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A Semisupervised Arbitrary-Oriented SAR Ship
Detection Network Based on Interference
Consistency Learning and Pseudolabel Calibration

Yue Zhou ¥, Xue Jiang

Abstract—The rapid development of deep learning cannot be
achieved without the support of abundant labeled data. However,
obtaining such a large amount of annotated data needs the support
of professionals in the field of synthetic aperture radar (SAR) image
understanding, which leads to the scarcity of SAR datasets with an-
notations. The scarcity of annotations poses a bottleneck in the per-
formance of SAR ship detectors based on deep learning. Recently,
semisupervised learning has become a hot paradigm, which can
mine effective information from unlabeled data to further improve
the performance of SAR ship detectors. However, existing semisu-
pervised SAR ship detection studies all adopted multistage semisu-
pervised frameworks, which are complex and inefficient. In this
article, we first design an end-to-end semisupervised framework for
SAR ship detection. To overcome the strong interferences resulting
from the imaging or quantization processes in SAR, we introduce
the interference consistency learning mechanism to enhance the
model’s robustness. To solve the complex background in the inshore
scenario, a pseudolabel calibration network is designed to calibrate
the pseudolabel according to the context knowledge around the
ships. Based on the high-resolution SAR images dataset (HRSID)
and the other four datasets, the superiority of the proposed ap-
proach over several state-of-the-art semisupervised frameworks
has been evaluated under various labeling ratios, i.e., 1%,5%, 10 %,
and 100%.

Index Terms—Arbitrary-oriented synthetic aperture radar
(SAR) HRSID, ship detection, semisupervision.

1. INTRODUCTION

YNTHETIC aperture radar (SAR) [1] ship detection plays
S a pivotal role in interpreting SAR images, which has been
widely applied in maritime traffic safety and battlefield recon-
naissance. Traditional SAR ship detectors can be divided into
the following four categories:
1) threshold-based approaches [2], [3];
2) saliency-based approaches [4], [5];
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3) hand-crafted feature-based approaches [6], [7];

4) statistical modeling-based approaches [8], [9].

With the emergence of deep learning, convolutional neural
networks (CNNs) [10] and graph convolutional networks [11]
have been applied in remote sensing and have shown great
advantages against handcrafted features. These deep learning
detectors outperformed the traditional methods in SAR ship
detection tasks [12], [13], [14], [15]. However, these are horizon-
tal bounding box (HBB) based detectors. Ships have arbitrary
orientations and elongated shapes. HBB is not an effective
representation of ships, particularly when ships are densely
arranged near the wharf. To solve this problem, the oriented
bounding box (OBB) is used to locate the target in remote
sensing image (RSI) [16],[17],[18],[19],[20], [21]. At the same
time, more and more high-resolution SAR datasets with OBB
annotations have emerged [22], [23], [24], [25], which has led to
significant progress in deep learning based SAR ship detectors.
Cui et al. [26] and Su et al. [27] adapt the novel attention mecha-
nism and deformable convolution to enhance the model’s ability
to extract key information from complex backgrounds. He et
al. [28] designed a polar encoding to solve the problem of angle
discontinuity in oriented SAT ship detection. Zhou et al. [29]
attempts to replace CNN with transformer to introduce the global
attention mechanism, which can further improve the detection
performance of SAR ships in complex scenarios.

The above-mentioned models that must be trained with la-
beled data belong to supervised learning (SL). The dependence
on the labeled data becomes the bottleneck of the existing CNN-
based SAR ship detectors in real applications. On one hand, the
data labeling of SAR is difficult. It can only be done with the
support of professionals with the corresponding backgrounds.
Researchers have attempted to use optical, infrared, and other
sensor data to assist in improving the performance of models on
SAR images [30], [31]. However, this requires paired annotated
data, which is difficult to meet in some practical applications.
On the other hand, massive SAR images are produced every day.
These unlabeled data account for a much larger proportion than
labeled data. Without labeling the targets in time, these massive
SAR images cannot be used effectively. If considering the prac-
tical applications of the SAR ship detection tasks, the unlabeled
data containing useful information cannot be neglected.

Recently, semisupervised learning (SSL) has become a hot
paradigm, which can mine effective information from unlabeled
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Fig. 1. Compared with SL, which only uses labeled data, SSL uses unlabeled
and labeled data to train the network jointly. Since the high labeling cost and
the existence of a massive number of unlabeled images, SSL is very suitable for
SAR images.

data to further improve performance. Fig. 1 shows the difference
between SL and SSL. Compared with SL, the training process
of SSL involves unlabeled data, which means that the SSL
paradigm has potential application value in some actual scenar-
ios where massive unlabeled SAR image data can be obtained.
Wang et al. [34] directly tried to apply the SSL based image
classification to a SAR ship detection task. Chen et al. [35]
designed a cross-domain coattention feature correlation module
that addresses the domain adaptation problem. Hou et al. [36]
designed an adversarial network to make the local features of
the SAR ship in the unlabeled images closer to those in the
marked images. However, existing SSL applications [32], [33]
in SAR ship detection all adopt the multistage framework, which
limits the training efficiency and performance. On one hand,
the training process of the multistage framework is complex.
As shown in Fig. 2, it includes three stages. It needs to train
the teacher model first and then train the student model, so
the training time is much longer than SL. On the other hand,
the performance of the detector will be limited by the initial
pseudolabels. Once pseudolabels of multistage frameworks are
generated, they will not change throughout the entire training
process. The errors in the initial pseudolabels will mislead the
student model’s learning.

