODEL

An HSI is degraded by many factors during the imaging
process. Therefore, it is necessary to improve the quality of hy-
perspectral imaging and increase the capacity for expression and
information extraction. Image degradations caused by various
mechanisms produce various types of noise. In this article, we
will discuss additive and signal-independent noise (specifically,
Gaussian noise, impulse noise, deadline noise, and stripe noise),
which can be linearly modeled as

Y = X+N (3)

where Y ∈ RH×W×B is the observed noisy HSI, X ∈
RH×W×B is the clean HSI, N ∈ RH×W×B is the addictive
random noise. e H, W, B indicated the spatial height, spatial
width, and the number of spectral bands, respectively.

Given a noisy HSI, our goal is to recover the clean HSI X
from the observed noisy HSI Y. In this section, we introduce the
overall network architecture of UOANet for HSI denoising, and
then present the core building block in our network in detail.

A. Overall Network Architecture

The network takes Unet as the backbone and noisy HSIs as the
input to predict clean HSIs. As shown in Fig. 2, UOANet uses
Unet as the backbone, making better use of image context and
location information than CNN, which is widely used in various
low-level tasks [32], [33], [34], [35]. The network contains
four encoding layers and three decoding layers. The left side
of the network is the feature extraction network (encoder) to get
the abstract semantic features. The right side of the network is the
feature fusion network (decoder), which reconstructs the clean
HSI image with the clean semantic features after denoising.
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Fig. 2. Overall network structure of the UOANet.

Fig. 3. Histogram distributions of Y,X,|Y-X|.

Specifically, we adopt the nearest neighbor interpolation for
resize to help recover lost details during the encoder process.
Symmetric skip connections are added in each layer to facilitate
information transfer at various levels and promotes gradient
back-propagation, which can help network training.

Compressing the mapping range is crucial for narrowing
the solution space and enhancing network learning [36]. As
shown in Fig. 3, taking Indian pines hyperspectral image as
an example, noisy band as Y, clean band as X, we observe that
when compared to the clean image Y, the residual of the rainy
image Y-X has a significant range reduction in pixel values. This
implies that the residual can be introduced into the network to aid
with mapping learning. This skip connection can also directly
propagate lossless information over the entire network, which
is useful for estimating the final denoised image. In light of this
idea, the mean squared error is employed as the loss function as
follows:

L =
∑
i

|H(Yi) + Yi −Xi|2F (4)

Fig. 4. Spectrum of noisy image pairs.

where a training group with N pairs {yi, si, xi}N of image
data, yiis the observed corrupted ith band data, and xiis the
corresponding ith noise-free data, H(·) represents the UOANet.

B. Residual Octave Convolution Module

Inspired by Chen’s work [37], we compare the noisy and
clean HSI of the same scene to the spectrum in the frequency
domain. As shown in Fig. 4, compared with the clean back-
ground spectrum, the spectrum of the noisy HSI diffuses energy
from the high frequency part to the surroundings. Therefore,
we can find that the noise frequency distribution F(N) mostly
exist in high frequency information, and can be captured by
the two-branch structure. Let FH→H(Y) represents the noise
frequency present in high-frequency component, andFL→H(Y)
represents the noise frequency present between high and low
frequency component, the expression can be represented as

F (N) = FH→H (Y) + FL→H (Y) . (5)

Bring (5) into (2)

F (N) = FH
out = Fconv

(
FH (Y) ,WH→H

)
+ upsample

(
Fconv

(
FL (Y) ,WL→H

))
. (6)

As shown in Fig. 5(a), we introduce the ResOct in UOANet
in encoding layers, enabling the network to locate the noise
information. ResOct consists of residual blocks (RoctB) and
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Fig. 5. Residual Octave convolution module (ResOct) and residual Octave convolution block (RoctB).

long-short jumping connections. First, the high and low fre-
quency information is separated by an Octave convolution, and
then activated by BN and Relu, respectively. After three series
RoctB, the high and low frequency information is recombined
by an inverse Octave convolution. Finally, the edge information
of the original graph is fused to output through a long jump
connection.

