5728

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Morphological Convolution and Attention
Calibration Network for Hyperspectral and LiDAR
Data Classification
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Abstract—Reasonable fusion of multimodal data can increase
the accuracy of remote sensing classification. In this article, an
effective morphological convolution and attention calibration net-
work is proposed for the joint classification of the hyperspectral im-
age (HSI) and light detection and ranging (LiDAR). First, we devise
a morphological convolution block, which combines the dilation
and erosion operations in morphology with convolution to better
capture the feature from the HSI and LiDAR. Next, we designed a
dual attention module that uses self-attention to calibrate features
and cross attention to combine multisource complementary infor-
mation, respectively. Finally, considering the features of seman-
tic inconsistency and different scales, the adaptive feature fusion
module is introduced to dynamically fuse multimodal features. To
verify the progressiveness of the proposed network, we experiment
on three common datasets and one self-made dataset. The result
shows that our network performs better than the state-of-the-art
models.

Index Terms—Attention mechanism, hyperspectral image
(HSI), joint classification, light detection and ranging (LiDAR),
morphological operations.

I. INTRODUCTION

ENEFITING from the vigorous development of sensor
B technology, the acquisition methods of remote sensing im-
ages are becoming increasingly diverse [1], [2]. Various sensors
provide distinct ground feature information, which is widely
used in surface observation, forest monitoring, environmental
investigation, and other aspects [3], [4], [5]. A hyperspectral
image (HSI) contains both rich spectral and spatial information,
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and spectral information is encoded in dozens of continuous
wavebands [6], [7], profoundly improving the ability to dis-
tinguish objects. However, an HSI has difficulty distinguishing
objects at different altitudes with similar spectral responses [8],
[9]. For example, roofs and roads are both made of concrete,
which have similar spectral responses, but they belong to dif-
ferent categories. Instead, light detection and ranging (LiDAR)
includes elevation information of the scene [10], making up for
the shortage of HSI data. Consequently, the joint classification
of the HSI and LiDAR has broad prospects and has received
widespread attention [11].

Recently, some strategies of fusing the HSI and LiDAR
images have been developed, among which feature-level fu-
sion methods are widely used. Pedergnana et al. [12] applied
morphological extended attribute profiles (EAPs) to obtain
distinguishable features, which were then overlaid for clas-
sification. However, the splicing of features can lead to the
Hughes phenomenon, especially when the trainable samples
are limited. Therefore, principal component analysis (PCA) was
adopted to reduce feature dimensions [13]. However, PCA has
limitations in extracting local HSI structural information. To
overcome this problem, Uddin et al. [14] applied FPCA on
the highly correlated or spectrally separated bands’ segments
of the HSI, and then, proposed segmented FPCA (SFPCA) and
spectrally SFPCA (SSFPCA), which further ameliorated feature
extraction. Shemul et al. [15] proposed the segmented-sparse-
PCA (SSPCA), which divided the entire dataset into multi-
ple highly correlated spectral band subsets, and then, applied
sparse-PCA to each subset, achieving satisfactory results. Rasti
et al. [16] proposed a feature fusion method based on orthog-
onal total variation analysis, which maps the fused features to
lower dimensions. It can improve the piece-wise smoothness
while retaining the spatial structure, and finally, generate ac-
curate feature maps. Another prevalent method is fusing fea-
tures in the decision-making stage. A support vector machine
(SVM) [17] with nonlinear kernel functions has been widely
used. Xia et al. [18] assembled rotation forests and Markov
random fields to obtain a higher classification accuracy, in which
four different feature extraction approaches are applied. Peng
etal. [19] proposed an SVM based on aregion kernel that devises
three mixed kernels to estimate the similarity between spatial
and spectral features. Subsequently, combining the advantages
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of the SVM and multiple classifier systems, Xia et al. [20]
designed a novel rotation-based SVM to upgrade the perfor-
mance on classified tasks. Nevertheless, these classical methods
rely on the selection of parameters. Whenever faced with dif-
ferent classification tasks, the parameters need to be readjusted,
which is undoubtedly time consuming.

Methods based on deep learning have achieved satisfactory
achievements in the field of remote sensing in recent years [21],
[22]. The convolutional neural network (CNN), standing out
with its robust ability to process high-dimensional data, is es-
pecially suitable for solving the classification task of the HSI
and LiDAR. Most existing methods based on the CNN use
a dual branch structure to obtain heterogeneous information
from multisource data. This dual-branch network structure has
a preferable feature extraction ability that greatly improved
the classification accuracy. Xu et al. [23] pioneered a dual-
tunnel CNN structure to extract features in different dimen-
sional spaces, and designed a CNN with cascaded blocks to
extract features from LiDAR images. The experiment proved
that the proposed dual-tunnel CNN has excellent classification
performance. Afterwards, some unsupervised and semisuper-
vised methods also achieved satisfactory results. Guan et al. [24]
proposed an unsupervised cross-domain contrastive learning
framework, which constructs signals in the spatial and spec-
tral domains, respectively, and applies comparative learning to
extract shared information between the two signals for the HSI
representation. Duan et al. [25] developed a new semisupervised
algorithm called a geodesic-based sparse manifold hypergraph,
which built the manifold neighborhood of each sample and
designed a pair of semisupervised hypergraphs to handle sparse
correlations between samples.