Unlike the multistage methods, [37] introduced an end-to-end
training strategy into an SSL, which has one training stage.
During each iteration, the teacher model’s parameters are
updated by the student model’s exponential moving average
(EMA). As the pseudolabels of the end-to-end framework update
dynamically, the quality of the generated pseudolabels will be
improved gradually. However, various interferences may be
introduced in SAR imaging and quantization, e.g., speckle noise
and scattering interference [38]. Once the ship in the unlabeled
image has been contaminated, it is difficult to detect it. The
number of pseudolabels will be significantly reduced, and the
potential information in unlabeled data cannot be fully mined.
The quality of pseudolabels will also decrease, which may
mislead the model’s learning. These interferences are unique to
SAR images and have not been discussed in previous end-to-end
semisupervised frameworks. Moreover, SAR ships in inshore
scenes are subject to serious background interference, which can
impact the accuracy of pseudolabels and lead to false alarms,
such as wharf buildings with shapes similar to ships. To solve
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these issues, we propose an end-to-end semisupervised network
for arbitrary-oriented SAR ship detection based on interference
consistency learning (ICL) and pseudolabel calibration network
(PLC). ICL enhances the model’s robustness to different
interferences in SAR images, thereby improving the quality
of pseudolabels in interference scenarios. PLC is designed to
calibrate the pseudolabel according to the context knowledge
surrounding ships. It can alleviate the error caused by inaccurate
pseudolabels in inshore scenarios, further improving detection
accuracy. Previous SAR ship semisupervised work has not
attempted to use contextual information to improve the quality
of pseudolabels in inshore scenarios.

The main contributions of this work are summarized as fol-
lows.

1) We propose the first end-to-end semisupervised frame-
work for SAR ship detection, which is more efficient than
existing multistage semisupervised frameworks.

2) The ICL is introduced to enhance the model’s robustness
under strong interferences resulting from the imaging or
quantization processes in SAR.

3) The PLC is introduced to calibrate the incorrect pseudola-
bel introduced by complex inshore backgrounds.

4) The experimental outcomes across high-resolution SAR
images dataset (HRSID) and four other datasets demon-
strate that our proposed approach outperforms several
prevalent frameworks.

The rest of this article is organized as follows. The related
works are introduced in Section II. In Section III, the SAR-
Teacher is introduced, whose experimental results compared
with other state-of-the-art methods are given in Section IV.
Finally, Section V concludes this article.

Notations: Throughout the article, matrixes, vectors, and
scalars are represented by bold uppercase letters X, bold low-
ercase letters a, and regular letters x, respectively. The primary
notations used in this article are listed as follows.

Symbol Definition
Ls The supervised loss
Lo The unsupervised loss
Ls The classification loss
Lioc The location loss

Ly The supervised loss of PLC
X An unlabeled SAR image
B The set of rotated box (z,y,w, h,0)

N; The number of proposals from labeled image

Ny, The number of proposals from unlabeled image

o(+) The teacher model

w() The student model

S(+) The operation to subject simulated interference on SAR image
F() The confidence threshold filter

o The interference consistency coefficient
The intersection over union between two rotated boxes

II. METHODOLOGY
A. Multistage Versus End-to-End Frameworks

This section compares the mainstream paradigms of mul-
tistage and end-to-end semisupervised frameworks for object
detection, which are shown in Fig. 2.
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Fig. 2.

The multistage semisupervised object detection framework
consists of the following three stages [37]:
1) Instage I, the teacher detector utilizes the labeled data for
supervised training, whose loss is defined as follows:

1

- N Z Les (B ti) + i Z Lioc (i, vij)

i=1 jeB

Ly

1
where j belongs to the set of (x,y,w, h,0). The center
coordinates, width, height, and angle of a rotated bounding
box are represented by z, y, w, h, and 6, respectively. N,
represents the number of proposals from labeled images. ¢;
is a binary value (¢; = 1 for ship, ¢; = 0 for background),
t; denote the predicted probability value of ship class. v; j
and ©,; represent the ground truth and the predicted value
of the ith rotated bounding box offsets. The location and
classification loss are defined as follows:

Ecls = —t;- log (ﬂ) - (1 - ti) . log (1 - 2?1) (2)

~ 2
,C]OC _ {05 (Uij — Uij)

Vi — 05| <1
| J ]| (3)

|0i; — vij| — 0.5 otherwise.

