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Adaptive Fusion NestedUNet for Change Detection
Using Optical Remote Sensing Images
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Abstract—Change detection (CD) is a major topic in remote
sensing research. Deep learning (DL)-based CD methods have
made great progress. However, existing CD methods have difficulty
in exploiting the different semantic and detailed information in
deep and shallow features, which often leads to blurred target
boundaries of identified changes. In addition, most CD methods
based on the NestedUNet structure focus on improving accuracy,
ignoring the importance of efficiency. Therefore, in this article, an
adaptive fusion NestedUNet for CD (AFNUNet) is proposed. AF-
NUNet compresses the model parameters and computational cost
by using the encoder based on the inverted bottleneck structure and
the decoder based on the depthwise convolution. The correlation
between the final multilevel feature maps extracted by NestedUNet
is difficult to model by summation or concatenation. Therefore,
an attention mechanism-based adaptive fusion module (AFM) is
proposed. The AFM allows the network to adaptively select feature
information from the final different layers of features extracted
from NestedUNet in both channel and spatial dimensions so that
the fused features capture deep rich semantic information while
retaining detailed information at shallow boundaries. Finally, a
loss function based on the Bray-Curtis distance is introduced for
suppressing the sample imbalance problem. Extensive experiments
on the WHU-CD, LEVIR-CD, and SYSU-CD datasets demonstrate
that AFNUNet surpasses several state-of-the-art (SOTA) CD meth-
ods in terms of effectiveness. Moreover, the proposed AFNUNet re-
markably reduces Params and FLOPs by 63% and 70% compared
to other NestedUNet-based CD models.

Index Terms—Adaptive fusion module (AFM), change detection
(CD), deep learning (DL), remote sensing (RS).

I. INTRODUCTION

CHANGE detection (CD) is an essential and challenging
topic in remote sensing (RS). It aims to identify the differ-

ences in the surface based on bitemporal or multitemporal RS
images. This technique is very crucial in various fields, including
disaster assessment [1], environmental investigation [2], urban
planning [3], [4], forest monitoring [5], and land use dynamics
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detection [6]. Recently, due to the rapid advancements in satellite
RS technology, high-resolution (HR) optical sensors have been
increasingly designed for observing the earth. The increasing
number of HR optical RS images provides strong support for
various RS applications.

In recent decades, plenty of CD methods have been pro-
posed. The traditional CD methods can be categorized into
two types: pixel-based change detection (PBCD) methods and
object-based change detection (OBCD) methods [6]. The PBCD
methods generate difference maps by pixel-by-pixel comparison
of paired bitemporal images [7]. Some PBCD methods have
been proposed, including algebra-based methods for change
vector analysis (CVA) [8], classification-based methods [9],
transformation-based methods for principal component analy-
sis (PCA) [10], multivariate alteration detection (MAD) [11],
iteratively reweighted multivariate alteration detection (IR-
MAD) [12], and machine learning-based methods [13]. Al-
though it is easy to implement the PBCD methods, they ignore
the spatial contextual information, which results in a great deal
of salt-and-pepper noise during processing. To address this
problem, various work has been presented in the literature based
on different approaches, such as Markov random fields [14],
conditional random fields [15], and level sets [16]. However,
the PBCD methods are unsuitable for processing very high-
resolution (VHR) images due to the increased variability within
the image objects. To perform CD in VHR images, a few scholars
have proposed OBCD methods. The OBCD methods first utilize
spectral and texture information for segmenting an image into
disjoint objects and then compare and analyze the bitemporal
objects to obtain the change map [17]. In [18], an OBCD method
that was robust to illumination and noise changes was proposed
by fusing the texture and luminance differences between various
frames. In [19], an OBCD method was proposed to detect abrupt
changes and subtle variations by combining the profile and
texture of objects from a geometric perspective. In [5], an OBCD
method was proposed to identify the changes in the forest land
cover by combining image differencing, image segmentation,
and statistical testing. Although the OBCD methods use the
information of spatial features from HR images, the traditional
manual feature extraction methods are more complex and exhibit
poor robustness.

Due to the ability of deep learning (DL) techniques in learning
the feature information from images effectively, many aca-
demics have introduced the DL in RS images CD [20], [21], [22].
The DL-based CD methods can predict the spatial context and
pixel classification maps from the original images. As a result,
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they break the boundaries between traditional PBCD and OBCD
methods. It is noteworthy that compared to the conventional CD
methods, the DL-based methods do not require preprocessing.
This not only enables them to avoid the errors caused by prepro-
cessing but also assists in reducing the postprocessing workload.

The existing DL-based RS image CD methods are divided
into two main types. The first type is based on the single-branch
structure and the second type is based on the double-branch
structure. Both single- and double-branch structures require the
extraction of features at different scales and a series of processing
of these feature maps for obtaining change maps. However, for
bitemporal RS images, the fusion strategy is different between
the single-branch and double-branch structures. The single-
branch structure fuses the prechanged and postchanged images
by concatenating and then inputting them into the network for
feature extraction. In [20], the concatenated bitemporal images
were fed into U-Net to precisely segment the changed regions.
In [21], the concatenated prechanged and postchanged images
were used as the input of the UNet++ structure to effectively
utilize fine-grained and global information for accurate feature
maps. In [22], the prechanged and postchanged images and
their difference maps were fed into HRNet [23] to obtain better
CD performance. Different from the single-branch structure,
the double-branch structure first extracts features from both
branches of the prechanged image and the postchanged image
and then fuses the obtained bitemporal features. In [24], the
Siamese network and fully convolutional network (FCN) with
skip connections were combined to address the dense prediction
problem. In [25], the Siamese convolution was combined with
a dual-attention mechanism for enhancing the ability of the
model in recognizing change information. In [26], the pretrained
SE-ResNet50 [27] was combined with the Siamese structure
to effectively extract features. In [28], dual temporal features
were effectively constrained in both encoding and decoding.
The Siamese encoder was used for the extraction of the correct
dual temporal features and the dual decoder was used for their
effective fusion. In [30], the Siamese ResNet18 [29] was used
for feature extraction, and transformers encoded and decoded
the extracted features to model the contextual relationships in
the spatial-temporal domain. In [31], a fully transformer-based
Siamese structure efficiently demonstrated long-range details in
multiscale features.