The ResOct structure combines Octave convolution with the
residuals structure to enable cross-layer feature interaction,
and extract deeper high-frequency feature semantic informa-
tion while reducing the impact of low-frequency features. This
structure preserves raw information and avoids the gradient, the
network training process has some advantages. The structure
optimizes the network training and effectively improves the
denoising effect of hyperspectral image. The preservation of
the raw information and avoidance of the gradient optimizes
the network training process, effectively improving the effect of
hyperspectral image denoising.

The structure of RoctB is shown in Fig. 5(b), the design of the
jump link refers to the structure of RESNET50, when identity is
mapped, instead of simply adding it, it passes through an Octave
convolution of a BN layer and a RELU layer, then, the high
and low frequency features extracted by Octave convolution are
fused along the feature channel, which makes the model more
easily converge and the training of the network more simple and
efficient.

The operations of the ResOct are represented as

Fout = Fin + fResOct (Fin) . (7)

C. Parallel Spatial–Spectral Attention Module

As 3-D data, the hyperspectral image has characteristics of
the spectral-spatial structure, global spectral correlation, and
local/nonlocal spatial interactions. To model spatial and coher-
ence spectral of the HSIs, attention mechanism is introduced for
more detailed clean HSI restoration. First, we resize the encoded
feature map, then splice it with the same-sized shallow encoded
feature map along the channel, using a 1 × 1 convolution
model the global context. Then, we design SSAT to adaptively
recalibrate spatial, spectral, and channel characteristics. The
SSAT, which adopts the ideas of CBMA [38] can weight the
feature map to better align the reduction result with the physical
properties of the HSIs.

The structure of SSAT is shown in Fig. 6, which consists of
two parts: 1) Spatial attention module and 2) spectral attention
module. Specially, since what is learned by later modules is
affected by what has been processed by previous modules,
regardless of the sequential sequence of spatial and channel
attention [39], the model effect becomes unstable and it is
impossible to ensure the correctness of effective promotion.
Therefore, this article integrates spatial and spectral attention
information simultaneously to avoid the interference of different
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Fig. 6. Parallel spatial–spectral attention module (SSAT).

attention modules caused by serial structure. The operations of
the ATT are represented as

F1 = Mc (Fin)⊗ Fin

F2 = Ms (Fin)⊗ Fin

Fout = λ1F1 + λ2F2 (8)

where λ1and λ2 are the weighting parameters.
1) Spatial Attention Module: Spatial attention focuses on the

interspatial domain. First, average pooling and max pooling op-
erations along the channel axis are used to generate the descrip-
tors: FS

avg ∈ RM×N×1 and FS
max ∈ RM×N×1. Two descriptors

are concatenated and fed into a vanilla convolution. The spatial
attention process can be represented as

MS (Fin) = σ
(
f
[
FS

avg; F
S
max

])
(9)

where σ is the Sigmoid activation function and f is a 2-D
convolution with a 7 × 7 kernel.

2) Spectral Attention Module: This module combines fea-
ture maps along the spatial domain using average pooling and
maximum pooling. They are forwarded by the channel attention
module using a single hidden layer shared multilayer perceptron
(MLP). The channel attention map MC is created by merging
the results of two branches. The process can be represented as

MC (Fin) = σ
(
W1

(
W0

(
FC
avg

))
+W1

(
W0

(
FC

max

)))
(10)

where σ is the Sigmoid activation function and W1 and W0
are the shared MLP parameters. FC

avg ∈ R1×1×B and FC
max ∈

R1×1×B are the features generated by average and max pooling
operations in spatial domain, respectively.

III. EXPERIMENT RESULTS

A. Training Experimental Settings

1) Training Data Set: We conduct several experiments us-
ing data from ICVL hyperspectral dataset [40], which com-
prise 201 images at a resolution of 1392 × 1300 over 31
spectral bands. We use 100 images for training, 1 image for
validation, while 40 images are for testing. The training set
is expanded by cropping the photos into 64 × 64 × 31 patch
pairs. Each image is standardized into [0, [1] before conducting
experiments.

