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Approach for Monitoring Spatiotemporal Changes in
Fractional Vegetation Cover Through Unmanned
Aerial System-Guided-Satellite Survey: A Case

Study in Mining Area
Shuang Wu , Lei Deng , Jun Zhai , Zhuo Lu, Yanjie Wu, Yan Chen, Lijie Guo, and Haifeng Gao

Abstract—Fractional vegetation cover (FVC) is a vital indicator
for monitoring regional vegetation and ecology. Although satellite
remote sensing is used to monitor long-term changes in regional
FVC, its applications are limited by the spatial resolution. More-
over, for unmanned aerial systems (UASs), obtaining long-term
and large-scale images is difficult, and the efficiency of the synergy
between UAS and satellite data for long-term FVC monitoring is
limited. This article considered a mining area with extreme changes
in vegetation as an example and proposed an efficient approach
called multiple spatiotemporal-scale FVC prediction (MSFP) for
long-term FVC monitoring in the region, which is based on the
synergy of high spatial-resolution UAS data with high temporal-
resolution Landsat data. First, we used the UAS imagery of several
typical mining areas in Qianxi County of China collected in 2021,
from which the vegetation information was extracted. Second,
the 2-D Gaussian sampling was applied to aggregate, that is, to
join/connect them into Landsat pixels. The vegetation index (VI)
calculated from contemporary Landsat imagery was further used
with the aggregated FVC of each satellite pixel. Finally, the VIs
from the satellite imagery for different years were calibrated.
The analysis demonstrated that: first, the proposed MSFP yielded
improved the coefficient of determination (by 0.437) and decreased
root-mean-square error (by 0.200) than the traditional dimidiate
pixel method based on satellite imagery; second, the UAS imagery
for few typical areas was used to predict the FVC of the large-scale
area, thereby providing fine-scale vegetation information; third, the
MSFP achieved high accuracy and long-term FVC monitoring by
interyear calibration of VI calculated from Landsat data. This arti-
cle paves the way toward accurate long-term monitoring of regional
FVC. The demonstrated methodological framework is simple and
operable, thereby opening the prospects for its applications in other
environments.

Index Terms—Fractional vegetation cover (FVC), multiscale
remote sensing, satellite imagery, unmanned aerial systems (UASs).
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I. INTRODUCTION

V EGETATION is an essential component of terrestrial
ecosystems, while vegetation growth is a key driver behind

ecological changes [1]. Fractional vegetation cover (FVC) is
a critical variable that characterizes vegetation by vertically
projecting the areal proportion of a landscape occupied by green
vegetation. Thus, FVC serves as an indicator of vegetation
quality and ecosystem changes [2]. Mineral resource mining
releases numerous pollutants into the environment, and resultant
harmful substances can adversely affect vegetation growth. Veg-
etation in mining areas drastically changes over time. Therefore,
accurately monitoring the long-term FVC changes is critical in
large mining areas [3]. Traditional field measurement of FVC
is time-consuming and labor-intensive, thereby hampering the
large-scale monitoring of dynamic FVC changes. The devel-
opment of remote sensing technology has recently paved the
way toward fast and large-scale FVC monitoring in mining
areas [4].

Despite its efficiency in retrieving FVC and its popularity in
applications [5], [6], remote sensing has several issues. Fun-
damentally, some satellites (such as Landsat) were launched
at early stages of the remote sensing technology development,
which allowed them to accumulate sizable historical datasets
with global scales and decadal span [7], [8]. Moreover, numerous
methods for estimating FVC, such as empirical modeling and
the mixed pixel decomposition model, have been developed. The
most widely used methods include the dimidiate pixel model
(DPM) [9] and the empirical model (EM) [10] between the
measured FVC on the ground and the vegetation index (VI)
calculated from satellite imagery. However, a common issue
with mixed pixels in satellite imagery is that a single pixel
will contain vegetation and other ground objects such as soil.
Therefore, it will result in inaccurate vegetation information
extraction, thereby reducing FVC prediction accuracy [11].
Furthermore, in DPM, obtaining the threshold value of VI in
the calculation formula is difficult, causing uncertainty in the
prediction of FVC. Considering the subjectivity of artificial
ground measurements, the quadrat of field sampling of EM is
typically 1–104 m2, thereby indicating substantial differences in
the pixel size of satellite imagery. There is a spatial mismatch
between the survey plot size and the corresponding satellite pixel
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size, which hinders the estimation of the FVC through an EM
based on ground measurements and satellite data [12]. These
factors prompt an urgent need for a method that can bridge this
scale gap in the spatial dimension and improve FVC prediction
accuracy.