Most DL-based CD methods already have a good perfor-
mance in detecting changes between bitemporal RS images.
However, the existing CD methods pay little attention to the
complementary information between different layers in the
network. They tend to extract change information using deep
features, ignoring the importance of shallow features containing
fine-grained information, which often leads to loss of boundary
details and mislocalization of changed regions. There is various
work [32], [33], [34] that shows the strong semantic informa-
tion representation capability of deep networks. However, the
overall of small objects and the edge details of large objects are
gradually lost with the network’s multiple down-sampling and
up-sampling. The shallow networks are effective in terms of
detailed information representation but are weak in semantic
information representation. The changed area in RS images

contains both large vegetation changes and small target building
changes. This makes the information extraction from different
layers of the network have both the same or similar contents and
significant differences. Besides, the internal structure of most
NestedUNet structure-based CD methods stacks multiple 3×3
convolutional layers to achieve better CD performance, but this
also leads to huge parameters and computation.

To solve the mentioned problems, an end-to-end network
based on the NestedUNet, called adaptive fusion NestedUNet
(AFNUNet), is proposed. AFNUNet applies an inverted bottle-
neck structure in the feature extraction stage and uses depthwise
convolution in the feature fusion stage to improve operational
efficiency. For effective aggregation using complementary in-
formation from different levels of features, an adaptive fusion
module (AFM) based on channel attention and spatial atten-
tion [35] is designed. The AFM uses the softmax attention
guided by feature information at multiple semantic levels so
that different levels of features receive different attention. This
improves the ability of the network to discriminate the changed
regions and retain boundary detail information. In addition, a
loss function based on the Bray-Curtis distance (BCD) [36]
is introduced for improving the performance of the model in
identifying differences between bitemporal images. The main
contributions of this work are as follows.

1) We propose a network, AFNUNet, performing CD based
on optical RS images. The proposed network has strong
detailed and semantic information representation capabil-
ity. Moreover, it has strong competitiveness in terms of
model parameters and computational cost.

2) We propose a module that can effectively fuse mul-
tiple semantic-level features, namely AFM. The AFM
adaptively fuses multiple semantic-level features in both
channel and spatial dimensions to effectively utilize the
complementary information and enhance attention to the
boundaries of changed regions.

3) A loss based on BCD is proposed in this work. This loss
balances the effect of changed and unchanged samples on
the network and improves the ability of the network to
identify changed regions.

The rest of this article is organized as follows. Section II
reviews related work on the U-Net series-based CD methods.
Section III is a detailed description of the proposed method.
The implementation details, comparison experiments, ablation
experiments, and analysis are presented in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

The U-Net series have been widely used for biomedical
image segmentation tasks. U-Net [32] used the concatenation
operation for the aggregation of shallow and deep features at the
corresponding scales for the segmentation task. UNet++ [33]
incorporated features extracted from deep and shallow networks
by using different operations, such as nested and dense skip
connections, instead of using simple feature concatenation for
both encoding and decoding layer features of the same size.
UNet3+ [34] used a more dense skip connection, allowing each
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decoder layer to incorporate full-scale feature maps. The CD
task can be viewed as segmenting the changed regions in the
image. Therefore, many scholars have proposed networks for
performing the CD task with various improvements based on
the U-Net series.

Daudt et al. [24] proposed three CD networks based on U-Net,
the first one was based on an early fusion strategy and the other
two networks were Siamese extensions of the first one. Sun
et al. [37] proposed a U-Net that aggregated long short-term
memory to handle multiscale spatial features. Chen et al. [28]
proposed a U-Net based on the squeeze and excitation mod-
ule which was used for capturing the response among feature
channels.

Peng et al. [21] proposed UNet++ with multiside output
fusion, where multiside output fusion was used for fusing the
multiside output feature maps of the UNet++ backbone to obtain
a highly accurate final change map. Peng et al. [38] proposed a
simplified UNet++ with the dense attention unit, where the dense
attention approach used high-level features with rich semantic
information to guide the selection of low-level features to capture
the change features. Zhang et al. [39] proposed UNet++ with a
multiside fusion strategy, where the multiside fusion strategy
was used to effectively predict changed targets at different
scales. Fang et al. [40] combined NestedUNet with the Siamese
network. The ensemble channel attention module was used to ag-
gregate and refine the feature mappings obtained from the Nest-
edUNet backbone at multiple semantic levels. Raza et al. [41]
proposed UNet++ with efficient encoders and decoders. The
attention-based bitemporal feature fusion strategy was used to
refine multiscale features and avoid loss during downsampling.
Liu et al. [42] proposed UNet++ with spatial-temporal-channel
attention, where the spatial-temporal-channel attention mecha-
nism enabled selective feature extraction. Li et al. [43] proposed
pseudo-Siamese UNet++, where each branch was based on
UNet++ and not sharing weights to extract heterogeneous input
image difference features. Du et al. [44] combined transformer
and UNet++, and the transformer was used to effectively model
the global semantic relationship of features extracted from the
convolutional neural network (CNN).

Zhao et al. [45] combined UNet3+ with the Siamese network,
where the Siamese network was used for feature extraction
and UNet3+ was used for full-scale feature fusion to reduce
localization error. Mo et al. [46] proposed Siamese UNet3+ with
channel- and spatial-based attention modules, where the atten-
tion module was used to effectively identify change features.

However, the U-Net-based CD methods [24], [37] only aggre-
gate feature maps at the same scale in the encoder and decoder
networks and do not fully utilize the feature information at differ-
ent scales, resulting in less accurate localized changed regions.
The UNet++-based CD methods [21], [38], [39], [40], [41], [42],
[43], [44] have shown excellent performance through dense skip
connections. However, they often have huge parameters and
computational costs hardly to meet the requirements of high
efficiency. In addition, some work [21], [39] fuses features of
different levels extracted by UNet++ with equal weight, ignoring
the semantic gap between them. Some work [41], [43] directly
concatenates and fuses features from different levels of UNet++

extraction, increasing the difficulty of modeling their relevance
in the network. Some work [38], [42], [44] utilizes deep features
of UNet++ for detecting changed targets, losing some of the
fine-grained information of shallow features.

In [40], this work accounts for the weighted fusion of dif-
ferent levels of features in the channel dimension, ignoring the
importance of location information of the spatial dimension.
As a result, the above work lacks sufficient attention to the
boundaries of shallow networks, making the detection results
incomplete. With full-scale skip connections, the UNet3+-based
CD methods [45], [46] achieve good performance but also
further increase the computational cost.