Considering that there are pixels in the input patch that have
different classification labels from the center pixel, which can
affect classification accuracy, some researchers have applied
attention mechanisms to remote sensing classification. The core
of the attention mechanism is to assist the network to take more
notice of the significant regions, which is generally reflected in
the form of weight. It further helps the model improve the effi-
ciency and accuracy of task processing. FusAtNet [26] adopts the
dual attention mechanism, which uses sel-attention to emphasize
its own features, and takes cross attention to obtain the weight
map from the LiDAR to optimize the spatial features of the
HSI. MSNetSC [27] first proposed self-calibrated convolutional
blocks, and combined them with multiscale structures to obtain
optimized multiscale features, then applied self-attention to en-
hance features. Li et al. [28] developed a dual channel A3CLNN,
which combines the multiscale structure, ConvLSTM, and self-
attention to better describe features, and trained the network in
stages to obtain classification results. EMFNet [29] adopted a
feature tuning module to achieve cross optimization between
multisource data, and designed a novel feature fusion module to
assign appropriate weights to the features to be fused.

In fact, morphological methods can effectively complete the
task of spatial feature extraction. Among them, the most widely
used are morphological profiles (MPs) [30], attribute profiles
(APs) [12], [31], and extension profiles (EPs) [3], [32]. Ghamisi
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et al. [33] combined EPs with deep learning to obtain more
accurate classification results. Hong et al. [34] using invariant
attribute profiles (IAPs) to locally extract the spatial invariant
features. Roy et al. [35] developed a novel local morphology
pattern (LMP), which used opening and closing operations
scales to accurately obtain location and contour information
of the objects. Mellouli et al. [36] combined the CNN with
morphological feature extraction to improve the image quality
and achieved good results in image classification tasks. Franchi
et al. [37] proposed a method of using morphological nonlinear
operators in a deep learning framework. It has been proven in
multiple applications that nonlinear morphological operations
and convolutional layers are complementary. Roy et al. [38]
constructed spatial morphological blocks using morphological
expansion and erosion layers, and combined them with the CNN,
which achieved good classification results.

However, there are still some problems with HSI-LiDAR
classification. First, the current classification methods mostly
use traditional convolution to extract spatial features, which has
limitations in describing the boundaries and shapes of objects.
Moreover, self-attention mechanisms are often utilized to op-
timize features, but there is no interaction between features,
which further limits their semantic relevance. More importantly,
the simple feature concatenation will ignore the correlation
and complementarity between multimodal data and increase the
feature dimension, which may result in dimension disaster.

In order to settle these issues, we devise multiple approaches
to effectively utilize multimodal data for classification. Fore-
most, the dilation and erosion operations in morphology are
combined with traditional convolution to better extract HSI
spatial information and LiDAR elevation information, and the
dual attention mechanism (self-attention and cross-attention) is
applied to calibrate features and increase the cross guidance
between multimodal features. Then, the nonlinear attention fea-
ture fusion module (AFF) [39] is introduced to dynamically
fuse multimodal spatial features in the way of context-scale
awareness. Experiments were carried out on four real HSI and
LiDAR datasets, and results indicate that our method is more
advanced in analyzing multimodal data.

In short, the main contributions to this article can be summa-
rized into four aspects.

1) To extract distinguishable spatial features, a morpholog-
ical feature extraction block (MorFEB) is constructed,
which combines the expansion and erosion operations
in morphology with convolution to better capture the
boundary shape information of arbitrary objects in com-
plex regions and extract robust and differentiated spatial
information.

2) A spectral calibration block (SpeCB) is built to correct
spectral features. Specifically, the central pixel is extracted
from the HSI patch, and then, the channel weight is
calculated to calibrate the spectral features of the entire
patch.

3) A position attention module (PAM) similar to the U-Net
structure is projected to provide supplementary informa-
tion guidance between multimodal data, which can make
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Fig. 1. Overall framework of the proposed network.

use of the advantages of LiDAR to make up for the disad-
vantages of the HSI and realize supplementary guidance
between multimodal data.

4) Considering the inconsistency of semantics and scales,
the AFF module is introduced into the proposed network,
which fuses multimodal features dynamically and adap-
tively, and does not generate additional dimensions, and
reduces information redundancy.

The rest of this article is organized as follows. Section II
describes the details of the proposed network. The experimental
results and analysis are shown in Section III. Finally, Section IV
concludes this article.

II. METHODOLOGY
A. Architecture Overview

An HSI can capture subtle spectral differences based on
its rich spectral characteristics to further distinguish various
materials, while LiDAR can accurately model the surrounding
environment in 3-D and provide elevation information that is
missing from HSI. To properly solve the classification problems
of HSI and LiDAR, it is necessary to correctly fuse the comple-
mentary features of multimodal data.