In recent years, low-cost unmanned aerial systems (UASs),
equipped with various microsensors, have quickly generated
orthomosaic imagery using the structure from motion (SfM)
algorithm. The UASs have been widely used in FVC monitoring
[13], and previous studies have revealed that UASs combined
with photogrammetry technology can provide imagery with
centimeter-level spatial resolution, which can be used to improve
the accuracy of FVC prediction [14]. UASs provide a quick,
efficient, and clean method for acquiring ultrahigh spatial resolu-
tion data. Numerous approaches have been recently developed,
including random forest (RF) regression, object-based image
analysis, and spectral unmixing [15], [16]. Although these meth-
ods can provide ultrahigh spatial resolution FVC products, ob-
taining a wide range of images in the same area over many years
using UAS itself is rather challenging. Even if multiphase UAS
imagery is available, significant differences between the images
can emerge owing to the impact of different environmental
factors (cloudy or sunny, windy or windless) during each flight,
thereby making long-term and large-scale FVC monitoring
impossible [17].

Notably, satellite remote sensing can perform large-scale and
long-term FVC monitoring; however, the satellite imagery has a
coarse spatial resolution, thereby reducing the FVC prediction
accuracy [18]. Therefore, although UAS remote sensing can
provide high-accuracy vegetation monitoring, retrieving con-
tinuous images for many years is challenging [19]. Several
recent studies have used UAS data to estimate FVC in syn-
ergy with coarser-resolution satellite images at global scales
[20], [21], [22]. Moreover, the UAS imagery was upscaled
to contemporary satellite pixels to obtain FVC for a certain
period with a large scale and high accuracy. However, long-
term FVC monitoring has not been achieved, thereby prompt-
ing the development of novel approaches that can effectively
combine vegetation information from UAS and satellite im-
agery to achieve long-term, large-scale, high-accuracy FVC
monitoring.

The main aim of this study was to develop an approach
called multiple spatiotemporal-scale FVC prediction (MSFP)
for monitoring spatiotemporal changes in FVC, which can ef-
fectively combine high spatial resolution UAS data and high
temporal resolution Landsat data. Methodologically, our ap-
proach uses the classification results (vegetation and non-
vegetation) of UAS imagery as ground measurement data. It
was aggregated (i.e., joined or connected) into satellite pix-
els using 2-D Gaussian sampling, providing high-accuracy
training samples for FVC estimation. Furthermore, the cal-
ibrated VI calculated from satellite images for many years
was used in this method. Notably, the FVC estimation model
could be applied to satellite images for many years through
the interyear calibration of the VI calculated from satellite
data.

Fig. 1. Location of the study area. (a) and (b) Corresponding Landsat-8
imagery natural-color composite. (c) and (d) UAS orthomosaic imagery natural-
color composite.

Fig. 2. Field survey photographs of mining area. (a) mined mining areas,
(b) mining areas just after mining, (c) regreened mining areas.

II. MATERIALS

A. Study Area

The study area, shown in Fig. 1, is the mining region of Qianxi
County (39°57′15′′–40°27′48′′N, 118°6′49′–118°37′19′′E), lo-
cated in Hebei Province (China). The study area is characterized
by a temperate continental monsoon climate, with an annual
sunshine duration of 2303.1 h, annual average temperature of
11.7 °C, and annual average precipitation of 713.4 mm. Fur-
thermore, the region has abundant mineral resources, with 470
million tons of iron ore reserves. The range of mining area is
determined by the second national land survey of China, and its
total area covers 3906.7 ha.

There are three typical mining areas in terms of vegetation
coverage and ecological environment in field surveys: mined
mining areas [almost no vegetation coverage, Fig. 2(a)], mining
areas just after mining [little vegetation coverage, Fig. 2(b)], and
regreened mining areas [more vegetation coverage, Fig. 2(c)].

B. UAS Data

The UAS data for three typical mining areas (low, medium,
and high vegetation coverage) were collected between June 1 and
June 3, 2021. A DJI Phantom 4 RTK quadcopter and its standard
RGB camera were used, with 20 million effective pixels, the field
of view of 84°, and the operating temperature of 0–40 °C. In this
study, the flight altitude was set to 140 m, and the overlap of the
side and heading were 70% and 80%, respectively.
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TABLE I
IMAGERY SENSORS, ACQUISITION DATES, AND YEARS

Pix4D mapper software (Pix4D SA, Lausanne, Switzer-
land) with the SfM algorithm generated a high-accuracy two-
dimensional map with geographical coordinates from a single
image captured by the UAS. Finally, we obtained 4 cm/pixel
orthomosaic UAS imagery.

C. Landsat Data

Landsat 5 (L5) TM and Landsat 8 (L8) OLI images were
downloaded from the Google Earth Engine. As the Landsat
imagery should be as close as possible to the date of UAS
flight (June 1 and June 3), the atmospherically corrected Landsat
imagery (Level-2 Surface reflectance product) was obtained
between early May and late June. When obtaining Landsat
images from 2011 to 2021, only five Landsat images were used
in the analysis (see Table I) owing to the impact of the sensor
revisit period (16 days) and cloud cover per year.