2) In stage II, there is no training process. The teacher de-
tector uses the model weights obtained in stage I to infer
unlabeled images and generate pseudolabels. Usually, a
detection score threshold is manually set here to ensure the
pseudolabel’s high quality. For multistage semisupervised
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Comparision of multi-tage and end-to-end semisupervised framework for object detection.

frameworks, once the pseudolabels are generated, they no
longer change.

3) In stage III, the unlabeled images, with pseudolabels, and
the labeled images, with grounded truth, work together in
training the student model. The overall loss of stage III
can be formulated as

L=Ls+ L, 4)

where L, represents the supervised loss of labeled images,
which is the same as stage I given in (1). £, represents
the unsupervised loss of the unlabeled images, which is

defined as
1
Lu= Lot (B, 1) + 1 Y Lioc (1798, )
U jeB

&)
where NN, represents the number of proposals from unla-
beled images. The superscript p indicates that the variable
is a pseudolabel. The aim of most semisupervised frame-
works is to design the unsupervised loss £,,. However, the
multistage semisupervised framework includes multiple
training stages, and the training process is redundant and
inefficient.

End-to-end frameworks have the same overall loss as the stage
III of multistage frameworks, but the main difference lies in the
joint optimization of student and teacher models [37]. Fig. 2
illustrates that the training process for end-to-end frameworks
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Fig. 3. Overall architectures of the proposed semisupervised framework.

involves a single stage. In each iteration, the training data batch
consists of the following two parts: 1) labeled and 2) unlabeled
images half and half. The student model is then trained using
both the labeled and unlabeled images. Upon completion of each
iteration, the teacher model is updated through the EMA of the
student model. This joint optimization strategy has the potential
to improve the pseudolabel’s quality dynamically, which is
significant for SSL.

To our best knowledge, there are no existing works designing
SAR ship detectors based on the end-to-end semisupervised
framework for SAR ship detection. Due to the scattering inter-
ference and speckle noise in SAR images, the credibility of pseu-
dolabels will be reduced. Incorrect pseudolabels will mislead the
student model, damaging the ship detection performance. Thus,
directly applying the end-to-end semisupervised frameworks
designed for optical images cannot provide satisfactory results.
We demonstrate the proposed end-to-end semisupervised frame-
work for arbitrary-oriented SAR ship detection. The core is to
improve the pseudolabel’s quality for the application in SAR,
including interference consistency learning and pseudolabel
calibration, which is shown in Fig. 3.

B. Interference Consistency Learning

Previous SAR ship semisupervised work did not discuss the
impact of various interference in SAR images on pseudolabels.
However, in practical applications, these interferences cannot be
ignored. They will increase the feature differences between the
targets, leading to the model being prone to missing interfered
targets. To suppress various interferences introduced in the imag-
ing or quantization process of SAR images, we introduce inter-
ference consistency learning. First, we construct the interference
consistency constraint by conducting interference simulations
on SAR images. Then, we gauge the model’s confidence about
the pseudolabels by the interference consistency coefficient. We
will introduce these two parts one by one.

Pseudo Label
Calibration
Network

Y

Refined
Pseudo —>(X, y,w, h, 9, )
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1
1
v
Confidence Threshold Filter ‘ F
/ : o
1
1
1
1
1

i P(8(X);0)F (o (X;7))

Interference Consistency Constraint

1) Interference Consistency Constraint: The end-to-end
semisupervised framework of this article adopts the teacher—
student paradigm. We first feed the original unlabeled SAR
images into the teacher model to generate pseudolabels. Then
feed the same SAR image after simulated interference into the
student model. Since the simulated interference does not change
the position of the target, the pseudolabels generated by the
teacher model can be directly used to provide supervision in-
formation for the student model. In this way, the framework can
use unlabeled SAR images to construct interference consistency
constraints.

For convenience, we mark the teacher model as ¢ and the
student model as ¢. Given an image X, the teacher model output
the results as follows:

¢(X;7) = {Va}i, (6)

where 7 represents the trainable parameters of the teacher model.
D denotes the number of detection results. v, represents the dth
predicted rotated bounding box vector. After passing through
the filter F' (e.g., a fixed confidence threshold), v; will become
the pseudolabel v/}"“. Then, we implement the simulation inter-
ference on the same image to obtain the S(X), and construct a
constraint as follows:

p(5(X);9) F(o(X;7)) ©)

where § represents the trainable parameters of the student model.
S(+) represents the operation to subject simulated interference on
unlabeled SAR images, which are composed of seven different
interference simulations as shown in Fig. 4:

1) speckle noise;

2) solarization;

3) sharpness;

4) posterization;

5) equalization;

6) contrast;

supervision
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Fig. 4. Interference simulations of SAR images.

7) brightness.

We train the student model under the simulation interference
S(X) to promote the student to learn the consistency of SAR im-
age interference. This consistency knowledge will be transmitted
to the teacher model as it is updated, thereby improving the
quality of pseudolabels in unlabeled SAR images with speckle
noise or scattering interference.