2) Noise Setting: Figures that are composed of only black
lines and shapes. These figures should have no shades or half-
tones of gray, only black and white.

Case 1: Non-i.i.d. Gaussian noise. Entries in all bands are
contaminated by zero-mean Gaussian noise with different
intensities, which are randomly chosen from 30 to 70.
Case 2: Gaussian + Stripe noise. As mentioned in case 1,
each band is corrupted by non-i.i.d Gaussian noise. Besides,
ten bands in the ICVL data set are randomly selected to add
stripe noise, and the number of stripes in each band is 5% to
15% of columns.
Case 3: Gaussian + Deadline noise. Each band is contam-
inated by non-i.i.d Gaussian noise, as mentioned in case 1.
Then, ten bands in the ICVL data set are chosen randomly
to add deadline noise. The number of deadlines in each band
is 5% to 15% of columns.
Case 4: Gaussian + Impulse noise. All bands are corrupted
by Gaussian noise as mentioned in case 1. Then, ten bands
in ICVL data set are randomly selected to add impulse noise
with different intensities, and the percentage of impluse
ranges from 10% to 70%.
Case 5: Mixture noise. First, all bands are corrupted by
Gaussian noise as previously mentioned. Then each band
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is randomly corrupted by at least one kind of the other four
noise mentioned previously.

3) Competing Methods: In Gaussian noise case, we com-
pare with several representative traditional methods including
filtering-based approaches (BM4D [9]), dictionary learning ap-
proach (TDL [20]), and tensor-based approaches (ITSReg [26],
LLRT [27]).

In complex noise case and real-world noise case, the com-
peting traditional baselines include filtering-based approaches
(BM4D [9], BWBM3D [10]), and low-rank matrix recovery
approaches (LRMR [44], LRTV [45]). For DL approaches, we
compare our model with DnCNN [28], HSI-SDeCNN [30],
HSID-CNN [31], QRNN3D [47], SST [50], SERT [51], MAC-
Net [52], and T3SC [53].

4) Evaluation Indexes: In order to evaluate the denoising
performance of simulated experiments in both the spatial domain
and spectral domain, three quantitative criteria are introduced as
follows. Smaller SAM and larger PSNR and SSIM imply better
denoising.

Mean peak signal-to-noise ratio (MPSNR) [41]

MPSNR

=
1

B

B∑
k = 1

10 lg
M ×N ×A2∑M

i = 1

∑N
j = 1 (x (i, j, k)− y (i, j, k))2

(11)

where M, N, and B represent the HSIs width, height, and
number of bands, respectively. A is the maximum value of all
the gray values. y(i, j, k) represents the original clean image,
while x(i, j, k) represents the approximated image.

Mean structural similarity index (MSSIM) [42]

MSSIM =
1

B

B∑
i = 1

(2μxi
μyi

+C1) (2σxiyi
+C2)(

μ2
xi
+ μ2

yi
+C1

) (
σ2
xi
+ σ2

yi
+C2

)
(12)

where μxi
and μyi

, stand for the mean values of the ith estimated
and original clean image, respectively, σ2

xi
and σ2

yi
are the vari-

ances, σxiyi
is the covariance, and C1 and C2 are constants that

prevent the denominator from being 0. The mean value of SSIM
of each band is adopted to assess the structural similarity of the
whole.

Mean spectral angle mapper (MSAM) [43]

MSAM =
1

MN
cos−1

⎡
⎢⎢⎣

∑MN
i = 1 tipi√(∑MN

i = 1 t
2
i

)(∑MN
i = 1 p

2
i

)
⎤
⎥⎥⎦ (13)

where ti denotes the estimated spectrum and pi is the original
spectrum. This metric is adopted to assess the spectral fidelity
of denoising algorithms.

5) Implementation Detail: We adopted the incremental
learning method to stabilize and accelerate the training, which
also avoids the network converging to a poor local minimum.