The UAS and satellite data were coregistered to the Google
imagery with the spatial resolution of 60 cm using the georefer-
encing tool from ArcGIS 10.2 software.

D. Reference Data

To validate the accuracy of estimated FVC using the proposed
method, Google imagery with a spatial resolution of 60 cm
was downloaded for 2011, 2014, 2016, 2018, and 2021. The
acquisition date of Google imagery was ensured to be as close
as possible to the date of the UAS flight.

III. METHODS

The workflow is summarized in Fig. 3. First, the vegetation
information based on the UAS and satellite imagery was re-
trieved and used as the input parameters for the MSFP. Second,
the vegetation information from the UAS imagery was aggre-
gated into 30 m×30 m grids and subsequently aligned with the
Landsat pixels to build the MSFP model by combining VI from
Landsat imagery. Third, MSFP combined with UAS and Landsat
imagery was applied to Landsat imagery in other years through
the intercalibration of VI. Finally, the accuracy of the proposed
MSFP was evaluated.

Fig. 3. Workflow diagram of MSFP.

A. Vegetation Information Extraction

The extraction of vegetation information was divided into
two parts. In the first part, we calculated four commonly used
VIs based on satellite imagery. In the second part, we extracted
high-resolution vegetation information based on the binary clas-
sification (vegetation and nonvegetation) of the UAS imagery.

In this study, we applied a series of VIs commonly used for
vegetation monitoring, such as the simple ratio (SR), difference
vegetation index (DVI), normalized difference vegetation index
(NDVI), and enhanced vegetation index (EVI); all these VIs
were calculated from Landsat imagery (see Table II). The SR
was calculated using the near-infrared and red bands. Previous
studies have indicated that SR is strongly positively correlated
with physical and chemical vegetation parameters (such as the
leaf area index, chlorophyll content, and FVC) and is widely
used in FVC monitoring [21]. DVI was also selected because it
reflects the health of vegetation growth [23]. In general, NDVI
is one of the most used spectral indices in research. As NDVI is
exceedingly sensitive to atmospheric effects and soil brightness,
EVI can alleviate these shortcomings; its formula relies on the
blue band to reduce the light scattering caused by air and soil
brightness [24].
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TABLE II
VI BASED ON SATELLITE IMAGERY

The RF classifier is a multi-decision-tree-integrated classifier
[28]. The prediction ability of the classification model can be
improved by using several different training sample subsets. In
this way, we can increase the difference between the classifica-
tion models. Compared to other machine learning algorithms,
it stands out with stable performance, high accuracy, and few
parameters required. It is widely used for remote-sensing image
classification and vegetation change monitoring. Consequently,
the RF classifier was utilized in this study to perform binary
classification (0 = nonvegetation, 1 = vegetation) on UAS
imagery. The performance of the RF classifier is determined
by the number of decision trees and features [29]. The number
of decision trees was set to 100, and the number of features was
set to the square root of the number of input features [30]. The
overall accuracy (OA) and kappa coefficient derived from the
confusion matrix were both applied to evaluate the accuracy
of the RF classification results [31]. The OA was estimated
to be 97.1%, and the kappa coefficient was 0.966. The RF
classification was carried out in ENVI 5.3 software, and the
classification result assignment was carried out in ArcGIS 10.2
software.

B. Modeling

To make full use of the advantages of the high spatial res-
olution of UAVs and the high temporal resolution of satellite
images, here is divided into the two parts. At the spatial scale, the
vegetation information extracted from UAS imagery in 2021 was
first aggregated to 30 m×30 m grids by 2-D Gaussian sampling
and subsequently aligned with the pixels of Landsat imagery in
2021. It was combined with the VI calculated from the Landsat
imagery to build the FVC prediction model. At the time scale,
the interyear VI calibration method was adopted to perform
long-term FVC monitoring. The interyear calibration of VI is
a conversion method applied to sensor data and was utilized to
apply the FVC model to Landsat imagery for other years at the
temporal scale.

The 2-D Gaussian sampling was used to aggregate the
vegetation information extracted from the UAS imagery into
30 m×30 m grids. Moreover, 2-D Gaussian sampling uses a

weighted average, thereby implying a simple principle—the
closer the grid cell, the greater the weight, and the farther the
grid cell, the smaller the weight [28], [29]. The weights of each
UAS pixel in the Landsat pixel were calculated. Each UAS pixel
was assigned with a weight based on the 2-D Gaussian function,
and 2-D Gaussian sampling was executed in MATLAB (The
MathWorks, Release 2018b). The weight values were calculated
based on the following:

W(i,j)=
1

2πσ2
e−

(i−k−1)2+(j−k−1)2

2σ2 (1≤ i≤2k+1, 1≤j≤2k+1)

(1)
where W(i,j) represents the weight values of the pixels in rows
i and columns j, and i and j are positive integers, which are the
row and column numbers of each UAS pixel in a satellite pixel.
The pixels in the upper-left corner are defined as (1,1). Thus, i
gradually increases to the right and j gradually decreases. The
window size defined by the 2-D Gaussian sampling is (2k+1)
(2k+1). σ represents the standard deviation.