2) Interference Consistency Coefficient: In the previous
methods, unsupervised loss treats all pseudolabels equally. How-
ever, there is a possibility of errors in pseudolabels. We need
to pay more attention to reliable pseudolabels. Therefore, we
introduce an interference consistency coefficient o to measure
the credibility of pseudolabels under severe interference, which
ranges from O to 1. Each pseudolabel has a corresponding in-
terference consistency coefficient. The larger the coefficient, the
more confident the teacher model is in the current pseudolabel.
On the contrary, smaller coefficients indicate a higher probability
of the pseudolabel being incorrect.

Deep learning-based detectors allocate multiple proposals for
each ground truth box. If the location of a target is uncertain,
the model may generate multiple scattered proposals near the
ground truth box. Conversely, if the model is certain about the
location of a target, the generated proposals will be concentrated
around the ground truth box. We aim to gauge the model’s
confidence about the pseudolabels by the proposals as follows:

ZzN:pl ToUjg

ok = == ®)

p

where ¢ € [0,1). N, denotes the number of positive samples
assigned to the kth pseudolabel. IoUy; denotes the rotated IoU
between the 4th positive sample and the kth pseudolabel. IoU
is defined as the overlap area divided by the union area of two
rotated boxes.

Next, o is used to weight the unsupervised loss of the un-
labeled images L£,. The larger the o, the greater the £,,, and
vice versa. Thus, the o can reduce the attention of the model to
uncertain pseudolabels, and put more attention on pseudolabels
with higher reliability.

C. Pseudolabel Calibration Network

Another challenge in SAR ship detection is the presence of
numerous small ships overwhelmed by complex surrounding
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backgrounds in inshore scenes. The complex background can
blur targets’ boundaries, leading to inaccurate positioning and
reducing pseudolabel’s quality, hampering the student model’s
performance. It has been proven that exploiting the context
knowledge around small objects is beneficial to locate their
bounding box accurately [46]. However, previous SAR ship
semisupervised works did not attempt to use contextual informa-
tion to improve the quality of pseudolabels in inshore scenarios.
Motivated by this idea, we have designed a pseudolabel calibra-
tion network, which can calibrate the pseudolabels based on the
context knowledge around the ship and improve the quality of
the pseudolabel.

The structure of the pseudolabel calibration network is shown
in Fig. 5. First, we enlarge each proposal with factors {2,4},
and get two additional proposals. Second, we feed these three
proposals into the rotated region of interest (Rol) Align op-
erator [45] to obtain multiple contextual features, which con-
tain information from the target and surrounding background.
Then, we concatenate the three features and feed them into a
lightweight information fusion module. This module consists
of a convolutional layer and three fully connected layers. By
calculation, the computational complexity of the lightweight
information fusion module is 20.875 GFlops. Finally, we can
obtain the pseudolabels after calibration.

We use the labeled SAR images to train the PLC network in
a supervised method. The PLC loss £,, can be formulated as

£, =~ > (1-10U7) ©)

where IoU; denotes the rotated IoU between the ¢th positive
sample and the ground truth assigned to it. It should be noted
that PLC loss only applies to the training of labeled images.
Then, we update its weight in the student model to the teacher
model for calibrating pseudolabels.

PLC can appropriately mitigate the deviation between the
pseudo labels and the ground truth and improve the quality
of pseudolabels. It is worth mentioning that PLC is only used
during training phase and can be removed during testing phase.
Therefore, PLC does not increase the computational complexity
and inference speed of the testing phase.
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Fig. 6.

Example of an HRSID dataset.

D. Loss Function

Finally, the loss of the proposed end-to-end framework can
be formulated as

L= Lo+ Lo+Ly

N;
1 N
N > | Lais (Fists) +t: D> Lioe (045, vi5)
i=1 jeB

Ny,
1 )
Ni Z ok | Las tlw +pk Z Lioe ( Ukj Uzj)

U =1 jeB

>~

N;

1
— 1 —IoU?
—I—Nl;( ol)

where 0¥ denotes interference consistency coefficient of the kth
pseudolabel, which reduces the possibility of student models
being misled by incorrect pseudolabels. S(0y;) are the predicted
offsets of the ¢th rotated bounding box of simulated interference
SAR images. Since the proposed simulated interferences are
invariant to the box coordinates, the operation S does not need
to apply on the vy .

The proposed end-to-end framework uses the EMA strategy
to update the teacher model after each iteration. This joint
optimization strategy can dynamically improve pseudolabel’s
quality.

(10)

III. EXPERIMENT AND ANALYSIS
A. Dataset Description and Implementation Details

Experiments are performed on the HRSID [23], which is a
ship detection dataset from high-resolution SAR images with
massive ship samples. As can be seen from Fig. 6, it includes
both offshore scenes with clean backgrounds and inshore scenes
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with complex backgrounds. It also has various scattering inter-
ferences and speckle noise. In addition, the other four SAR ship
datasets are also used as unlabeled in the extended experiments.
It contains three OBB datasets [22], [24], [25] and one HBB
dataset [44]. It should be noted that we did not use the annotation
of these four datasets during the whole experiment. The detailed
information of these open-source SAR ship datasets is shown in
Table I.