Hyperparameter values were empirically set to make network
learning fast yet stable. Small batch size (i.e., 16) is used to
accelerate training at first stage, while large batch size (i.e., 64)

is adopted to stabilize training when tackling harder cases (e.g.,
complex noise case). The overview of our training procedures
is shown in Table I, with detailed hyperparameter setting. We
used the Adam algorithm as the optimizer.

All experiments were performed on a PC with an Intel(R)
Xeon(R) Gold 5218R CPU, and an NVIDIA 2080Ti GPU. A
quantitative and qualitative analysis has been conducted for both
simulated and real data.

B. Experiment on ICVL HSIs

1) Testing Data Set: We design two different scenarios to
verify and evaluate the denoising performance of UOANet.

2) Results of ICVL HSIs: In Gaussian Noise case, Table II
shows the index values of MPSNR, MSSIM, and MSAM after
the proposed algorithm and seven other contrast algorithms
are denoised. As can be seen from the table, our UOANet
algorithm can achieve the best or the second best index in most
bands, because our method fully considers the spatial-spectral
correlation of noisy HSI. In addition, UOANet uses octave to
preserve low-frequency information and denoise high-frequency
information by convolution. It can be easily observed from
Fig. 7, our method can better remove the noise and retain the
details. At the same time, in addition, the PSNR values for each
band in Fig. 7 are shown in Fig. 9(a) and (b), from which it can
be observed that our method achieves a higher PSNR in almost
all bands compared with other methods.

In complex noise case, denoising quantization results are
shown In Table III. From Table III, we can see that our method
achieves significantly better denoising results than some of the
most advanced methods, such as LRMR, LRTV, because these
methods are based on low-rank matrices, and some structural
information is lost in the process of denoising. Compared with
two methods based on depth learning (DNCNN and HSID-
CNN), our method can explore spectral-spatial information and
suppress noise thanks to the SSAT attention module. From
Fig. 8, we can observe that although the competing methods
LRTV, LRMR, and HSID-CNN and can obtain cleaner denois-
ing results, the denoising image still contains some noise or
structural information that is not well preserved. In contrast, our
method can not only remove the complex noise well, but also
preserve the structure and details better, so as to obtain better
visual reconstruction results. Furthermore, we show a PSNR
value for each band in Fig. 9(c) and (d), from which we can
observe that our method can achieve a higher PSNR in almost all
bands compared with other competing methods. And the spectral
curves of pixels (130,74 s) in Case 5 are plotted in Fig. 10. It
shows that compared to other methods, we are also closer to the
ground truth value. UOANet can reconstruct HSIs with higher
quality in both spatial and spectral domains.

C. Experiment on Remote Sensing Images With Simulated
Noise

1) Testing Data Set: The main motivation of proposing
UOANet was to improve the generalization ability of the model,
besides experiments with close-range images, such as ICVL
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TABLE I
OVERVIEW OF OUR INCREMENTAL TRAIN POLICY

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT METHODS IN GAUSSIAN NOISE CASE ON ICVL DATASET

Fig. 7. Simulated Gaussian noise removal results on ICVL dataset.

HSIs. We also ran all the competing methods on remote sens-
ing images, such as SDG images acquired by the SDGSAT-1
satellite. Compared with ICVL HSIs, SDG images has a higher
spectral resolution 456× 444, but much lower spatial resolution,
which contains with a spatial resolution of 30 m per pixel. There-
fore, experiments on real data of different satellites and loads
were conducted to verify the generalization ability. We design
three different scenarios to verify and evaluate the denoising
performance of UOANet.

2) Results of SDG Images: In blind Gaussian noise case,
from Fig. 11, we can observe that although BM4D, TDL,

ITSReg, and LLRT can obtain cleaner denoising results, the
structural information of the denoised image is not well pre-
served, resulting in oversmoothing. However, DNCNN and
HSID-CNN still contain more noise, because they are changed to
the scene, which is different from the training set, which shows
that the generalization ability of the model is weak. Our method
performs better in detail maintenance, noise removal, and model
generalization.

In mixture complex noise case, from Fig. 12, we can observe
that although LRMR and LRTV can obtain cleaner denoising
results for dead-line noise, the LRMR denoising image still
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Fig. 8. Simulated complex noise removal results on ICVL dataset.