To obtain FVC corresponding to a Landsat grid after 2-D
Gaussian sampling, the weight value of each UAS pixel was
multiplied by the corresponding binary value obtained by RF
classification. It was then divided by the sum of all UAS pixel
weights in a Landsat grid. MATLAB (The MathWorks, Release
2018b) was applied to implement 2-D Gaussian sampling

ρ =

∑
i,j (ρi,j ×Wi,j)∑

Wi,j
(2)

where ρ is the FVC of a satellite pixel after aggregation, and
ρi,j is the value of the UAS pixels in rows i and columns j of a
Landsat grid.

The unique ID number created by each Landsat pixel was used
to join the VI calculated from the Landsat data and the aggre-
gated FVC, thereby ultimately providing the training data. The
FVC model was subsequently established by a linear regression.
Linear regression is a statistical method widely used in the field
of remote sensing for data analysis [30]. The specific formula is
as follows:

yFVC = a× V I + b (3)

where yFVC represents the FVC value of Landsat pixels obtained
by aggregation, and VI was calculated based on satellite imagery.

We applied the model established for Landsat images for the
other years and ensured the consistency of Landsat imagery in
the other years. Moreover, the calculated NDVI values from
Landsat imagery were different to account for the variations
in incident and reflected energy, atmospheric effects, sensor
response, and band designations, which slightly vary between
the Landsat sensors. In this study, the linear regression method
proposed by Steven et al. [31] was utilized to calibrate the VI
calculated from Landsat imagery in the other years with respect
to the VI calculated from Landsat images in 2021. Notably,
four VIs from Landsat imagery of 2021 used in this study were
introduced into the model. The model was established based
on vegetation information from Landsat and UAS imagery in
2021. The best VI was selected on this basis, and the interyear
calibration of VI in other years was based on this VI in 2021.
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The specific steps of the intercalibration of VI in different years
were as follows.

1) Selecting an image as the reference image; VI calculated
based on Landsat images in 2021 was selected as the
reference image in this study.

2) Identifying some invariant targets spanning a range of VI
values on the reference image and the calibrated image.

3) Calculating calibration coefficients between the reference
image and the calibrated image.

4) Applying the calibration coefficients for each VI image
from different years.

FVC over the years could then be predicted by substituting
the calibrated VI over the years into (3), whereas the interannual
calibration of VI was formalized by the following equation:

V Ii = c+ d · V Ireference (4)

where VIi is the VI value of the ith year; c and d are the intercept
and slope, respectively; and VIreference is the VI value of imagery
in the reference year; here, the reference year is 2021.

We calculated the slope of the FVC change curve from 2011
to 2021 to obtain the FVC change trend for each pixel in the
image based on the following equation [32]:

Slope =
n×∑n

i=1 (i× Vi)−
∑n

i i
∑n

i Vi

n×∑n
i i

2 − (
∑n

i i)
2 (5)

where Slope is the slope of the FVC change trend, n is the time
series length, and Vi is the FVC in the ith year. If the slope > 0,
the FVC of the mining area increases during the study period,
indicating that the vegetation growth status has improved. If the
slope < 0, the FVC of the mining area shows a downward trend
during the study period, indicating that the vegetation growth
status is deteriorating, and the higher the value, the faster the
speed; otherwise, the change speed is slow [33].

According to previous studies and the actual conditions [34],
[35], our results were classified into seven classes: severe degra-
dation (class 1), moderate degradation (class 2), slight degrada-
tion (class 3), basically unchanged (class 4), slight improvement
(class 5), moderate improvement (class 6), and significant im-
provement (class 7). Moreover, the raster calculator and reclas-
sify tools in ArcMap v.10.2 were applied to quantify the slope
of FVC.

C. Accuracy Evaluation

To evaluate the performance of the proposed MSFP, DPM,
commonly used for long-term FVC monitoring based on satellite
imagery, was used in this study. Fundamentally, DPM assumes
that the NDVI value of each pixel comprises vegetation and soil
and can be calculated using the following equation:

FVCDPM = (NDVI− NDVIsoil)/(NDVIveg − NDVIsoil) (6)

where FVCDPM denotes the vegetation coverage, NDVIsoil de-
notes the NDVI value of all the bare land pixels, and NDVIveg
is the NDVI value of all vegetation pixels [36]. We selected an
NDVI value with the cumulative frequency of 5% as NDVIsoil
and an NDVI value with a cumulative frequency of 95% as

Fig. 4. Accuracy of models of UAS-derived FVC and SR, DVI, NDVI, and
EVI derived from 2021 L8 imagery.