The proposed HSI and LiDAR joint classification framework
is shown in Fig. 1. An SpaE-FEM is designed to extract sig-
nificant complementary information from HSI and LiDAR. The
MorFEB is the core component, which combines dilation and
erosion operations in morphology with convolution to better
capture robust and differentiated spatial/elevation information of
arbitrary objects in complex regions, and then we devise a PAM
to optimize the features and utilize the advantages of LiDAR
to compensate for the shortcomings of the HSI. In addition, in
order to obtain more accurate spectral features from the HSI, the
Spe-FEM is proposed, in which the SpeCB is used to calibrate
the weight between channels of the HSI.

\w N

B. Spatial-Elevation Feature Extraction Module

Being universally known, morphological operations are pow-
erful nonlinear transformations that can capture the size, shape,
and structure information of objects in more detail. Here, an
MorFEB based on dilation and erosion operations is proposed,
which takes structural elements of the size (p x p) as the core for
operations. Fig. 2 describes the detailed mathematical process
of dilation and erosion operations.

For example, using a LIDAR patch and an extended structural
element SE; for operation magnifies the object and increases
the number of available feature pixels. In contrast, erosion is the
process of eliminating all boundary points of significant objects,
eliminating individual abnormal pixel points, and expanding the
gaps between objects that allow them to be separated between
adjacent areas. And convolution can preserve the original shape,
boundaries, and other information of the object, which pre-
cisely serves as a supplement to dilation and erosion operations,
making the extracted features more balanced. Given the input,
LiDAR patch X € RM*N with spatial size (MxN). The di-
lation () and erosion (&) operations can be defined as an
operation on the feature map centered on the spatial position
(i, )) as

(XL ®SEq) (z,y) = max (Xp(z+i,y+j)+ SEa(i,)))

(i,5)eU
(1
(XL, ©SE,) (z,y) = (_m)igU (Xr (x 414,y +j) — SEc(4,5))
]
()

where U = {(i,7) | i € {1,2,3,...,s}; 7 € {1,2,3,...,5}},
and SE; and SE. represent the structural elements of dilation
and erosion operations, respectively. Filling the image before
dilation and erosion operations to ensure the same size of input
and output. The feature Fyjorpn 0btained by MorphFEB is derived
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(b)

Graphical visualization of the dilation and erosion operations where an input image patch of size (7 x 7 x 1) is dilated and eroded with an SE of size

(3 x 3 x 1) and the obtained output size keep the same with a padding mechanism. (a) Dilation operation. (b) Erosion operation.

from the following formulas:

Fa = Conv ((Xy & SEy) ,k=1) 3)
Fe =Conv ((X ©SE.),k=1) (€))
Fuorph = (Fa + Fe ) © Conv ((X1), k= 3) )]

where Conv represents convolution and k is the size of a con-
volution kernel, which projects morphological features into the
same subspace as convolution to facilitate subsequent combi-
nation and © represents feature concatenation. Similarly, the
proposed morphological operation can be applied to processing
HSI channel by the channel.

For extracted feature map, the information contained in dif-
ferent positions has different contributions to the recognition of
the central pixel. Benefiting from the progress of deep learning
technology, the attention mechanism has become an effective
tool for remote sensing classification tasks [40], [41], [42].
Focusing on significant regions and suppressing irrelevant parts
is more conducive to classification. Therefore, we propose a
PAM to assign weights to different spatial positions. The PAM is
similar to U-Net in structure. The position weight map generated
by the PAM contains both shallow and deep information, which
can more accurately find areas of interest.

In the down-sampling stage, given the input feature vector
Fp € REHXW where C, H, and W are the number of channels,
height, and width of the feature, respectively. First, the global
average pooling is used to aggregate features. Afterwards, the
Maxpool is used to sample down to retain the most important
information in the neighborhood, and then the feature Fi is
further extracted by convolution. After that, the Avgpool is
applied to sample down, and then the generated results are sent
to the convolution layer to obtain the output Ff of the encoder.

The aforementioned process can be expressed as
F} = Conv (MP (GAP (F1)),k = 3) (6)

Ff’ = Conv (AP (F}) ,k = 3) (7)

where GAP, MP, and AP represent global average pooling,
Maxpool, and Avepool, respectively.

In the upsampling phase, sub-pixel convolution is applied to
upsample FE , and the obtained result is connected with Fi and
then, feed them to the convolution layer to obtain the feature
F?. Repeating this process and applying a sigmoid function to
generate position weight map F2", the aforementioned process
can be expressed as

F? = Conv ([F},SPC (Ff)] ,k=1) ®)

Fj* = Sigmoid (Conv ([GAP (F),SPC (F7)] .k = 1))
©

where SPC is subpixel convolution. Then, the weight F}",, is
applied to optimize the LiDAR feature map F', and HSI feature
vector F'g7, which provides supplementary information guidance
from LiDAR to the HSI to improve classification results.