The main purpose of this article aims to utilize the com-
plementary information in different levels of feature maps ef-
ficiently and effectively to enhance the CD performance. Dif-
ferent from existing UNet++ and UNet3+-based CD methods
that utilize standard convolution for encoding and decoding,
we employ an inverted bottleneck structure in the encoding
stage for reducing the number of parameters and improving
CD performance [47], [48], and depthwise convolution in the
decoding stage to further improve efficiency [49]. An attention-
based feature fusion module is then used to adaptively select
the required information from the feature maps extracted from
the UNet++ backbone in the channel and spatial dimensions,
respectively, thus, enhancing the attention to changed target
boundaries.

III. METHODOLOGY

In this section, the general framework of the proposed network
is first introduced. Then the efficient channel attention-based
feature extractor and adaptive fusion module are presented in
detail. Finally, we describe the network optimization strategy.

A. Network Architecture

The proposed AFNUNet is a standard encoder-decoder archi-
tecture, as presented in Fig. 1. The prechanged and postchanged
images are concatenated and used as the input of the proposed
network. Multiscale features are obtained by feature extractors.
The convolutional block for feature fusion is shown in Fig. 1(b).
The 1×1 convolutional layer is used to aggregate the features
from the encoding and decoding layers and the 5×5 depthwise
convolutional layer is used to improve the decoding efficiency
while further perceiving the change information. To attain low-
level texture characteristics and high-level semantic features, a
dense skip connection mechanism is applied between encoders
and decoders. Assuming xi,j denotes the output of node Xi,j ,
where i denotes ith down-sampling layer along the encoder
direction and j denotes jth convolutional layer along the skip
pathway. The accumulation of feature maps is mathematically
described as follows:

xi,j =

⎧⎪⎨
⎪⎩

P(R([xt1, xt2])), i = 1, j = 0

P(R(xi−1,j)), i �= 1, j = 0

C([U(xi+1,j−1), [xi,k]j−1
k=0]), j > 0

(1)
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Fig. 1. Architecture of the proposed AFNUNet. (a) Overview of the proposed AFNUNet. (b) Convolution block.

where xt1 and xt2 denote the input bitemporal images, and
[ ] denotes the concatenation operation. The function R(·)
denotes the encoding operation. The function P(·) denotes the
down-sampling for the feature maps using a 2×2 max pooling
operation. The function U(·) denotes the use of the Upsample
method for up-sampling. The functionC(·) denotes the operation
of fusion using the convolution block.

In the proposed AFNUNet, the outputs of the same hierar-
chical nodes have the same size. In the down-sampling stage,
the output features of each decoder are doubled in the number
of channels and halved in size compared to the input feature
mapping. In the up-sampling phase, each node has two or more
inputs. Considering node X1,2 as an example, nodes X1,0, X1,1

from the same level and up-sampled node X2,1 are concatenated
for performing convolution block operation to obtain the node
X1,2. Finally, multiple features extracted from the backbone
of the proposed AFNUNet which have different semantic in-
formation of the same scale are fed into the AFM for further
enhancing the extraction of detailed information regarding the
changed regions.

B. Feature Extractor

We analyze some CD networks based on the UNet++ struc-
ture [21], [33], [38], [39], [40], [42], and they all use a double-
layer 3×3 standard convolution in the encoding stage, which is
one of the reasons for their inefficiency. In the proposed method,
the encoder is redesigned for higher efficiency. The inverted bot-
tleneck structure has been demonstrated for its ability to improve
performance while reducing the number of parameters [47],

[48]. The efficient channel attention (ECA) [50] not only focuses
on the channel of interest by using cross-channel interactions,
but it also has a lower computational complexity. In this work,
the inverted bottleneck structure and ECA are combined to
form a feature extractor for suppressing the incomplete changed
target profile caused by multiple down-sampling operations and
obtaining more feature information about the changed region
during the feature extraction stage.

Fig. 2 shows the structure of the feature extractor, composed
of three convolutional layers and one ECA layer. The first 3×3
convolutional layer conducts the dimension-raising operation
on the input feature map, while the second and third 1×1
convolutional layers perform the channel numbers doubling and
halving operations, respectively, i.e., a thick middle and thin end
structure. The loss of feature information due to the replacement
3×3 convolution is reduced by performing expansion between
two 1×1 convolutions. Wang et al. [50] used the global average
pool (GAP) to obtain aggregated features. To extract more
feature information, we make some changes in the ECA. We
use global max pooling (GMP) to create a branch parallel to the
GAP. This process is expressed as follows:

w = y ⊗ (σ(C1Dk(MaxPool(y)) + C1Dk(MaxPool(y))))
(2)

where y denotes the output of the third convolutional layer,
MaxPool and AvgPool are utilized to generate two aggregated
vectors, C1Dk denotes a fast 1-D convolution of kernel size k
(in this work, k = 3), σ denotes the sigmoid function, and w
represents the output obtained after ECA. The encoding stage
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Fig. 2. Architecture of the proposed feature extractor. (a) Overview of the
feature extractor. The inverted bottleneck structure refers to expanding the
number of channels in the middle layer using 1×1 convolution and then
reducing the number of channels to match the initial convolution layer by 1×1
convolution. (b) Improved ECA.

Fig. 3. Visualization mapping of the final feature maps of NestedUNet.
(a) Image at time1. (b) Image at time2. (c) X1,1. (d) X1,2. (e) X1,3. Blue
indicates lower attention values and red indicates higher attention values.

contains four layers of feature extractors. The depths obtained
after the four encoder layers are 64, 128, 256, and 512.

C. Adaptive Fusion Module

The three same-sized groups of feature maps extracted by the
NestedUNet backbone contain different semantic information.
As shown in Fig. 3, the shallow features retain more texture
details and boundary information but are accompanied by more
noise. The deeper features are semantically rich and accurately
locate changed regions, but some detailed information is lost.
Exploring the correlation between them by simple summation or
splicing fusion is vulnerable to the interference of semantic gaps
between features at different levels. Intuitively, an automatic
feature selection strategy is needed to fuse these features for
focusing on the shallow boundaries and deep localization of the
changed target for obtaining more accurate detection results.