NDVIveg based on the actual studying conditions and previous
studies.

Qualitative and quantitative analyses were performed to eval-
uate the accuracy of MSFP. We visually scrutinized the corre-
spondence between the vegetation distribution and density of
the reference image and the FVC estimated by the MSFP. To
quantitatively evaluate the MSFP method, we randomly selected
70% of the data as training samples and 30% as test samples.
The aggregated FVCs of Google imagery in 2011–2021 and
2021 UAV images were used as validation samples, and the
aggregation was performed as detailed in the previous section.
We subsequently calculated the coefficient of determination (R2)
and root-mean-square error (RMSE) to evaluate the performance
of the method using (7) and (8) [37]

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − y)2
(7)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(8)

where yi and ŷi are the measured and predicted FVC values,
respectively; ȳ is the mean of the measured FVC; and n is the
total number of samples in the testing set. The establishment of
the FVC model and accuracy evaluation were both executed in
MATLAB (The MathWorks, Release 2018b).

IV. RESULTS

A. Comparison Between MSFP and DPM

The four VIs calculated from Landsat imagery and 70% FVC
aggregated from UAS images in 2021 were used as input in
MSFP. And then, 30% FVC aggregated from UAS images 2021
evaluated the accuracy (see Fig. 4).

To select the best VI to construct the MSFP model, the
accuracy of the four VIs was compared (see Fig. 4). Of the four
VIs, DVI performed the worst (R2 = 0.455, RMSE = 0.301),
whereas EVI and SR performed well, with R2 of 0.614 and 0.511
and RMSE of 0.241 and 0.252, respectively. NDVI performed
the best and demonstrated the highest accuracy (R2 = 0.738 and
RMSE = 0.149). Thus, the NDVI-FVC model was used to build
MSFP.
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Fig. 5. Results of accuracy validation based on two validation quadrats for
MSFP and DPM in 2018.

The MSFP and DPM estimated FVC in 2018 and were com-
pared with the Google imagery after a 30 m× 30 m grid overlay.
Two typical mining areas were selected, and local enlargement
was demonstrated for the mine and its surrounding areas. The
results are shown in Fig. 5. The FVC estimated by the MSFP
was consistent with the specific distribution of vegetation and the
density of vegetation coverage in the reference image. However,
DPM underestimated FVC and misinterpreted the vegetation
coverage area as a nonvegetation coverage area. Compared to the
traditional DPM, the MSFP revealed more details, particularly
in the intersection of nonvegetation and vegetation areas, such as
roads and buildings. These findings suggest that MSFP performs
better and presents more detailed information than DPM.

FVC calculated by MSFP and the widely used DPM were
further statistically compared to the FVC calculated from the
Google imagery in 2018. We found that MSFP achieved higher
accuracy (R2 = 0.738 and RMSE = 0.149), whereas traditional
DPM had poor accuracy (R2 = 0.301 and RMSE = 0.349).
Moreover, prediction accuracy was higher for MSFP than for
traditional DPM (R2 increased by 0.437 and RMSE decreased
by 0.2). These findings suggest that MSFP could combine the
vegetation information of the UAS and Landsat imagery, thereby
improving the accuracy of FVC estimation.

B. Effect of Interyear Calibration

To apply the model, established to the Landsat images for the
other years, NDVI in 2021 was used to calibrate the NDVI for
the other years (see Fig. 6).

NDVI calculated from the L5-TM imagery for 2011 was
strongly positively correlated with NDVI in 2021 (R2 = 0.965),

Fig. 6. Intercalibration of the NDVI calculated from Landsat images in 2011,
2014, 2016, and 2018. L8 image from 2021 was taken as the reference image
and to calibrate the images from the other years.

Fig. 7. Results of accuracy indicators for precalibration and postcalibration.

and high correlation was observed for NDVI calculated by the
L8-OLI images in different years (2014, 2016, and 2018) (R2

> 0.94). In summary, all NDVI values calculated from Landsat
images in the other years (2011, 2014, 2016, and 2018) were
strongly positively correlated with NDVI in 2021 (R2 > 0.94),
as shown in Fig. 6. The accuracy of the NDVI-FVC model com-
bining the vegetation information of UAS and Landsat imagery
in 2021, applied to the NDVI in the other years before (pre) and
after the calibration (post), is shown in Fig. 7.

The accuracy of NDVI after calibration was higher than that of
NDVI before calibration; R2 increased by 23% on average, and
RMSE decreased by 30% on average (see Fig. 7). In particular,
NDVI after calibration was 35.52% higher than that before cali-
bration, and the RMSE was 41.38% lower in 2011. This indicates
that NDVI after the calibration can improve the accuracy of the
FVC prediction.