TABLE III
QUANTITATIVE RESULTS OF DIFFERENT METHODS IN COMPLEX NOISE CASE ON ICVL DATASET
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Fig. 9. (a), (b) PSNR values of each band corresponding to Gaussian noise removal results in Fig. 7, and (c), (d) PSNR values of each band corresponding to
complex noise removal results in Fig. 8. The ordinate represents the PSNR value, and the abscissa represents the band number.

retains some Gauss Speckle noise, the structure information of
LRTV is not well preserved, so it is too smooth. Benefiting from
the ability to integrate spatial context information and interchan-
nel dependencies, our method can preserve the structure details
better while finely remove the complex noise.

In particular, we used the average of all the pixels in each band
to evaluate the effect of denoising. Figs. 13 and 14 show the
longitudinal averages of the SDG images of Scene 1 and Scene2
before and after denoising, respectively. It can be seen from the
graph that the curve of the original graph of noise has a sharp
fluctuation, which indicates that the image contains banded
noise. Compared with other contrast algorithms, the curve of
our algorithm is smoother, which shows that our algorithm can
better remove noise.

D. Experiment on HSIs With Real-World Noise

1) Testing Data Set: In this article, we evaluate our model on
remotely sensed hyperspectral datasets, including EO-01 data
and Indian Pines data. All of them have been used for real HSI
denoising experiments [44], [45], [46]. EO-01 data are captured

through the Hyperion sensor with size 400× 1000× 242 and are
mainly degraded by stripe, deadline, and Gaussian mixed noise.
For simplicity, we select EO-01 sub image with a size of 240 ×
240 × 31. The Indian Pines are captured through the AVIRIS
with size contains 145 × 145 × 220 with a spatial resolution
of 20 m per pixel, and some bands are seriously polluted by the
atmosphere and water, as well as degraded by stripe, deadline,
and Gaussian mixed noise, making it difficult to remove this
noise.

2) Results of Real Noisy Images: For EO-01 data, it can
be observed in Fig. 15 that scene was affected by striping
noise and deadlines. It can be seen from the results that the
visual effect of BM4D, BWBMD processing is not good: only
a small amount of stripe noise is slightly suppressed and many
obvious stripes remain. The LRMR, HSID-CNN, and DnCNN
method generally remove the stripes, but a few stripes are not
removed locally. After LRTV, 3DQRNN, MACNet, T3SC, SST,
and SERT processing, some of the stripe interference can be
removed, but the restored image is excessively smoothed due
to the missing of texture information. Among these methods,
our method produces the best denoising results for the restored
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Fig. 10. Spectral reflectance of pixel (130, 74) for each band in Case5. The ordinate represents the reflectance value, and the abscissa represents the band number.
(a) BM4D. (b) BWBM3D. (c) LRMR. (d) LRTV. (e) DnCNN. (f) HSID-CNN. (g) Ours.

Fig. 11. Simulated noise removal results at image in blind Gaussian noise on SDG dataset.

Fig. 12. Simulated noise removal results at image in mixture complex noise on SDG dataset.

image retains the original structure features. Fig. 15 depicts the
spectrum of denoising and noise HSI at position (152,82). As can
be observed in Fig. 16, DNCNN, HSIDCNN, LRTV, 3DQRNN
and UOANet provide optimal denoising, but UOANet has the
best spectral fidelity.

For Indian Pines data, it can be observed in Fig. 17 that
terrible atmosphere and water absorption obstruct the view to
the real scenario, severely degrading the quality of images. The
Gaussian denoising methods, such as BM4D, BWBM3D, and
DnCNN cannot accurately estimate the underlying clean image
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Fig. 13. Column mean values at 2th band of Fig. 11 Scene 1 image. The ordinate represents the column mean value, and the abscissa represents the column
number. (a) Noisy. (b) BM4D. (c) TDL. (d) ITSReg. (e) LLRT. (f) DnCNN. (g) HSID-CNN. (h) Ours.