Our algorithm implementation and hyper-parameters settings
are based on a unified rotated object detection tool-box (MMRo-
tate) [45]. For all datasets, the image shape for network input is
800 x 800 pixels. Our experiments were conducted on a CentOS
7.3 system with an RTX 3090Ti graphics processing unit (GPU).
The variance of speckle noise is set to 1. We referred to the
[33] and used the following two experimental settings in this
article: 1) partially labeled data and 2) fully labeled data. We will
introduce the setting details of them below, which has significant
differences.

In the partially labeled data setup, we randomly sample 1%,
2%, 5%, and 10% images from the HRSID training set as labeled
training data, and the images that are not selected are considered
as the unlabeled data. The overall number of HRSID training set
images is 3623, which means that 1% of the training set has only
36images. Therefore, this experimental setup can verify the few-
shot learning ability of the model. To guarantee the experiment’s
rigor, we randomly choose five different data folds for each data
proportion, and the final performance is calculated as the mean
of the five folds. The training process involves running each
model for 6 k iterations on one GPU with stochastic gradient
descent (SGD) as the optimizer training. The learning rate equals
to 0.0025 and decreased by a factor of 10 after 4 k and 5.5 k
iterations. Each batch comprises of four images, which includes
two labeled and two unlabeled samples. Moreover, weight decay
and momentum are set at 0.0001 and 0.9, respectively, for all
models.

In the fully labeled data setup, the fully HRSID training set
is utilized as labeled data, and supplement it with unlabeled
data from other SAR ship datasets. The goal is to verify the
performance of semisupervised models on large-scale unlabeled
samples. It is more consistent with real-world application sce-
narios and more challenging. Each model is trained for 65 k
iterations on one GPU. The learning rate equals to 0.0025 and
decreased by a factor of 10 after 43 k and 60 k iterations.

B. Evaluation Metrics

We use average precision (AP) to quantitatively evaluate the
detection performance and the latency per image to evaluate
inference speed

Ny
pP=_"r (11)
Npred
Ny
R=—", (12)
Ntargets
1
AP = / P(R)dR (13)
0
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TABLE I
DETAILED INFORMATION OF THE OPEN-SOURCE SAR SHIP DATASETS USED IN THIS ARTICLE

Dataset Year  Sources Resolution(m) Image Size # of Images  # of Ships  Classes  Annotations
RadarSat-2
SSDD 2017  TerraSAR-X 1~15 214~668 1160 2540 1 OBB
Sentinel-1
Sentinel-1
HRSID 2020 TerraSAR-X 0.5,1,3 800 5604 16951 1 OBB
LS-SSDD-v1.0 2021 GF-3 5 x 20 24000 x 16000 15 6016 1 HBB
SRSDD-v1.0 2021  GF-3 1 1024 666 2884 6 OBB
RSDD-SAR 2022 éeFr_“;‘SAR'X 220 512 7000 10263 1 OBB
TABLE II TABLE IV

DEFINITION OF THE METRICS USED IN THE EXPERIMENTS

Definition
Time cost of model training.
Hard disk space occupied by the model
training weight file.
Hard disk space occupied by the model
inference weight file.
GPU memory space occupied by the
model during training.
GPU memory space occupied by the
model during inference.
Time cost for each iteration of a data
batch during the training process.
Number of SAR images detected by the
model per second.

Metric
Training time (s) [13]
Training weight (MB) [14]

Testing weight (MB) [14]

Training memory (GB) [14]

Testing memory (GB) [14]
Iteration time (s) [13]

FPS (Images/s) [13]

TABLE III
COMPARISON OF MULTISTAGE END-TO-END FRAMEWORKS ON HRSID (1%
PARTIALLY LABELED DATA)

Method APso | Training time
Supervised (RetinaNet-OBB) 32.5 0:23:26
Multi stage (RetinaNet-OBB) 32.7 0:52:23

E2E (RetinaNet-OBB) 35.5 0:28:39
Supervised (ORCNN) 54.3 0:40:27
Multi stage (ORCNN) 53.4 2:23:56

E2E (ORCNN) 59.9 1:10:09

The bold items denote the optimal values for RetinaNet-OBB
and ORCNN.

where Npeq represents the total number of predicted boxes, Ny,
is the number of targets correctly detected, Ny ger denotes the
actual number of targets, P(R) is precision-recall curve, and
AP is mean AP.

To measure the efficiency performance of different models
more comprehensively, we also adopt seven evaluation metrics
in Table II.