To compare the effect of the NDVI before and after the calibra-
tion, NDVI values before and after calibration were introduced
into the NDVI-FVC model, derived from UAS and Landsat
imagery in 2021. Furthermore, the estimated FVC was visually
compared with the distribution and intensity of the vegetation in
the reference imagery, as shown in Fig. 8.

FVC was estimated using the NDVI before and after calibra-
tion in 2011 as an example. The FVC estimated by the NDVI
after calibration was consistent with the specific distribution of
vegetation and the area of vegetation coverage in the reference
image (see Fig. 8). However, the FVC estimated by the NDVI
before calibration was relatively consistent with the distribution
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Fig. 8. Results of accuracy validation based on two validation quadrats for
precalibration and postcalibration.

of vegetation. Compared with the accuracy of estimated FVC
derived from the NDVI after calibration, the NDVI before cal-
ibration has lower accuracy of FVC prediction. For example,
some areas with high vegetation coverage were misclassified
as areas with low vegetation coverage. Overall, these results
indicate that NDVI after calibration can improve the accuracy
of FVC prediction, thereby achieving the best performance.

C. Spatiotemporal Changes in FVC

The FVC estimates for 2011, 2014, 2016, and 2018 were
obtained after applying NDVI after calibration to the NDVI-
FVC model for 2021 (see Fig. 9).

Overall, the mining area exhibited low FVC in 2011; however,
the low vegetation coverage area was primarily clustered in the
west of the mining area. Notably, the places with low FVC in
the central and eastern regions were primarily rivers and slag
accumulation areas in 2011 (see Fig. 9). The vegetation cover
status improved in 2014, particularly in the eastern and western
regions. While the vegetation coverage in 2016 and 2018 was the
same, it became higher in 2014. The most abundant vegetation
coverage was registered in 2021, thereby marking significant
improvement than that in 2011, 2014, 2016, and 2018. The
vegetation coverage gradually increased from 2011 to 2021, and
the areas with low vegetation coverage were mostly rivers and
slag accumulation areas. To dynamically monitor the changes
in FVC, we calculated the slope change of the FVC curve from
2011 to 2021 (see Fig. 10).

Fig. 9. Changes in FVC in the mining area from 2011 to 2021.

Fig. 10. (a) Slope of the linear regression change trend in FVC from 2011 to
2021. (b) Area proportion of each class.

The spatial distribution of FVC changed from 2011 to 2020
(see Fig. 10). The degraded areas (class = 1, 2, and 3) were
clustered in the west and middle of the mining area, while most
of the mining areas were slightly or moderately improved. The
statistics of each class demonstrated that the unchanged area and
the area of slight improvement (classes 4 and 5) accounted for
the most, with 39.16% and 38.97% of the area, respectively. The
areas of slight degradation and moderate improvement (classes
3 and 6) accounted for 7.74% and 10.73%, respectively. The
proportion of severe/moderate degradation (class = 1 or 2) and
significant improvement (class = 7) was somewhat small, with
less than 3%. Over the past decade, the FVC has been annually
increasing, along with the gradual improvement of the ecological
environment.

V. DISCUSSION

A. Influence of High-Resolution UAS Imagery

This study used a combination of UAS and satellite remote
sensing to predict FVC by taking advantage from the ultrahigh
spatial resolution of UAS imagery. In this way, we provided
accurate training samples for the satellite image modeling, which
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were consistent with previous studies [38]. Previous studies have
revealed that manual collection of ground reference data is sub-
jective, owing to the scale difference between ground-measured
data and satellite images with coarse spatial resolution (such as
Landsat) [39]. It is challenging to obtain ground-based observa-
tional references for spaceborne remote sensing data with coarse
spatial resolution (such as Landsat). However, UAS stands out
with two advantages for multiscale remote sensing applications
than manual field measurements: 1) UAS data can achieve “sur-
face to surface” aggregation, upscaling to the desired resolution.
It can be matched with global-coverage satellite data, thereby
allowing the estimation of physical and chemical parameters of
vegetation or species classification in the global region. 2) UAS
is a top-down observation with the same perspective as satellite
remote sensing, which allows for avoiding the differences in
observation results caused by different sensor perspectives.

Furthermore, the selection of samples is critical for estimating
FVC. The sample value should encompass the whole FVC value
interval, allowing for the selection of samples that are not overly
centralized but distributed throughout each interval, therefore
boosting the accuracy of FVC estimation. Our study used UAS
imagery from several locations as the training samples. These
areas ranged from low to high vegetation coverage, thereby
providing favorable conditions for developing an FVC model.
Our results were consistent with previous findings. In particular,
Riihimäki et al. [21] collected UAS imagery from three typical
Arctic areas (low, medium, and high vegetation coverage) and
used satellite imagery to develop a model for FVC prediction. In
the future, UAS imagery can be used instead of ground sampling
to predict the physical and chemical parameters of plants (such
as the leaf area index).