Fig. 14. Column mean values at 1th band of Fig. 13 Scene 1 image. The ordinate represents the column mean value, and the abscissa represents the column
number. (a) Noisy. (b) BM4D. (c) BWBM3D. (d) LRMR. (e) LRTV. (f) DnCNN. (g) HSID-CNN. (h) Ours.

due to the non-Gaussian noise structure. The LRMR, LRTV,
HSID-CNN, HSI-SDeCNN, MACNet, T3SC, SST, and SERT
method generally removes the noises, but a few noises are not
removed locally. Our method successfully tackles this unknown
noise, and produces sharper and clearer result than others.
Specifically, to comprehensively compare the denoising effect,
we also show false color images of these constructed results of
the Indian Pines (band 144, 154, and 164) in Fig. 18. It can be
easily seen that other competing methods still exists much dense
noise in the restored bands, while our proposed method can
almost remove the most complex noise. The spectral reflectance
of the pixels (103, 64) is plotted in Fig. 19 , and it can be
seen that all methods provide very similar spectra in real visual

perception. But our method is more complete in preserving the
curve details of the spectrum and achieves the clear restored
bands.

IV. DISCUSSION

A. Effectiveness of the ResOct and SSAT Module

In this section, we examine the effectiveness of ResOct
and SSAT on the denoising performance. Table V presents the
denoising results of different module settings. Meanwhile, the
sensitivity of attention module weighting parameters λ1 and λ2

are discussed. Fig. 20 presents the visualizations of the SSAT
modules.
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Fig. 15. Real noise removal results of image on EO-01 dataset. (a) Noisy. (b) BM4D. (c) BWBM3D. (d) LRMR. (e) LRTV. (f) DnCNN. (g) HSID-CNN. (h)
HSI-SDeCNN. (i) 3DQRNN. (j) MACNet. (k) T3SC. (l) SST. (m) SERT. (n) Ours.

Fig. 16. Spectral reflectance of pixel (152, 82) for each band on EO-01 dataset image. The ordinate represents the reflectance value, and the abscissa represents
the band number. (a) Noisy. (b) BM4D. (c) BWBM3D. (d) LRMR. (e) LRTV. (f) DnCNN. (g) HSID-CNN. (h) HSI-SDeCNN. (i) 3DQRNN. (j) MACNet. (k)
T3SC. (l) SST. (m) SERT. (n) Ours.

TABLE IV
DENOISING RESULTS OF DIFFERENT MODULE SETTINGS

From Table IV, we can observe that ResOct encourages to
focus on capture the noise feature in high-frequency and pre-
serve image detailed structures in low-frequency, and thereby
improves denoising performance with a gain of 1.0924 in terms
of PSNR and 0.0251 in terms of SSIM, verifying its effec-
tiveness. Similarly, PSNR, SSIM, improves from 38.4511 to

TABLE V
DENOISING RESULTS OF DIFFERENT α SETTINGS

39.6315, 0.9422 to 0.9691, SAM reduced from 0.0992 to 0.0943,
respectively, by adding the SSAT. This is because the SSAT can
help capture the global spatial coherence and cross-channel cor-
relation. Furthermore, by adding CBAM (namely UOANet-II)
to the model, we can obtain a certain promotion. However, it
can be seen that UOANet ( λ1= 0.5, λ2= 0.5) achieves better
index evaluation results, proving that parallel fusion of spatial
and spectral attention information improving the denoising per-
formance significantly.

To prove the effectiveness of SSAT module in exploring the
spectral relationship and spatial relationship among feature, we
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Fig. 17. Real noise removal results of image on Indian Pines dataset. (a) Noisy. (b) BM4D. (c) BWBM3D. (d) LRMR. (e) LRTV. (f) DnCNN. (g) HSID-CNN.
(h) HSI-SDeCNN. (i) 3DQRNN. (j) MACNet. (k) T3SC. (l) SST. (m) SERT. (n) Ours.