As shown in Fig. 4, the adaptive fusion module (AFM) is
designed to improve feature representation by adaptively select-
ing change information between different levels. Structurally,
the AFM is an extension of CBAM [35] and SKNet [51] in
integrating features. Three feature maps F1, F2, and F3 are first

extracted by using the proposed AFNUNet and then fused by
performing element-by-element summation as follows:

F = F1 + F2 + F3 (3)

where F denotes the fusion result obtained by integrating the
information from multiple branches. The AFM suppresses the
channels and locations of uninterest and emphasizes those of
interest in the channel and spatial dimensions, assigning higher
weights to interested channels and locations and lower weights
to uninterested channels and locations, allowing the network
to select the required information from the appropriate level of
features. The mathematical expression for the channel attention
submodule is expressed as follows:

Mc = MLP(MaxPool(F )) +MLP(AvgPool(F )) (4)

Fc = a · F1 + b · F2 + c · F3 (5)

where MaxPool and AvgPool are applied on the fused fea-
tures F for generating two C×1×1 aggregation vectors of
size. The above vectors are processed through the multilayer
perception (MLP) module with shared weights to obtain two
vectors of size 3 C×1×1. Mc denotes the channel attention
map obtained by performing the elemental sum of the two
aforementioned vectors. The soft attention (softmax layer) is
applied to feature Mc to adaptively select different semantic
levels from the channel dimension. a, b, and c denote the soft
attention vectors obtained after the application of the softmax
layer. The size of a, b, and c are C×1×1, where ai denotes the
ith element of a, and so on, and i ∈ [0,C). The softmax layer
is used to obtain ai + bi + ci = 1 by summing the specified
dimensions to 1. Then, the original feature maps F1, F2, and
F3 are subject to elementwise multiplication with the attention
weights in different channels for obtaining the feature maps Fc.

Similarly, the spatial attention submodule uses MaxPool and
AvgPool in the first step for generating two matrices of size
1×H×W. For efficiency, a kernel-sized 7×7 convolutional
layer with shared weights is applied to these two matrices. After
the convolutional layer, two matrices of sizes 3×H×W are
obtained. Ms denotes the spatial attention map obtained by
the application of elementwise summation of the above two
matrices. The soft attention is applied to featureMs to adaptively
select different semantic levels on the spatial dimension. Let
a, b, and c denote the soft attention matrixes obtained after
the application of the softmax layer. The sizes of a, b, and c
are 1×H×W (where ai,j denotes the jth element of the ith
row of a, and so on, where ai,j + bi,j + ci,j = 1, i ∈ [0,H),
j ∈ [0,W)). Now, the original feature maps F1, F2, and F3 are
subject to elementwise multiplication with the attention weights
in different spatial dimensions for obtaining the feature maps Fs

Ms = f (7×7)(MaxPool(F )) + f (7×7)(AvgPool(F )) (6)

Fs = a · F1 + b · F2 + c · F3. (7)

Finally, the feature maps of the two submodules are summed
to obtain the final fused features Ff as follows:

Ff = Fc + Fs. (8)
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Fig. 4. Aarchitecture of the proposed AFM. Three final feature maps F1, F2, and F3 extracted from the UNet++ backbone are initially fused by summation.
The fused feature map F is processed through the MLP and convolution with shared weights for obtaining the channel and spatial attention maps, respectively.
After the softmax layer assigns weights to the feature maps F1, F2, and F3, the most required information is adaptively selected from the feature maps F1, F2,
and F3, i.e., the detailed boundary information of the shallow network and the rich semantic information of the deep network.

D. Loss Function

The binary cross-entropy (BCE) [52] is a loss function com-
monly used in binary classification problems and is defined as
follows:

LBCE(Xn, Yn) =

M∑
i=1

[−yi log(ŷi)− (1− yi) log(1− ŷi)]

(9)
where Xn = {(xt1

n , xt2
n ), n = 1, 2, . . ., N} and Yn = {yn, n =

1, 2, . . ., N} denote training images and the ground truth (GT),
ŷi ∈ [0, 1] denotes the predicted probability of a pixel point in
the change map being a change pixel and yi = {0, 1} denotes
the probability of a pixel point in the label map being a change
pixel, and M denotes the product of the height and width of the
image. 0 and 1 denote no change and change, respectively.

The LBCE(Xn, Yn) assigns equal weights to each pixel dur-
ing training. There is a problem of fewer changed pixels and
more unchanged pixels in CD, which may cause the training
process to be dominated by the unchanged pixel class, making
the model biased toward the unchanged class and ignoring the
changed class, thus increasing the difficulty of the model to
identify changes.

The BCD [36] is mainly used in ecological environmental
science for calculating the distance between the coordinates
and the differences between the samples. To solve the class
imbalance in the sample, we introduce it into CD. The value
of BCD loss ranges from 0 to 1. The larger the value, the greater
the difference between the prediction map and the GT. The

loss function based on the BCD LBCD(Xn, Yn) is defined as
follows:

LBCD(Xn, Yn) =

∑M
i=1 |ŷi − yi|∑M

i=1 ŷi +
∑M

i=1 yi
. (10)

The BCD loss is a region-dependent loss, where the loss of
the current pixel is related to both the predicted value of the
current pixel and the values of the other points. Since the value
of GT is either 0 or 1, the formulation for the BCD loss can be
differentiated to yield the gradient

∂LBCD(Xn, Yn)

∂ŷj
=

⎧⎪⎪⎨
⎪⎪⎩

∑M
i=1 ŷi+

∑M
i=1 yi−

∑M
i=1 |ŷi−yi|

(
∑M

i=1 ŷi+
∑M

i=1 yi)
2 , yj=0

−
∑M

i=1 ŷi+
∑M

i=1 yi+
∑M

i=1 |ŷi−yi|
(
∑M

i=1 ŷi+
∑M

i=1 yi)
2 , yj=1

(11)
where ŷj and yj denote any predicted pixel point and its corre-
sponding pixel point in GT.

Note that the positive and negative of the gradient only indi-
cate the direction, so only the values of the gradients need to be
compared. The results of the gradients demonstrate that when a
pixel value in GT is 1, the resulting gradient is greater than that
when a pixel value in GT is 0, indicating that the BCD loss is
directional and more biased toward the changed class.

Finally, the objective function L(Xn, Yn) of the proposed
network is defined as follows:

L(Xn, Yn) = LBCE(Xn, Yn) + λLBCD(Xn, Yn) (12)
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When λ = 0, only the benchmark loss LBCE(Xn, Yn) is
used. We present the impact of λ for different datasets later in
this work.

IV. EXPERIMENTS

In this section, the proposed AFNUNet is evaluated by using
three CD datasets, including the WHU building CD (WHU-CD)
dataset [4], the LEVIR-CD dataset [53], and the SYSU-CD
dataset [54]. We also perform a series of ablation experiments by
using each of the three datasets. Finally, an efficiency compari-
son of the proposed method with different methods is performed.