C. Spectrum Feature Extraction Module

The HSI has abundant spectral information that is encoded
in dozens of continuous wavebands and numerous imaging
channels, which has strong target recognition capability. How-
ever, the importance of spectral information contained in each
channel varies, attention mechanisms need to be used to calibrate
interchannel weights to obtain more effective spectral infor-
mation. Hence, we design a SpeCB, which takes the spectral
information of the central pixel extracted from the HSI data as
the benchmark to establish the spectral weight of the central
pixel. The aforementioned process can be expressed as

F3 — ReLU (BN (Conv3D (Xp))) (10)

Ff} = Sigmoid (Center (F)¥°)) x Fp° + Fpr* (11)

where Center represents the center pixel extracted from the
extracted spectral feature Fy°. The sigmoid function is applied
to normalize channels to the range [0, 1] to get the weight of each
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channel. Finally, the weight is used to calibrate HSI patches, and
the residual is introduced to complete the optimization.

Here, to extract pure spectral features, the convolution kernel
size of 3D-CNNis (7 x 1 x 1), which signifies that the convolu-
tion is only performed in the spectral dimension without leading
to redundant spatial information.

D. Classification Module

Since there is overlapping information between the spatial
features and the elevation features, and the spectral features are
not related to them, we should take into account the correlation
and difference between features when fusing features, and select
the appropriate fusion strategy. Specifically, the AFF method
is chosen to fuse spatial feature and elevation feature, which
focuses on both global and local information, assigning an
appropriate proportion to them and constantly changing the
proportion during training to obtain more effective fusion results
without increasing the dimension. The overall structure of the
AFF is shown in Fig. 3.

Given two features to be fused X, Y € RE*H*W the initial
integration of the two features is realized by addition, which
is recorded as F' = X + Y. The AFF emphasizes both global
information and local information, and selects point-by-point
convolution (PWConv) to obtain local information and aggre-
gate the inter channel relationships of each feature pixel. In the
AFF, the local channel context L. € RE*HXW can be obtained
by the following operation.

Lo(F) = 8 (PWConvs (5 (8 (PWConv(F)))).  (12)

RC’><1><1

Similarly, the global channel context G € is calculated

by the following formula:
G.(F) = g (PWConvy (6 (8 (PWConvs (GAP(F)))))) (13)

where 3 and § are the BN and ReLU activation functions,
respectively. Here, L.(X +Y) does not change in size and
retains lower level features rich in spatial information with
higher resolution. After that, the attention weight is calculated
by the following formula:

W =Sigmoid (L. (X +Y)®G. (X +Y)). (14
Finally, the output of the AFF can be expressed as
Z=WxX+(1-W)xY (15)
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TABLE I
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE HOUSTON DATASET

No. color Class Training Test
1 Healthy grass 125 1126
2 - Stressed grass 125 1129
3 - Synthetic grass 70 627
4 - Trees 124 1120
5 Soil 124 1118
6 Water 33 292
7 - Residential 127 1141
8 Commercial 124 1120
9 Road 125 1127
10 - Highway 123 1104
11 Railway 123 1112
12 - Parking lot 1 123 1110
13 - Parking lot 2 47 422
14 - Tennis court 43 385
15 Running track 66 594

Total 1502 13527

where Z € RE*H*W s the final fused feature map. In this
fusion module, the fused feature Z integrates low resolution
global features and high resolution local features. And during
the training process, W will be continuously adjusted to obtain
the most effective fusion features, further improving the classi-
fication effect.

Similarly, spatial features and spectral features are not related
to each other, so we treat them as equally important, and then, use
concatenation to connect them. So far, we have fused all features
together, taking into account correlation and differences, and
giving attention to both global and local features. Finally, the
fused feature is fed into the fully connected layer to obtain the
ultimate classification result.

III. RESULTS AND DISCUSSION
A. Dataset Description

To evaluate the effectiveness and progressiveness of the pro-
posed method, three common datasets and a self-made multi-
modal dataset are used for comparative classification experi-
ments. The basic situation of the four datasets is described as
follows.

1) Houston Dataset: This dataset was collected in June 2012
on the University of Houston campus and adjacent regions, with
a spatial resolution of 2.5 m and a size of 349 x 1905 pixels.
The band numbers for hyperspectral and lidar are 144 and 1, re-
spectively. There are 15 available classes. We randomly selected
10% of the pixels from the dataset as a training set. Details are
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TABLE II
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE TRENTO DATASET

No. color Class Training Test
1 Apple trees 81 3953
2 - Buildings 58 2845

3 Ground 10 469
4 - Woods 182 8941
5 Vineyard 210 10291
6 Roads 63 3111
Total 604 29610

TABLE III

NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE MUUFL GULFPORT

No color Class Training Test
1 - Trees 1162 22084
2 Mostly grass 214 4056
3 - Mixed Ground 344 6538
4 - Dirt and sand 91 1735
5 - Roads 334 6353
6 Water 23 443
7 Shadows 112 2121
8 - Buildings 312 5928
9 Sidewalks 69 1316
10 Yellow curbs 9 174
11 - Cloth Panels 14 255
Total 2684 51003

shown in Table I. The visualization of the HSI, LiDAR, and
ground truth are shown in Fig. 9(a)—(c), respectively.