C. Experiments and Analysis

1) Effect of End-to-End: We compare the end-2-end method
with the multistage framework on 1% partially labeled HRISD as
shown in Table III. When using RetinaNet OBB as the detector,
the performance of the multistage semisupervised framework
is only 0.2 points higher than that of the supervision frame-
work, while the performance of the end-to-end framework is
3.0 points higher than that of the supervision framework. Next,
we replace the detector with the oriented RCNN (ORCNN) and
repeat the above experiment. The E2E method also outperforms
the multistage framework and supervised framework. However,
the performance of ORCNN’s multistage framework is even

ABLATION EXPERIMENT OF VARIOUS INTERFERENCES ON HRSID (1%
PARTIALLY LABELED DATA)

Simulated interference transforms Speckle noise APso
59.9

v 62.5

v 62.2

v v 63.2

The bold items denote the optimal value in the column.

TABLE V
EFFECT OF INTERFERENCE CONSISTENCY LEARNING ON INSHORE AND
OFFSHORE SCENES (PARTIALLY LABELED DATA)

ICL Scene 1% 2% 5% 10%
Inshore 18.1 228 268 293

v Inshore 215 262 296 321
Offshore | 80.9 853 87.6 88.5

v Offshore | 82.5 86.0 874 88.5

The bold items denote the optimal values for inshore
and offshore scenes.

TABLE VI
ABLATION EXPERIMENT OF SAR-TEACHER ON HRSID (PARTIALLY LABELED
DATA)
ICL PLC 1% 2% 5% 10%
59.9 65.0 67.7 71.0
v 61.0 66.4 68.2 71.8
v 63.2 67.2 69.3 72.8
v v 63.9 67.9 69.8 73.5

The bold items denote the optimal value in the columns.

worse than the supervised framework. Meanwhile, the train
time of the end-to-end semisupervised framework is only half
that of the multistage semisupervised framework, significantly
improving training efficiency. Compared with SL, the train-
ing time of end-to-end semisupervised framework increased
slightly. This experiment verifies that the end-to-end scheme
is not only superior to the multistage scheme in performance
but also more versatile for the different detectors. To make
the results of the semisupervised algorithm more competitive,
we use the ORCNN as the baseline detector in our following
experiments.

2) Ablation Experiment: We conducted ablation experi-
ments on different interference combinations, and the experi-
mental results are shown in Table IV. The experimental results
show that the speckle noise can be used with random color trans-
formations for better performance. The quantitative comparison
of ICL is shown in Table V. We can see that the AP5y of ICL
is highest in both offshore and inshore scenes. The AP5, of 1%
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TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS (PARTIALLY LABELED DATA)

Proportion Training Testing

Detector Method
1% 2% 5% 10% | Weight Memory Iteration time | Weight Memory  FPS
RetinaNet [39] Supervised 325 474 543 549 | 140.0 1.94 0.23 140.0 0.14 36.4
FRCNN [40] Supervised 47.1 520 602 693 | 159.1 2.30 0.36 159.1 0.16 8.0
ORCNN [41] Supervised 543 619 646 709 | 159.1 2.30 0.37 159.1 0.16 6.6
LSKNet [42] Supervised 60.7 649 669 68.8 | 119.3 4.22 0.49 119.3 0.12 7.7
ORCNN MeanTeacher [43] | 492 61.0 658 702 | 317.6 4.48 0.87 159.1 0.16 6.7
ORCNN SoftTeacher [37] 548 629 665 70.8 | 317.6 4.21 0.90 159.1 0.16 6.3
LSKNet Ours 67.2 70.7 69.1 70.1 | 3463 9.12 1.08 119.3 0.17 9.6
ORCNN Ours 639 679 698 735 | 425.2 5.36 1.00 159.1 0.21 9.8

The bold items denote the optimal value in the columns.

train set outperforms the baseline by 3.4 points in the inshore
scenario. And ICL finally increases the AP5y of 1% train set
by 1.6 points in offshore scenes. The experimental results show
that ICL shows more vital ability in complex backgrounds. The
ablation experiment of ICL and PLC is shown in Table VI.
The experimental results show that PCL can be used with ICL
to enhance the performance of our semisupervised framework
further.

3) Comparison with Representative Methods: This part
compares SAR-Teacher with several state-of-the-art end-to-end
semisupervised frameworks for object detection. The quanti-
tative comparison between the proposed framework and other
frameworks on the partially labeled data is given in Table VII.
The AP of the proposed framework is the highest in 1%, 2%,
5%, and 10%. We can also find that the two-stage detector, Faster
RCNN (FRCNN) and ORCNN, has better learning ability than
the single-stage detector (RetinaNet) when the train data are less.
MeanTeacher performs poorly when the proportion of labeled
data is low. SoftTeacher’s performance on the SAR dataset is
subpar, which highlights the significant gap between SAR and
general optical images. Therefore, it is essential to devise a
semisupervised framework specifically for SAR images. More-
over, we add the large selective kernel network (LSKNet) [42]
detector to validate the effectiveness of the proposed method.
Compared to ORCNN, LSKNet has a significant improvement
effect when the proportion of labeled data is low, while its im-
provement effect is not as good as ORCNN when the proportion
of labeled data is higher. Therefore, in the fully labeled data
experiments, we chose ORCNN as our basic detector.