A. Datasets and Implementation Details

1) Datasets: WHU-CD Dataset: The WHU-CD dataset con-
sists of pairs of images of size 15 354×32 507 pixels acquired
using the satellite. The images in this dataset cover the area where
the 2011 Christchurch, New Zealand earthquake occurred. This
area was rebuilt in the subsequent years. We divide each image
pair into patches of size 256×256 pixels without any overlap
and randomly divide the dataset into training, validation, and test
sets at a ratio of 8:1:1. Finally, we obtain 5908 training samples,
763 validation samples, and 763 test samples.

LEVIR-CD Dataset: The LEVIR-CD dataset contains 637
pairs of optical RS images. Each image has a resolution of
1024×1024 pixels and is collected from Google Earth. These
images mainly cover various types of building growth with
significant land-use changes. The dataset is divided into training,
validation, and test sets. We use the partition method [38] and
obtain 3167 training samples, 436 validation samples, and 935
test samples.

SYSU-CD Dataset: The SYSU-CD dataset consists of 20 000
pairs of aerial images of size 256×256 pixels. The images are
acquired between 2007 and 2014 in Hong Kong. The major
changes in the SYSU-CD dataset include vegetation changes,
suburban dilation, groundwork before construction, newly built
urban buildings, and road expansion.

2) Experimental Settings: The proposed AFNUNet uses
AdamW as the optimizer with an initial learning rate = 0.001
and weight decay = 0.0001. The learning rate is reduced by a
factor of 0.5 after every 10 epochs. The batch size of AFNUNet
is set to 16. In addition, AFNUNet is implemented using the
PyTorch DL framework. All the experiments are conducted on
a single NVIDIA GeForce RTX 3090 with 24 GB memory.

3) Comparative Method and Evaluation Metrics: We com-
pare the proposed AFNUNet with DL-based CD mod-
els, which mainly include the UNet++ structure-based and
attention-based methods. Fully convolutional-early fusion
(FC-EF) [24] takes the concatenated bitemporal images
as input. Fully convolutional-Siamese-difference (FC-Siam-
Diff) [24] and fully convolutional-Siamese-concatenation (FC-
Siam-Conc) [24] are Siamese extensions of FC-EF. Neste-
dUNet (UNet++) [33] reduces the semantic gap between feature
maps by nesting dense skip connections. UNet++ with multiple
side output fusion (UNet++_MSOF) [21] applies the UNet++
backbone for performing the CD task. Difference-enhancement
dense-attention convolutional neural network (DDCNN) [38]

simplifies the UNet++ structure and models the correlation
between different levels of features to obtain change features
by the dense attention method in the decoder. Difference-
enhancement unit is used to selectively aggregate high-level
difference features. Siamese NestedUNet (SNUNet) [40] in-
corporates a Siamese network and a NestedUNet and uses the
ensemble channel attention module to suppress the localiza-
tion error and semantic vacancy. Bitemporal image transformer
(BIT) [30] combines CNN and transformer to model context in
the space-time domain. CNN-transformer network with multi-
scale context aggregation (MSCANet) [55] captures features at
different scales by CNN and encodes and aggregates multiscale
features using the transformer. Full-scale connected Siamese
network (SiUNet3+) [45] combines the Siamese network with
a modified UNet3+ to produce a discriminative and precisely
located change map.

In this work, precision (P ), recall (R), F1 score (F1), and
intersection over union (IoU ) [56], [57] are used for quantitative
evaluation of the performance of different methods. The F1 and
IoU evaluation metrics quantify the overall performance of a
model used for the CD task. The higher the values of these
metrics, the better the prediction result. The aforementioned
evaluation metrics are computed as follows:

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

F1 =
2PR

P+R
(15)

IoU =
TP

TP + FP + FN
(16)

where true positive (TP), false positive (FP), and false negative
(FN) denote the number of true positives, the number of false
positives, and the number of false negatives, respectively.

B. Comparison Experiments

1) WHU-CD Dataset: To evaluate the effectiveness of the
proposed AFNUNet, we first conduct a comparison experiment
using the WHU-CD dataset containing only semantic changes
in buildings. The results are shown in Table I, indicating that
AFNUNet achieves the highest F1 and IoU with 92.32% and
85.73%, compared to the improvement of 1.53% and 2.60% over
SiUNet3+, respectively.

To intuitively understand the prediction results of different
methods using the WHU-CD test set, we present the visualiza-
tion results in Fig. 5. As shown in the first three rows of Fig. 5,
for larger changes and with less interference, all methods can
identify significantly changed buildings. However, AFNUNet
is more sensitive to building boundaries by the role of AFM
and identifies more complete buildings. As shown in the fourth
row of Fig. 5, BIT and AFNUNet overcome the pseudochanges
in the road surface and identify the changed large buildings.
And compared to BIT, AFNUNet extracts buildings with more
boundary detail. Furthermore, as can be seen in the last row of
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Fig. 5. Visualization results on the WHU-CD test set. (a) Image at time1. (b) Image at time2. (c) Ground truth. (d) UNet++. (e) UNet++_MSOF. (f) DDCNN.
(g) SNUNet. (h) BIT. (i) MSCANet. (j) SiUNet3+. (k) AFNUNet.

TABLE I
COMPARISON OF EXPERIMENTAL RESULTS USING THE WHU-CD DATASET

Fig. 5, the proposed AFNUNet accurately locates small changes
in the building with less noise. The experimental results show
that the proposed AFNUNet performs well on the WHU-CD
dataset and exhibits strong resistance to interference.

2) LEVIR-CD Dataset: We also conduct experiments on an-
other building CD dataset. The metric results of the comparison
methods on the LEVIR-CD test set are shown in Table II. The
proposed AFNUNet boosts performance on F1 and IoU to
90.95% and 83.40%, compared to the improvement of 0.91%
and 1.51% over BIT, respectively.

The visualization results of the different methods are shown
in Fig. 6. As presented in the first two rows in Fig. 6, it is difficult
for other networks to identify the changed buildings when the
changed area is small. Through the effect of the BCD loss
balance classes, AFNUNet can identify subtle changes and thus
locate the changed target accurately. When there are many small
changed buildings (see rows 3 and 4 in Fig. 6), all comparison
methods perform well. AFNUNet accurately identifies more

TABLE II
COMPARISON OF EXPERIMENTAL RESULTS USING THE LEVIR-CD DATASET

changed buildings. In the detection of the large changed building
(see row 5 in Fig. 6), our AFNUNet can also extract it more
completely. The results demonstrate that AFNUNet achieves
good performance in this dataset and effectively extracts the
overall features of the changed buildings.