2) Trento Dataset: This dataset was obtained in the southern
part of Trento, Italy, with a spatial resolution of 1.0 m and a size
of 600 x 166 pixels. There are 63 bands in HSI data and two
bands in LiDAR data.The ground cover types are divided into
six types. 2% of the labeled pixels are randomly selected as a
training set on this dataset. The detailed information is shown in
Table II. The visualization of the HSI, LiDAR, and ground truth
are shown in Fig. 10(a)—(c), respectively.

3) MUUFL Gulfport: This dataset was obtained from the
University of Southern Mississippi Gulf Park, with a size of
325 x 220 pixels. Initially, the HSI included 72 channels, but
the information contained in eight channels was confirmed to
be noise, so 64 spectral channels were ultimately left for ex-
perimentation. The LiDAR included two bands. There are 11
different types of ground cover. Here, 5% of the labeled pixels
are selected as a training set. The detailed information is shown
in Table III. The visualization of the HSI, LiDAR, and ground
truth are shown in Fig. 11(a)—(c), respectively.

5733

TABLE IV
NUMBERS OF TRAINING AND TESTING SAMPLES FOR THE TAMARIX DATASET

No. color Class Training Test

1 Dry spartina alterniflora 276 27315
2 - Phragmites australis 45 4472
3 Water 186 18384
4 - Suaeda salsa 70 6899
5 Tamarix chinensis 109 10826
6 Roads 10 1030

Total 696 68 926

4) Tamarix Dataset: Tamarix dataset was collected on the
Yellow River Delta National Nature Reserve in August 2022.
There are 126 bands in HSI data and 1 band in LiDAR data. The
spatial resolution of the Tamarix dataset is resampled to 1.0 m.
The space size is 387 x 673 pixels, and there are 69 622 trainable
pixels. The dataset contains six divergent classes. Here, we select
1% of the labeled pixels as a training set. Table IV shows the
details. The visualization of the HSI, LiDAR, and ground truth
are shown in Fig. 12(a)—(c), respectively.

B. Parameter Tuning

Our network is implemented in a PyTorch framework. All
deep learning models in this article are implemented on com-
puters equipped with Intel Core CPU i9-10900 k, 96-GB RAM,
and NVIDIA RTX 3090. During the training process, the Adam
algorithm is applied to optimize the network, and cross entropy
is applied as the loss function of the network. At the same
time, we selected overall accuracy (OA), average accuracy (AA),
and Kappa coefficient as evaluation indicators to evaluate the
classification performance.

The adjustment of parameters is crucial to the performance of
deep learning models. Among all the parameters, patch size (p x
p), learning rate (Ir), and the numbers of training samples have
a greater impact on the classification effect. So next, we will
focus on analyzing the patch size, learning rate, and the radio
of training samples. We set the default values of p and Irto 11
and 0.00001, respectively. The default proportions for training
samples in the four datasets are set to 10%, 2%, 5%, and 1%,
respectively. For other secondary parameters, we set the batch
size and epoch to 64 and 100 based on experience.

1) Selection of Patch Size: The size of the input patch de-
termines how much information it contains. We compared the
classification results for different input patch sizes on four
datasets. Theoretically, the larger the patch, the more informa-
tion it contains. However, excessive patch size can affect the
training speed of the model, so selecting a reasonable range is
important. We decided to limit the patch size to 7,9, 11, and 13,
and fix other parameters to default values. As shown in Fig. 4,
the OA of the algorithm initially increases with the enlargement
in patch size, but after reaching the peak value, there will be a
slight downward trend. Coincidentally, when the OA of the four
datasets reaches the peak, the patch size is 11 x 11.



5734

--#- Houston —a— Trento --4- MUUFL —eo— TamarixJ
99
98 :
*
g
>
o
© 96 - '///‘\‘
3
3
o
<
©
[
>
9]
............. R GRITTITO
1 LI | Y ek I 7Y -
92 1 L
T
7 9 1 13
Patch Size
Fig. 4. OA with different patch size.
--#- Houston —a— Trento -4+ MUUFL - TamarixJ
99 4 T
e S e 2 H—
i Foe = ——
98 -
g
>
o
£
3
g 95~
<
B
v
>
9
________ g T |
e  EeTre
Py g
g
0.00001 0.00005 0.0001 0.0005 0.001 0.005
Learning Rate
Fig. 5. OA with different learning rate.

2) Selection of Learning Rate: Learning rate is an important
super parameter in deep learning, which determines the speed
of convergence of our model. Generally speaking, the higher the
learning rate, the faster the learning speed of the neural network.
If the learning rate is too small, the network may mistake the
local optimal solution for the global optimal solution; however,
excessive learning rate may not find the local optimal solution.
Based on previous experience, we decide to limit the learning
rate to 0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, and fix
other parameters to default values. Fig. 5 shows the performance
of different learning rates on each dataset. When the learning rate
is 0.00005, the model performs better in Houston, Trento, and
MUUFL. In the Tamarix dataset, the model performs best when
the learning rate is 0.001.