Fig. 18. False color images of the denoised results on band 144, 154, and 164 of Indian Pines dataset. (a) Noisy. (b) BM4D. (c) BWBM3D. (d) LRMR. (e) LRTV.
(f) DnCNN. (g) HSID-CNN. (h) HSI-SDeCNN. (i) 3DQRNN. (j) MACNet. (k) T3SC. (l) SST. (m) SERT. (n) Ours.

Fig. 19. Spectral reflectance of pixel (103, 64) across each band on Indian Pines dataset image. The ordinate represents the reflectance value, and the abscissa
represents the band number. (a) Noisy. (b) BM4D. (c) BWBM3D. (d) LRMR. (e) LRTV. (f) DnCNN. (g) HSID-CNN. (h) HSI-SDeCNN. (i) 3DQRNN. (j) MACNet.
(k) T3SC. (l) SST. (m) SERT. (n) Ours.

show feature maps learned by the SSAT module in Fig. 20. From
Fig. 20(b), it can be easily seen that the features with a strong
correlation to spectral information will have large response. For
example, the whole sky appears red. It proves that the SSAT
module is able to capture the spectral interrelationship along the

channel dimension. From Fig. 20(c), it can easily observe that
features with similar information will have a high reaction. For
instance, the edges of the two cars appears red. It proves that the
SSAT module is able to explore the spatial relationship among
pixels.
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Fig. 20. Visualizations of the SSAT modules. (a) Input noisy image. (b) Feature map learned by the spectral attention module. (c) Feature map learned by the
spectral attention module.

TABLE VI
PARAMETERS OF DIFFERENT CNN-BASED DENOISING METHODS

B. Sensitivity Analysis of α

By adjusting the α value, the parameters of Octave convo-
lution can be changed to save network parameters and com-
puting resources. The larger α, the greater the proportion of
low-frequency features selected. Although this can reduce the
complexity of the network, but may lead to the loss of high-
frequency features. Therefore, when using Octave convolution,
we need to select the appropriate a value by experiment.

As shown in Table V, as α increases, the complexity of
the model decreases. When α is too large, the effect of image
denoising will be degraded by overcompression of spatial infor-
mation. When α is too small, low-frequency redundancy makes
it difficult for the network to pay attention to high-frequency
features, and the network gets poor results. As can be observed,
the performance of the proposed UOANet is best when α= 0.2.

C. Running Time Assessment

In this section, we compared training and testing time for
different algorithm. For training time cost, we compared the
parameters for different CNN -based methods. AS Table VI
show, with the advantage of ResOct module, our method signif-
icantly reducing the number of parameters required. For testing
time cost, we compared the average running time required for
different methods of noise removal in blind Gaussian noise and
mixture complex noise. AS Table VII shows, with the benefits of
GPUs and end-to-end structures, deep-learning-based methods

TABLE VII
TIME COSTS OF DIFFERENT DENOISING METHODS IN BLIND CASE AND

MIXTURE CASE

exhibit less runtime than the traditional methods. Our method
performs best and requires the least amount of processing time.

V. CONCLUSION

Although many denoising methods have been suggested, most
of them are unable to fully exploit the physical properties of
hyperspectral noise images. In this article, we propose two
key modules ResOct and SSAT in light of HSIs frequency
distribution and spatial-spectral correlation. Based on these two
modules, we improve the Unet network, and propose an HSI de-
noising network UOANet, which combines octave and attention
mechanism. ResOct is embedded in the up-sampling process
of UNet network, and uses the down-sampling low-frequency
features to map the frequency features of noise, to remove the
spatial redundancy, and to improve the network speed. SSAT
is embedded in the down-sampling process, and the attention
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mechanism performs both global average and global maximum
mixing pooling on the channel and spatial dimensions, which
can provide more effective global and local details for the net-
work during the decoding process. Simultaneously, the residual
modules are fused in U-Net network to avoid the problems
of gradient disappearance, and further enhance the ability of
denoising.

Finally, we compare the denoising results, efficiency and vi-
sual effects of different methods on ICVL, SDG, EO, and Indian
Pines, it has been demonstrated that the proposed method is
superior to both model-based and depth-learning-based methods
in subjective visual effects and objective quantitative measure-
ments.
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