3) SYSU-CD Dataset: Finally, we perform experiments by
using the SYSU-CD dataset. Different from the WHU-CD and
LEVIR-CD datasets, the SYSU-CD dataset has more complex
change scenarios. The quantitative results of the SYSU-CD test
set are shown in Table III. AFNUNet achieved the highest F1
and IoU with 80.09% and 66.79%, respectively.

Fig. 7 visualizes the results of the comparison methods. For
vessel changes (first two rows of Fig. 7), most methods lose
part of the change information. In this case, AFNUNet obtains
a more complete detection result. In the case of building area
changes, see the last three rows of Fig. 7, the changes identified
by most methods are quite limited due to the more complex
scenes (e.g., shadow interference, tree growth) and irregular
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Fig. 6. Visualization results on the LEVIR-CD test set. (a) Image at time1. (b) Image at time2. (c) Ground truth. (d) UNet++. (e) UNet++_MSOF. (f) DDCNN.
(g) SNUNet. (h) BIT. (i) MSCANet. (j) SiUNet3+. (k) AFNUNet.

Fig. 7. Visualization results on the SYSU-CD test set. (a) Image at time1. (b) Image at time2. (c) Ground truth. (d) UNet++. (e) UNet++_MSOF. (f) DDCNN.
(g) SNUNet. (h) BIT. (i) MSCANet. (j) SiUNet3+. (k) AFNUNet.

change areas. However, the proposed AFNUNet still obtains
relatively complete change results.

C. Ablation Study

To evaluate the proposed AFNUNet, AFM, and BCD loss,
a series of ablation experiments are conducted. Tables IV–VI
present the detection accuracy obtained using the WHU-CD,
LEVIR-CD, and SYSU-CD datasets, respectively.

The experimental results demonstrate that the AFM improves
the detection accuracy by 1.27% in terms of F1 and 2.13%
in terms of IoU for the WHU-CD dataset; 0.58% in terms of
F1 and 0.97% in terms of IoU for the LEVIR-CD dataset;
and 1.02% in terms of F1 and 1.40% in terms of IoU for
the SYSU-CD dataset. The contribution of AFM is shown in
Fig. 8(e), i.e., the network extracts richer feature information
and identifies more complete boundaries of the changed targets
when using the AFM. The BCD loss effectively suppresses the
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Fig. 8. Examples of ablation experiments performed using the proposed method. (a) Image at time1. (b) Image at time2. (c) Ground truth. (d) Proposed AFNUNet
without BCD loss and AFM. (e) Proposed AFNUNet without BCD loss. (f) Proposed AFNUNet without AFM. (g) Proposed AFNUNet.

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS USING THE SYSU-CD DATASET

imbalance between the changed and unchanged samples, thus
accurately identifying the differences between the bitemporal
images. When this loss function is added to the training process,
the detection accuracy improves by 0.97% in terms of F1 and
1.62% in terms of IoU for the WHU-CD dataset; 0.43% in terms
of F1 and 0.73% in terms of IoU for the LEVIR-CD dataset;
and 1.08% in terms of F1 and 1.48% in terms of IoU for the
SYSU-CD dataset.

The contribution of BCD loss is presented in Fig. 8(f). The
results illustrate that the model identifies more change features

TABLE IV
ABLATION EXPERIMENTS PERFORMED USING THE WHU-CD DATASET

TABLE V
ABLATION EXPERIMENTS PERFORMED USING THE LEVIR-CD DATASET

when using the BCD loss. Fig. 8(g) is the visualization of
AFNUNet’s prediction maps, it combines the advantages of
AFM and BCD loss resulting in well-defined change target
boundaries, rich change information, and less noise.

We also visualize the three final feature maps F1, F2, and F3

in the network and the feature map Ff after using the AFM to
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TABLE VI
ABLATION EXPERIMENTS PERFORMED USING THE SYSU-CD DATASET

Fig. 9. Visualization mapping of some features of AFNUNet. (a) Image at
time1. (b) Image at time2. (c) F1. (d) F2. (e) F3. (f) Ff . Blue indicates lower
attention values and red indicates higher attention values.

TABLE VII
SENSITIVITY EXPERIMENTS ON BCD LOSS

illustrate the working mechanism of AFM in detail. It can be
seen from Fig. 9 that F1, F2, and F3 contain different feature
information, respectively. F1 contains a rich set of boundary
details. The features of irrelevant changes become less inF2, but
it is still difficult to extract the changed regions. The change fea-
tures extracted by F3 lack boundary detail information. With the
application of AFM, the network adaptively selects the required
boundary detail features and semantic expression features from
F1, F2, and F3, which makes the identified changes Ff more
discriminative and the boundary more complete.

D. Sensitivity Experiments on BCD Loss

To explore the effect of coefficient λ available in the BCD
loss on the training process of the proposed AFNUNet, different
values of λ are set on each of the three datasets for experiments.
We have presented these results in Table VII. When λ = 0, the
network corresponds to the second baseline “w/o BCD loss” in

TABLE VIII
MODEL EFFICIENCY OF DIFFERENT METHODS

Section IV-C. The accuracies of all the models using the BCD
loss are improved to some extent on all three datasets. When λ=
0.8, the proposed network achieves the highest F1 and IoU on
the WHU-CD and SYSU-CD datasets, representing improve-
ments of 0.90% and 1.53%, 0.83% and 1.14%, respectively, as
compared to when λ = 0. The proposed network achieves the
highest F1 and IoU on the LEVIR-CD dataset when λ = 1.0,
with an improvement of 0.21% and 0.35%, compared to when
λ = 0. This suggests that due to the nature of the dataset itself,
the value of λ affects different datasets differently. The WHU-
CD and SYSU-CD datasets are more sensitive to the value of λ

in the BCD loss.

E. Model Efficiency

Parameters (Params), floating point operations (FLOPs), and
inference time (It) are employed as measures of the efficiency
of all comparison methods. Params, FLOPs, and It denote the
total number of parameters that the model needs to learn during
training and the computational cost and time complexity of the
model, respectively.