3) Evaluation With Different Ratio of Training Samples:
Similarly, the proportion of training samples also requires exper-
imental evaluation. On the one hand, if the number of training
samples is insufficient, it may lead to underfitting of the model.
On the other hand, excessive training samples will result in
overfitting and poor adaptability. Therefore, it is crucial to
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select an appropriate proportion of training samples for the
performance of the model. Based on previous experience, we
limited the proportion of training samples to a reasonable range,
and conducted experiments with the proposed method and other
comparative methods on four datasets to select the most suitable
proportion based on the results.

Figs. 6-8 show the changes in OA, AA, and Kappa indi-
cators using different proportions of training samples on four
datasets. From the figure, we can see that as the proportion of
training samples increases, OA, AA, and Kappa also increase
accordingly. However, the rising speed gradually slows down,
and some indicators are even at the same level as before. At this
time, the increase in the proportion of training samples has little
impact on the performance of the model. Our goal is to achieve
satisfactory results with a smaller training sample ratio, so we
set the training sample ratios for the Houston, Trento, MUUFL,
and Tamarix datasets to 10%, 2%, 5%, and 1%, respectively.

C. Classification Performance

In order to verify the superiority of our proposed network over
other methods in the field of multimodal remote sensing classifi-
cation, some classic models and up-to-the-minute methods have
been used to compare our network with experiments, such as
SVM [17], the contextual deep CNN model (CDCNN) [43], 3-D
deep learning approach (3D-CNN) [44], the two-branch CNN
model TBCNN [23], CoupleNet [45], FusAtNet [26], and joint
CNNs and morphological feature learning(MorphNet) [38].

Based on previous experience, we have supplemented some
details of the network training process by conducting ten re-
peated experiments for each method, with 100 epochs per ex-
periment, and taking the intermediate value as the result. Before
training the model, we set the learning rate, patch size, and
batch size of the proposed network to the optimal solution for
the corresponding dataset. Similarly, the parameters of other
methods are also their best choices. In addition, we make the
number of MorFEB and SpeCB in the network to 3.

Tables V-VIII show the classification accuracy comparison
results of each method on the Houston, Trento, MUUFL, and
Tamarix datasets. The bold values in the table represent the best
classification results for this category. Our conclusions are as
follows.

The classification accuracy of algorithms based on deep learn-
ing is commonly better than that of classical machine learning
algorithms. For instance, on the Houston dataset, even the worst
performing CDCNN in deep learning methods has a 6.58%
higher OA than SVM methods. This is because deep learning
algorithms have more powerful feature extraction capabilities,
which attempt to directly obtain high-level features from data.

Our proposed algorithm performs better than other methods
based on deep learning. For the Houston, Trento, MUUFL, and
Tamarix datasets, we have achieved OA of 99.09%, 99.01%,
92.86%, and 96.70% OA, respectively. Similarly, AA and Kappa
metrics are also higher than other algorithms. Taking the Hous-
ton dataset as an example, OA is 5.29%, 3.17%, 2.61%, 2.72%,
2.40%, and 2.51% higher than CDCNN, 3D-CNN, two-branch
CNN, CoupleNet, FusAtNet, and MorphNet, respectively. The
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TABLE V
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON HOUSTON DATASET

Kappa Accuracy (%)

£ 8

Training Size (%)

(d

Kappa (k) Accuracy achieved by different methods with varying training sample sizes which are randomly taken from (a) Houston (b) Trento (c) MUUFL,

Class SVM  CDCNN  3D-CNN  Two-branch CNN  CoupleNet = FusAtNet  MorphNet  Proposed
1 92.81 98.67 97.96 96.98 96.98 96.00 97.42 97.78
2 98.67 98.85 98.94 98.49 98.67 99.11 99.29 99.91
3 99.20 98.72 99.84 100.00 100.00 100.00 100.00 100.00
4 98.84 95.09 99.02 99.91 96.88 99.11 99.91 99.64
5 98.48 99.19 99.64 99.82 99.55 99.46 99.82 99.82
6 84.25 88.01 81.51 85.96 94.52 81.51 84.93 98.29
7 86.50 94.30 96.23 99.04 96.84 98.69 99.39 99.12
8 78.48 92.95 95.98 96.61 98.39 98.39 98.04 99.55
9 80.04 83.67 93.52 89.71 91.57 95.65 91.84 97.69
10 82.97 93.84 97.10 96.65 92.75 98.64 95.74 99.64
11 82.19 88.94 95.86 97.30 95.86 97.66 95.86 99.28
12 76.31 96.58 96.85 97.39 95.86 96.04 96.76 97.93
13 35.31 69.67 69.19 80.33 94.08 76.54 78.44 97.63
14 97.92 95.32 99.22 98.70 97.14 91.69 98.18 100.00
15 99.66 100.00 98.82 99.16 99.83 100.00 99.16 100.00
OA 87.22 93.80 96.16 96.68 96.58 96.87 96.77 99.09
AA 86.11 92.92 94.65 95.74 96.60 95.23 95.65 99.09
Kappa  86.16 93.30 95.85 96.41 96.30 96.62 96.51 99.02

The bold values denote the best results.
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TABLE VI
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON TRENTO DATASET