This study used FVC aggregated from 2021 UAV imagery
as training and validation samples for the result of MSFP in
2021. For field survey, it has already been demonstrated that
UAV-RGB imagery provides a rapid and reliable alternative
for traditional field sampling with point frames [21], [40].
However, as the UAS imageries from 2011–2018 were not
available, historical images were used as a supplement to verify
the accuracy of the MSFP results. The Google images were
classified into two categories (vegetation and nonvegetation),
and the FVC was obtained by aggregating to a 30 m× 30 m grid
to verify MSFP results. In this study, to investigate the validity
of the FVC of Google image aggregation, the relative error
between the FVC aggregated from Google imagery and FVC
aggregated from UAS imagery was calculated. This difference
was not significant (approximately 0.100), and their validation
accuracy was similar (R2

Google = 0.708, RMSEGoogle = 0.167

and R2
UAV = 0.738, RMSEUAV = 0.149), indicating that the

aggregated FVC of Google images can effectively validate
MSFP results. Our method is consistent with that of previous
studies, such as using Google images to validate the accuracy
of feature classification [41], [42].

B. Multiscale-Data Aggregation

In this study, MSFP was estimated by combining vegetation
information from the UAS and satellite imagery with the

large-scale FVC from 2011 to 2021. The manual registration
method was applied to align the UAS and satellite imagery,
thereby implying that the UAS and satellite imagery were
coregistered with Google imagery with a high spatial resolution.
The results were consistent with previous research findings
[30]. Furthermore, we found that the mutual matching problem
of images with different spatial resolutions can be transformed
into a machine learning optimization problem [43] by following
some steps.

1) Create a moving window based on the size of the UAS
image.

2) Move on the satellite image at a particular step length.
3) Calculate the matching degree between the two each time.
4) Take the image position at the best matching time as the

final registration result.
Other georeferencing methods, such as direct and indirect

georeferencing approaches [44], [45], have performed well as
observed in previous studies and should be considered in future
research.

The 2-D Gaussian sampling was used in this study, inconsis-
tent with the methods used in previous studies. Most previous
studies have used the simple average sampling method [21],
[30], taking the average value of all pixels in the window as the
value of the window. Despite some advantages, this approach
has certain limitations. The simple average sampling method
assigns the same weight to all pixels in the window. Thus, the
pixel value at the edge of the window may exert a significant
impact on the results. Although other sampling methods, such
as nearest-neighbor sampling [46], have demonstrated some
advantages for FVC monitoring applications, they have some
limitations. This is because aggregation typically resamples re-
mote sensing images by averaging or mathematically combining
the values of the adjacent grid cells. These resamplings trigger an
aggregation effect, thereby inevitably yielding less accurate sta-
tistical results. Furthermore, satellite-based approaches define
the sampling area unit rather than the ecological or scientific
scale [47]. In future research, we should consider additional
applications of remote sensing data combined with the process
of ecological evolution.

To elucidate the variations in the FVC estimation accuracy
at different scales, we obtained the images with different spatial
resolutions, for example, 4 m GaoFen-2 (GF-2), 10 m Sentinel-2,
and 30 m Landsat-8, and built a multiscale FVC estimation
model combined with 4 cm UAS imagery. The statistical analysis
demonstrated that the 30 m Landsat imagery had the highest es-
timation accuracy (R2 = 0.738 and RMSE= 0.149), whereas the
accuracy of 10 m Sentinel-2 was comparable to that of 4 m GF-2,
with R2 of 0.54, and RMSE of 0.24. Although their statistical
indicators were lower than those of 30 m Landsat-8, GF-2 and
Sentinel-2 revealed more details in terms of visual effects (see
Fig. 11) owing to their high spatial resolution. These results cor-
responded with those of previous studies [21], as several studies
had previously found that upscaling to coarse-resolution remote
sensing imagery, such as 30 m Landsat imagery, improves the
accuracy of the estimated FVC. In contrast, when upscaling to
finer spatial resolution remote sensing imagery, such as 4 m
GF-2, the estimation accuracy of FVC is weakened [20], [21].
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Fig. 11. Estimating FVC at multiple scales (GF-2, resolution = 4 m; Sentinel-
2, resolution = 10 m; and Landsat-8, resolution = 30 m).

C. Temporal Calibration

In this study, the NDVI calculated from Landsat imagery
was directly used for the temporal calibration. Previous studies
have used relative radial calibration (or radial normalization;
reference) to standardize the reflectance values [48]. Thus, the
temporal dynamics of reflectance of each band of Landsat
imagery can be calibrated. In this way, a more accurate VI of
Landsat imagery can be obtained in temporal dimension, thereby
paving the way toward multiscale and long-term FVC prediction.
Previous studies have revealed that the changes in the position
of the sun result in different solar radiation received at different
surface locations, thereby causing some differences between
remote sensing images obtained at different places, seasons, and
periods [49]. Some studies [50], [51] have used the solar altitude
angle calibration to perform temporal image calibration. The
image obtained when the sun rays were vertically illuminated
was calibrated to the image obtained when the sun rays were
vertically illuminated. In this study, we calibrated the reflectivity
and solar altitude angle of Landsat imagery from different years
to determine the most appropriate calibration method.