Given a pair of images of size 1×3×256×256, Table VIII
shows Params, FLOPs, and It of all compared methods. The three
U-Net-based networks, FC-EF, FC-Siam-Diff, and FC-Siam-
Conc, although their structures are simple and high efficiency,
combined with the previous performance on the three datasets,
apparently do not meet the requirements for accurate identifica-
tion of changes. Due to a large number of feature transmissions
and 3×3 standard convolutions, UNet++, UNet++_MSOF,
DDCNN, SNUNet, and SiUNet3+ have a high number of Params
and FLOPs and slow It. BIT and MSCANet, which are based on
a hybrid CNN-transformer architecture, use efficient decoding
strategies, but their ResNet18-based backbone limits their
efficiency. In addition, SNUNet applies transposed convolution
in the upsampling stage, which introduces more computational
cost and increases time complexity. DDCNN and SiUNet3+ are
the least efficient, with a last decoder layer of 1024 channels,
twice as wide as the other methods in terms of network width.

It is evident from Table VIII that AFNUNet has the lowest
number of parameters, computational cost, and time complexity
compared to other UNet++, transformer, and UNet3+-based CD
methods. This is mostly attributed to the following reasons.
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AFNUNet only uses a 3×3 standard convolution at the be-
ginning of each encoder layer and uses an inverted bottleneck
structure to improve efficiency. In the decoding stage, AFNUNet
uses depthwise convolution instead of standard convolution to
effectively reduce Params, FLOPs, and It. Moreover, AFNUNet
uses theUpsamplemethod, which does not introduce additional
parameters and allows fast upsampling.

V. CONCLUSION

In this article, we propose an AFNUNet to effectively and
efficiently capture the differences in bi-temporal optical RS
images. It achieves a fusion of different scale features with
low consumption by improving the NestedUNet of the encoder
and decoder. Since the final same-scale features extracted by
NestedUNet contain different details and semantic information,
the network adaptively selects change features from the channel
and spatial dimensions by the AFM, thus obtaining changed
targets with more refined boundaries. In addition, we introduce
the BCD for balancing the effect of changed and unchanged
samples for enhancing the accuracy of the network to extract
changed information. Experimental results show that AFNUNet
achieves better performance on both the building CD datasets
WHU-CD and LEVIR-CD as well as the SYSU-CD dataset
containing multiple changes in type. We will investigate the
CD methods with a broader range of applications in the future
and improve the proposed methods to weakly supervised or
unsupervised CD methods for satisfying the demands of more
diverse scenarios.

REFERENCES

[1] M. Gong, J. Zhao, J. Liu, Q. Miao, and L. Jiao, “Change detection in
synthetic aperture radar images based on deep neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 125–138, Jan. 2016.

[2] C.-F. Chen et al., “Multi-decadal mangrove forest change detection and
prediction in Honduras, central America, with landsat imagery and a
Markov chain model,” Remote Sens., vol. 5, no. 12, pp. 6408–6426,
Nov. 2013.

[3] B. Demir, F. Bovolo, and L. Bruzzone, “Updating land-cover maps by clas-
sification of image time series: A novel change-detection-driven transfer
learning approach,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1,
pp. 300–312, Jan. 2013.

[4] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[5] B. Desclée, P. Bogaert, and P. Defourny, “Forest change detection by
statistical object-based method,” Remote Sens. Environ., vol. 102, no. 1/2,
pp. 1–11, May 2006.

[6] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, “Change de-
tection from remotely sensed images: From pixel-based to object-based
approaches,” ISPRS-J. Photogrammetry Remote Sens., vol. 80, no. 2,
pp. 91–106, Jun. 2013.

[7] C. Wu, B. Du, X. Cui, and L. Zhang, “A post-classification change
detection method based on iterative slow feature analysis and Bayesian
soft fusion,” Remote Sens. Environ., vol. 199, pp. 241–255, Sep. 2017.

[8] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference image
for unsupervised change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 38, no. 3, pp. 1171–1182, May 2000.

[9] C. Zhang, S. Wei, S. Ji, and M. Lu, “Detecting large-scale urban land
cover changes from very high resolution remote sensing images using
CNN-based classification,” ISPRS Int. J. Geo- Inf., vol. 8, no. 4, Apr. 2019,
Art. no. 189.

[10] C. Marin, F. Bovolo, and L. Bruzzone, “Building change detection in
multitemporal very high resolution SAR images,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 5, pp. 2664–2682, May 2015.

[11] A. A. Nielsen, K. Conradsen, and J. J. Simpson, “Multivariate alteration
detection (MAD) and MAF postprocessing in multispectral, bitemporal
image data: New approaches to change detection studies,” Remote Sens.
Environ., vol. 64, no. 1, pp. 1–19, Apr. 1998.

[12] A. A. Nielsen, “The regularized iteratively reweighted MAD method for
change detection in multi- and hyperspectral data,” IEEE Trans. Image
Process., vol. 16, no. 2, pp. 463–478, Feb. 2007.

[13] M. Volpi, D. Tuia, F. Bovolo, M. Kanevski, and L. Bruzzone, “Supervised
change detection in VHR images using contextual information and support
vector machines,” Int. J. Appl. Earth Obs. Geoinf., vol. 20, pp. 77–85,
Feb. 2013.

[14] C. Benedek and T. Sziranyi, “Change detection in optical aerial images
by a multilayer conditional mixed Markov model,” IEEE Trans. Geosci.
Remote Sens., vol. 47, no. 10, pp. 3416–3430, Oct. 2009.

[15] G. Cao, L. Zhou, and Y. Li, “A new change-detection method in high-
resolution remote sensing images based on a conditional random field
model,” Int. J. Remote Sens., vol. 37, no. 5, pp. 1173–1189, Jan. 2016.

[16] P. Lv, Y. Zhong, J. Zhao, and L. Zhang, “Unsupervised change detection
based on hybrid conditional random field model for high spatial resolution
remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 7,
pp. 4002–4015, Jul. 2018.

[17] C. Zhang, G. Li, and W. Cui, “High-resolution remote sensing image
change detection by statistical-object-based method,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 11, no. 7, pp. 2440–2447, Jul. 2018.

[18] L. Huang, G. Zhang, and Y. Li, “An object-based change detection ap-
proach by integrating intensity and texture differences,” in Proc. 2nd Int.
Asia Conf. Inform. Control, Autom. Robot., 2010, vol. 3, pp. 258–261.

[19] A. Lefebvre, T. Corpetti, and L. Hubert-Moy, “Object-oriented approach
and texture analysis for change detection in very high resolution images,”
in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008, vol. 4, pp. 663–666.