Class SVM  CDCNN  3D-CNN  Two-branch CNN  CoupleNet  FusAtNet — MorphNet  Proposed
1 78.35 96.33 98.50 96.00 97.62 97.65 97.62 98.19
2 95.22 92.79 92.92 97.78 95.99 97.89 95.92 97.81
3 94.88 77.61 73.08 82.69 85.14 87.63 86.19 88.46
4 99.83 99.99 99.99 100.00 100.00 100.00 100.00 100.00
5 91.06 99.77 99.96 99.92 99.92 99.84 99.87 99.97
6 92.61 90.94 90.37 97.12 95.02 96.30 92.20 97.15
OA 92.63 97.43 97.56 98.59 98.45 98.84 98.15 99.01
AA 91.99 92.90 92.47 95.59 95.62 96.55 95.30 96.93
Kappa  90.17 96.56 96.76 98.12 97.94 98.46 97.54 98.69
The bold values denote the best results.
TABLE VII
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON MUUFL GULFPORT
Class SVM  CDCNN  3D-CNN  Two-branch CNN  CoupleNet  FusAtNet MorphNet  Proposed
1 95.84 97.22 97.73 97.38 96.76 97.74 97.72 98.22
2 74.95 74.01 76.23 73.62 81.83 75.81 78.38 82.99
3 81.17 80.50 85.41 83.88 79.72 87.78 84.80 86.34
4 85.36 86.51 84.84 89.97 93.89 86.40 89.45 92.05
5 93.40 91.36 94.30 93.70 94.03 93.88 95.09 94.25
6 85.33 85.33 85.55 97.52 90.52 89.39 94.58 97.07
7 75.01 90.33 86.19 84.02 93.64 86.80 87.93 87.74
8 93.29 96.32 96.69 95.12 96.61 96.54 96.79 97.37
9 38.53 49.24 57.60 55.85 49.24 46.20 56.99 58.81
10 25.86 13.22 13.22 17.82 17.82 8.62 14.94 13.22
11 87.06 40.39 29.02 63.53 77.25 73.73 60.00 82.75
OA 88.62 89.83 91.20 90.72 91.16 91.43 91.85 92.86
AA 75.98 73.13 73.34 77.49 79.21 76.63 77.88 80.98
Kappa  84.93 86.53 88.31 87.68 88.30 88.60 89.17 90.51
The bold values denote the best results.
TABLE VIII
CLASSIFICATION RESULT OBTAINED BY DIFFERENT METHODS ON TAMARIX DATASET
Class SVM  CDCNN  3D-CNN  Two-branch CNN  CoupleNet  FusAtNet — MorphNet  Proposed
1 97.09 97.08 97.13 96.24 98.31 97.24 98.24 97.96
2 82.31 91.30 86.87 90.44 95.15 91.94 92.72 95.73
3 98.97 98.64 97.63 99.81 99.39 98.79 99.06 99.42
4 37.56 86.14 82.28 86.91 84.34 93.01 92.19 88.76
5 84.52 82.10 87.64 92.15 86.01 92.53 91.17 94.35
6 99.03 83.08 79.23 96.92 99.33 98.37 97.40 97.12
OA 88.73 93.46 93.35 95.25 95.08 96.16 96.37 96.70
AA 83.25 89.72 88.46 93.75 93.75 95.31 95.13 95.56
Kappa 84.41 91.05 90.89 93.50 93.24 94.77 95.04 95.49

The bold values denote the best results.

data fusion method adopted by the CDCNN method and the
3D-CNN method is quite simple, just overlaying HSI and Li-
DAR data and feeding them into the network, which ignores
the differences between multimodal data, and the efficiency of
information fusion is not satisfactory. In the two-branch CNN
method, only simple convolutions are used to extract features
from the HSI and LiDAR, respectively, which lacks a more
powerful feature extraction method; CoupleNet fuses data at
both the feature level and the decision level, but lacks targeted
fusion methods; FusAtNet applies cross attention to multimodal
remote sensing classification for the first time, but the model has
multitudinous parameters and a long running time; MorphNet
applies the dilation and erosion operations in morphology to
multimodal remote sensing classification, but the extraction
of spectral features is too simple and requires more effective

spectral feature extraction methods. Compared with other meth-
ods, our network has been improved accordingly. On the one
hand, our model combines dilation and erosion operations in
morphology with convolution to extract spatial and elevation
information more effectively; on the other hand, our model
enhances features through a self-attention mechanism, and op-
timizes the HSI using LiDAR’s elevation information through
cross attention. In addition, we also consider the correlation and
difference between features and adopt targeted fusion strategies.

Finally, in order to display the experimental results more in-
tuitively, we use different colors to label different ground types.
Figs. 9-12 show the classification results of various algorithms
on four datasets. It is evident that our proposed method is closer
to the corresponding ground truth and shows fewer error marks
than other algorithms.
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(a) (b) () (d

Fig.9. Houston data visualization and classification maps obtained by different models. (a) False-color image for the HSI over bands 60, 27, and 11, respectively.
(b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) CDCNN. (f) 3D-CNN. (g) Two-branch CNN. (h) CoupleNet. (i) FusAtNet. (j) MorphNet.
(k) Proposed method.