Owing to the limitations of cloud conditions and the revisit
period, we selected Landsat images for May–June in 2011, 2014,
2016, 2018, and 2021, where the spectral variation in vegetation
was small and had less impact on interyear VI calibration in our
study area. The selection of remote sensing images over a certain
period in this study was similar to that of previous studies, such as
those on long-time series vegetation monitoring in the vicinity
of rivers [30], Australian dryland vegetation monitoring [52],
and vegetation dynamics of coniferous and deciduous forests in
Marmara Region, Turkey [53]. Furthermore, we evaluated the
applicability of the MSFP in different time-phase images to im-
prove the data acquisition convenience, facilitate the acquisition
of the global data, and achieve the global FVC prediction. Over-
all, the potential of multiscale remote sensing to estimate FVC
over multiple vegetation periods was elucidated. We obtained
UAS and satellite data during the vegetation growth period
(June) and during the vegetation nongrowth period (October).
Consequently, we developed the MSFP with slightly higher
estimation accuracy of the vegetation growth period (R2 = 0.738
and RMSE= 0.149) than that of the nongrowth period model (R2

= 0.625 and RMSE= 0.195). This indicates that although MSFP

can be used in various stages of vegetation, it can be deemed the
most suitable for the growth period, which is consistent with
previous research [54].

D. Uncertainty and Outlook

Owing to the uniqueness of the study area, NDVI outper-
formed EVI in terms of modeling performance of FVC. Almost
no other green-covered features were identified in the study area
other than vegetation. The vegetation canopy background of the
mining area was primarily formed by bright bare rock and ore
heaps. Thus, EVI, being highly sensitive to albedo, may not
be ideally optimized to distinguish vegetation from sand using
band differences. Furthermore, previous studies have reported
a strong linear correlation between NDVI and FVC [55]. Thus,
the greater the vegetation coverage, the lower the red-band re-
flectance and the higher the near-infrared band reflectance [56].
The red-band absorption quickly reached saturation, whereas the
near-infrared band reflectance increased as the vegetation cover-
age increased. Moreover, previous studies have used vegetation
indices for vegetation monitoring, including the green NDVI
and infrared SR. In future research, additional VIs should be
considered, and their differences to determine the VI suitable
for all scales should be compared.

The mining area in Qianxi County (Hebei Province, China)
was used as the study area in this work. The spatiotemporal
changes in FVC in the mining area between 2011 and 2021
were determined using MSFP. MSFP offers evident theoretical
and practical significance for restoring the ecological function
of mining areas and for improving the quality of the ecological
environment of the mining area. Our results revealed generally
low vegetation coverage in 2011 owing to increased iron ore min-
ing. However, the situation was significantly improved in 2014,
likely owing to the implementation of tailored environmental
protection measures and management systems by the Chinese
government. Through these measures, all open-pit iron mines
were either shut down or renovated since 2013 and were grad-
ually turned to the ecological restoration of abandoned mines,
such as planting trees in abandoned mining areas. Notably, we
only examined the mining industry as an example for deter-
mining the potential of multiscale remote sensing technology
for regional long-term FVC monitoring. Future studies should
use multiscale remote sensing in other areas, such as typical
ecological reserves.

VI. CONCLUSION

The regions that experience complex and intense changes in
land cover, such as mining areas, require cost-effective mapping
and monitoring using multiscale remote sensing technology. In
this study, we proposed a novel methodology (MSFP) using UAS
and satellite data for long-term monitoring of regional FVC. Our
analysis demonstrated the following.

1) MSFP provided higher FVC prediction accuracy, with R2

increased by 0.437 and RMSE decreased by 0.2, than the
traditional DPM. Notably, the MSFP would reveal the
visual features with more details than the traditional DPM
based on satellite imagery.
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2) Large-scale FVC will be obtained only by acquiring UAS
imagery of several typical areas combined with contem-
poraneous satellite imagery.

3) By calibrating the VI calculated from Landsat imagery of
other periods, the long-term and high-accuracy FVC can
be easily obtained.

Our findings clearly showed that a synergy between multi-
scale remote sensing and UAS can significantly advance re-
gional long-term FVC monitoring. We encourage broad use
of UAS technologies in fieldwork, thereby advancing regional
FVC monitoring in this way. Moreover, our results can aid
in developing an automated system for FVC monitoring to
provide data-driven guidelines beneficial for both researchers
and policymakers focusing on vegetation dynamics.
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