Besides AP under different proportions of labeled data, we
also used six metrics to measure the efficiency performance
of different models more comprehensively. Among them, train
memory and iteration time belong to the training phase, while
the other three metrics belong to the inference phase. According
to Table VII, although the proposed semisupervised framework
has higher spatial complexity, its time complexity is similar to
other semisupervised methods.

Although the semisupervised object detection framework
based on the student—teacher architecture has two object de-
tectors during the training phase, only the student detectors
need to be retained during the testing phase. Therefore, we used

two sets of indicators to separately evaluate the computational
complexity and speed of the model during the training and
testing phases. Although our proposed framework will increase
the model complexity of the training process, it will not affect the
model’s inference speed and memory usage during the testing
phase.

We also compare the qualitative results of the proposed
method to those of the supervised baseline under 1% HRSID
train set are shown in Fig. 7. By comparing the yellow and
green ellipses in the figure, it can be found that SAR-Teacher has
detected many targets that are missed in the supervised baseline.

4) Validation on Full Labeled Data: In our previous ex-
periment, a portion of the HRSID training set was employed
as the labeled dataset, while the remaining images acted as
unlabeled data. To verify the performance of this semisuper-
vised framework on the full HRSID dataset, we conducted a
comparative experiment on the other four unlabeled datasets,
which are shown in Table VIII. When SSDD is used as the
unlabeled dataset, the semisupervised framework is 1.4 points
higher than the fully supervised model. The advantages of the
semisupervised framework become more evident as the number
of unlabeled samples increases. When three SAR datasets are
used as unlabeled datasets, the semisupervised framework is
2.5 points higher than the fully supervised model. This shows
that the semisupervised framework proposed in this article has
the ability to mine information from massive unlabeled SAR
images, which can reduce the time spent by researchers on
labeling images.

5) Validate on Data Including Pure Background Images:
The images in the above datasets are obtained after being cut
and filtered by researchers. Each picture slice contains at least
one target, virtually reducing learning difficulty. However, in
the actual application scenario, the obtained images are usually
large-scale SAR images, and we need to split them into slices.
Because we do not have annotations, we cannot filter out slices
without targets. To verify the performance of this semisupervised
framework in real application scenarios, we conducted a com-
parative experiment on whether the unlabeled dataset contains
pure background images. We selected the large-scale SAR ship
detection dataset, LS-SSDD, as the unlabeled samples for the
experiment. We split the original images into 800 * 800 slices
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GT 1% supervised

Fig. 7.

1% SAR-Teacher

Qualitative results of our semisupervised method on HRSID (1% partially labeled data).

TABLE VIII
VALIDATION ON FULLY LABELED DATA

Method Labeled dataset Unlabeled dataset APs5q
Supervised HRSID (100% training set) - 80.7
SAR-Teacher | HRSID (100% training set) SSDD 82.1
SAR-Teacher | HRSID (100% training set) {SSDD, SRSDD} 83.0
Soft-Teacher | HRSID (100% training set) | {SSDD, SRSDD, RSDD} 81.4
SAR-Teacher | HRSID (100% training set) | {SSDD, SRSDD, RSDD} 83.2

The bold items denote the optimal value in the columns.

TABLE IX
COMPARATIVE EXPERIMENT ON WHETHER THE UNLABELED DATASET
CONTAINS PURE BACKGROUND IMAGES

Labeled dataset Unlabeled dataset APs50
HRSID (100% training set) | LS-SSDD (w/o pure background) 81.3
HRSID (100% training set) LS-SSDD 824

The bold items denote the optimal value in the column.

(try to keep consistent with the train set of HRSID). There
are a total of 9000 slices, of which 1859 contain ships. The
experimental results are shown in Table IX. The first experiment
only used 1859 slices with ships, and the second used 9000
slices. The experiment proves that the pure background images
do not weaken the training processing of the semisupervised
framework but improve the detector’s performance by 1.1 points.
Itis exciting because it also means that the semisupervised frame
proposed in this article can be applied to SAR ship detection in
real scenes. Unfortunately, due to the limited number of images

in the open-source SAR ship datasets, it is difficult to further
improve the performance of our semisupervised algorithm.