[20] T. Lei, Y. Zhang, Z. Lv, S. Li, S. Liu, and A. K. Nandi, “Landslide in-
ventory mapping from bitemporal images using deep convolutional neural
networks,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 6, pp. 982–986,
Jun. 2019.

[21] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high
resolution satellite images using improved UNet++,” Remote Sens., vol. 11,
no. 11, Jun. 2019, Art. no. 1382.

[22] A. Chouhan, A. Sur, and D. Chutia, “DRMNet: Difference image re-
construction enhanced multiresolution network for optical change detec-
tion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4014–4026, 2022.

[23] J. Wang et al., “Deep high-resolution representation learning for visual
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10,
pp. 3349–3364, Oct. 2021.

[24] R. C. Daudt, B. L. Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in Proc. IEEE 25th Int. Conf. Image
Process., 2018, pp. 4063–4067.

[25] J. Chen et al., “DASNet: Dual attentive fully convolutional siamese net-
works for change detection in high-resolution satellite images,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2021.

[26] H. Lee et al., “Local similarity siamese network for urban land change
detection on remote sensing images,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 4139–4149, 2021.

[27] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in Proc.
IEEE Int. Conf. Comput. Vis., 2015, pp. 1026–1034.

[28] P. Chen, B. Zhang, D. Hong, Z. Chen, X. Yang, and B. Li, “FCCDN:
Feature constraint network for VHR image change detection,” ISPRS J.
Photogramm. Remote Sens., vol. 187, pp. 101–119, May 2022.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 770–778.

[30] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5607514.

[31] W. G. C. Bandara and V. M. Patel, “A transformer-based siamese network
for change detection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2022, pp. 207–210.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., 2015, vol. 9351, pp. 234–241.

[33] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet++: A
nested U-net architecture for medical image segmentation,” in Proc. Int.
Workshop Deep Learn. Med. Image Anal., 2018, vol. 11045, pp. 3–11.



5386 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[34] H. Huang et al., “UNet3+: A full-scale connected UNet for medical image
segmentation,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2020, pp. 1055–1059.

[35] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

[36] E. W. Beals, “Bray-curtis ordination: An effective strategy for analysis
of multivariate ecological data,” Adv. Ecological Res., vol. 14. pp. 1–55,
1984.

[37] S. Sun, L. Mu, L. Wang, and P. Liu, “L-UNet: An LSTM network for
remote sensing image change detection,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, 2022, Art. no. 8004505.

[38] X. Peng, R. Zhong, Z. Li, and Q. Li, “Optical remote sensing image change
detection based on attention mechanism and image difference,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 9, pp. 7296–7307, Sep. 2021.

[39] X. Zhang et al., “DifUNet : A satellite images change detection network
based on UNet and differential pyramid,” IEEE Geosci.Remote Sens. Lett.,
vol. 19, 2022, Art. no. 8006605.

[40] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected
siamese network for change detection of VHR images,” IEEE Geosci.
Remote Sens. Lett., vol. 19, 2022, Art. no. 8007805.

[41] A. Raza, H. Huo, and T. Fang, “EUNet-CD: Efficient UNet for
change detection of very high-resolution remote sensing images,” IEEE
Geosci.Remote Sens. Lett., vol. 19, 2022, Art. no. 3510805.

[42] M. Liu, J. Huang, L. Ma, L. Wan, J. Guo, and D. Yao, “A spatial-
temporal-channel attention UNet for high resolution remote sensing image
change detection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2021,
pp. 4344–4347.

[43] H. Li, F. Zhu, X. Zheng, M. Liu, and G. Chen, “MSCDUNet: A deep
learning framework for built-up area change detection integrating multi-
spectral, SAR, and VHR data,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 5163–5176, 2022.

[44] Y. Du, R. Zhong, Q. Li, and F. Zhang, “TransUNet++SAR: Change
detection with deep learning about architectural ensemble in SAR images,”
Remote Sens., vol. 15, no. 1, p. 6, Dec. 2022.

[45] B. Zhao, P. Tang, X. Luo, L. Li, and S. Bai, “SiUNet3+-CD: A full-scale
connected siamese network for change detection of VHR images,” Eur J.
Remote Sens., vol. 55, no. 1, pp. 232–250, Mar. 2022.

[46] J. Mo, S. Seong, J. Oh, and J. Choi, “SAUNet3+CD: A siamese-attentive
UNet3 for change detection in remote sensing images,” IEEE Access.,
vol. 10, pp. 101434–101444, 2022.

[47] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[48] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
ConvNet for the 2020 s,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2022, pp. 11976–11986.

[49] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 1800–1807.

[50] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net: Effi-
cient channel attention for deep convolutional neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020, pp. 11531–11539.

[51] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2019, pp. 510–519.

[52] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Ann. Oper. Res., vol. 134, no. 1, pp. 19–67,
Feb. 2005.

[53] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote. Sens.,
vol. 12, no. 10, May 2020, Art. no. 1662.

[54] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised
attention metric-based network and an open aerial image dataset for remote
sensing change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5604816.

[55] M. Liu, Z. Chai, H. Deng, and R. Liu, “A CNN-transformer network
with multiscale context aggregation for fine-grained cropland change
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15,
pp. 4297–4306, 2022.

[56] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changede-
tection.net: A new change detection benchmark dataset,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Workshops, 2012,
pp. 1–8.

[57] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese,
“Generalized intersection over union: A metric and a loss for bounding
box regression,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 658–666.

Junwei Li (Member, IEEE) received the M.S. and
Ph.D. degrees in control science and engineering from
Northwestern Polytechnical University, Xi’an, China,
in 2009 and 2013, respectively.

He is currently an Associate Professor with the
School of Artificial Intelligence, Henan University,
Zhengzhou, Henan, China. His research interests in-
clude information fusion, pattern recognition, and
deep learning.

Shijie Li received the B.S. degree in computer science
and technology from the School of Computer and
Information Engineering, Henan University, Kaifeng,
China, in 2020. He is currently working toward
the M.S. degree in computer technology with the
School of Artificial Intelligence, Henan University,
Zhengzhou, China.

His research interests include optical remote sens-
ing image change detection and deep learning.

Feng Wang received the Ph.D. degree in pattern
recognition and intelligent systems from the School of
Automation, Northwestern Polytechnical University,
Xi’an, China, in 2019.

He is currently a Lecturer with Weinan Normal
University, Weinan, China. So far, he has authored
or coauthored more than nine papers, in which eight
papers were indexed by EI. His research interests
include remote sensing image change detection, deep
learning, and image fusion.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