(c) (d) ® )

Fig. 10.  Trento data visualization and classification maps obtained by different models. (a) False-color image for the HSI over bands 60, 27, and 11, respectively.
(b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) CDCNN. (f) 3D-CNN. (g) Two-branch CNN. (h) CoupleNet. (i) FusAtNet. (j) MorphNet.
(k) Proposed method.

D. Ablation Study TABLE IX
ABLATION EXPERIMENTS ABOUT DIFFERENT MODULE ON
Finally, we conducted ablation experiments to verify the role DIFFERENT DATASETS
of each module in the network. The ablation experiment is
divided into two parts. The first part removes MorFEB, SpeCB, Mo FEB SpeCB PAM OA (%)
and PAM modules from the network one by one, and observes Houston Trento MUUFL  Tamarix
the changes in classification results after removing each module. 98.19  98.10  90.25 94.25
The second part verifies the impact of different fusion strategies v 98.44 98.33 90.85 95.13
on the results. We conducted ablation experiments on all four v 98.40 98.23 20.92 94.98
) . . v 98.36 98.27 90.70 94.70
datasets, and recorded the OA of the experimental results in v v 08.64 08.57 92.04 96.08
Tables IX and X. v v 98.80 9870  91.37 95.97
. T v v 98.59 98.58 91.14 95.68
To demonstrate the powerful feature extraction capabilities v v v 99.09 99.01 92.86 96.70

of dilation and erosion, we replace the MorFEB with traditional

. . . The bold values denote the best results.
convolution. The comparison result in Table IX shows that the
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(&) (h) ® ) (k)
Fig. 11. MUUFL data visualization and classification maps obtained by different models. (a) False-color image for the HSI over bands 60, 27, and 11, respectively.

(b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) CDCNN. (f) 3D-CNN. (g) Two-branch CNN. (h) CoupleNet. (i) FusAtNet. (j) MorphNet.
(k) Proposed method.

Fig.12. Tamarix data visualization and classification maps obtained by different models. (a) False-color image for the HSI over bands 100, 60, and 40, respectively.
(b) Grayscale image for LiDAR data. (c) Ground truth. (d) SVM. (e) CDCNN. (f) 3D-CNN. (g) Two-branch CNN. (h) CoupleNet. (i) FusAtNet. (j) MorphNet.
(k) Proposed method.



LI et al.. MORPHOLOGICAL CONVOLUTION AND ATTENTION CALIBRATION NETWORK

TABLE X
ABLATION EXPERIMENTS ABOUT DIFFERENT FUSION STRATEGIES ON
DIFFERENT DATASETS

Spaand Ele  Spa-Ele and Spe 0A (%)
Houston  Trento MUUFL  Tamarix
Concatenate Concatenate 98.79 98.47 91.65 95.54
AFF AFF 98.21 97.53 90.06 94.83
Concatenate AFF 97.86 98.13 90.48 95.08
AFF Concatenate 99.09 99.01 92.86 96.70

The bold values denote the best results.

classification accuracy of the network after removing MorFEB
is lower than before, which proves the effectiveness of the
MorFEB.

The SpeCB in the network can improve the resolution of the
central pixel. We deleted SpeCB from the network to test the
effectiveness of SpeCB. Through comparative experiments, we
find a slight decrease in classification accuracy after removing
SpeCB, which confirms the effectiveness of SpeCB.

To verify the effectiveness of the PAM module in the network,
we directly remove the PAM from the network, and no longer
optimize the spatial features and elevation features. Based on
the results in Table IX, we can conclude that using the PAM can
increase the information interaction between multimodal data
and obtain better classification results.

In addition, we sequentially use concatenation and AFF at
different feature fusion sites (which may require changing some
parameters) to evaluate the effectiveness of AFF. The experi-
mental results in Table X indicate that using appropriate fusion
strategies can achieve the expected results, and also confirm that
attention feature fusion can more effectively fuse multimodal
features.

IV. CONCLUSION

In this article, a network for joint classification of the HSI
and LiDAR is proposed. This network applies morphological
dilation and erosion operations, which capture more boundary
shape information of arbitrary objects in complex regions and
extract differentiated spatial information. Second, the PAM is
used to correct spatial features. Specifically, we use a position
weight map obtained from LiDAR to optimize the spatial fea-
tures of the HSI; the SpeCB is used to extract the channel weight
of the center pixel to calibrate the spectral features. In addition,
we introduce the adaptive feature fusion module, AFF, which
considers the problem of inconsistent feature semantics and
different scales and does not increase the feature dimension. In
addition to the three common multimodal datasets, we also com-
pared the algorithm proposed in this article with other advanced
methods on a self-made multimodal dataset, and the results
show that our algorithm is relatively preferable. In fact, our
algorithm relies on the accuracy of labeled samples, and accurate
labeling of samples requires a lot of time. In future work, we
will consider working towards semisupervised or unsupervised
directions.
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