6) Limitations of SAR-Teacher: We have conducted the full
data experiments on the other four datasets separately, and the
results are shown in Table X. The number of unlabeled samples
does not play a decisive role in the results. Although SRSDD
has the smallest number of images, it significantly improves
the semisupervised model. On the contrary, the RSDD dataset,
which has the largest number of images and ships, brings
limited improvement to the semisupervised model. We believe
that the resolution and image size play a decisive role. Only
when the image of the unlabeled dataset is resized to make
the ship size close to the labeled dataset, can the performance
of the semisupervised framework be maximized. This shows
that SAR-Teacher cannot accurately produce pseudolabels
for unlabeled datasets with large differences in resolution.
Therefore, we recommend that SAR images with the same
resolution be used as unlabeled samples in the actual application
of the SAR-Teacher. However, if there are no unlabeled samples
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TABLE X
ANALYZE THE CHARACTERISTICS OF UNLABELED SAMPLES AND THEIR IMPACT ON THE RESULTS

Dataset Type Sources Resolution(m)  Image Size  # of Images # of Ships | APsg
Sentinel-1
HRSID Labeled TerraSAR-X 0.5,1,3 800 5604 16951 -
RadarSat-2
SSDD Unlabeled | TerraSAR-X 1~15 214~668 1160 2540 82.1
Sentinel-1
SRSDD-v1.0  Unlabeled | GF-3 1 1024 666 2884 82.9
RSDD-SAR  Unlabeled gﬁf;‘SAR'X 220 512 7000 10263 82.4

The bold items denote the optimal value in the column.

TABLE XI
EXPERIMENT SETTINGS OF KNOWLEDGE FORGETTING AND ERROR ACCUMULATION ON HRSID DATASET

Experiment

Labeled training set

Unlabeled training set Testing set

Normal semi supervised
Knowledge forgetting
Error accumulation

1% training set
1% training set
1% training set

99% training set
99% training set
99% training set

All testing set
1% training set
99% training set

of the same resolution, we can also improve the model’s
performance by increasing the number of unlabeled samples.
As shown in Table VIII, more unlabeled samples can also
improve the performance of semisupervised models.

IV. DISCUSSION
A. Knowledge Forgetting and Error Accumulation Issues

As shown in Table XI, the experimental setup in this section
is slightly different from the experimental section above. To
explore the knowledge-forgetting problem of the model, we
replaced the testing set with a 1% training set to see if the
model had forgotten the initial supervised data. To examine the
problem of error accumulation in the model, we replaced the
testing set with 99% of the training set, which can show whether
the performance of the model on unlabeled data will gradually
decrease.

The problem of knowledge forgetting in deep learning
models was first discussed in [47]. When a trained model
on a task is trained on a new task, previous knowledge may
be severely forgotten. To verify whether the semisupervised
object detection framework will suffer from sample forgetting,
we conduct an experiment as shown in Fig. 8. From the
experimental results, both semisupervised frameworks improve
detection accuracy compared to supervised models. For the
multistage semisupervised framework, the introduction of
pseudolabels not only does not cause knowledge forgetting
but also improves the detection accuracy of labeled data. It
indicates that the semisupervised detection framework does not
have the problem of knowledge forgetting.

Error accumulation is another issue that pseudolabels may
cause, which was also first discussed in [47]. The main
manifestation is that as the training progresses, the detection
performance of the model decreases due to being misled by false
labels. For multistage detection frameworks, once pseudolabels
are generated, they are invariant. According to Fig. 9, it can be
seen that both semisupervised frameworks improve detection
accuracy compared to supervised models. For the multistage
semisupervised framework, the number of erroneous labels does
gradually decrease as training progresses. It indicates that the

ORCNN

FRCNN

0.78 0.8 0.92

AP50

End-to-End W Multi-Stage Supervised

Fig. 8. Evaluation knowledge forgetting on 1% labeled data.
semisupervised detection framework does not have the problem
of error accumulation.

V. CONCLUSION

In this article, an end-to-end semisupervised framework,
SAR-Teacher, is proposed for arbitrary-oriented SAR ship de-
tection. It can significantly reduce the detector’s demand for
labeled SAR images, which can break through the bottleneck of
SL SAR ship detection. Specifically, we designed ICL to con-
struct interference consistency constraints, which can prompt
the learning ability of the model for ship detection from SAR
images. Moreover, we propose a PLC network that utilizes
contextual knowledge around the ship to calibrate incorrect
pseudolabels and reduce the negative impact of complex inshore
backgrounds. The superiority of the proposed semisupervised
framework is verified through experiments conducted on only
1% labeled and fully labeled data.

Semisupervised technology is crucial for the intelligent in-
terpretation of synthetic aperture radar ships. In the future, we
will attempt to improve the efficiency of the semisupervised
object detection framework and consider different application
scenarios. On one hand, not all unlabeled images have a learning
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Evaluation error accumulation on 99% unlabeled data.

necessity, such as duplicate or similar images. Therefore, we
can incorporate active learning techniques to select unlabeled
images that are more worthy of learning and improve the training
efficiency of the semisupervised target detection framework. On
the other hand, this article only utilizes rotated box annotations.
In fact, we can also utilize other SAR datasets with annotation
difficulty lower than that of rotated box detection tasks, such as
horizontal box detection tasks and scene classification tasks. The
datasets for these tasks are easier to obtain online. In this way,

the

framework can fully utilize various labeled and unlabeled

data, further expanding its application scenarios.
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