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Abstract—The performance of deep convolutional neural net-
works has been significantly improved in recent years as a result
of additional attention mechanisms applied to the standard net-
works. Numerous experiments conducted have demonstrated that
spectral-spatial attention enhances the network’s categorization
ability. The three attention modules that currently use spatial at-
tention, spectral attention, and channel attention are isolated from
each other and their interrelationships are not fully considered. To
solve this problem and establish the dependencies among different
channels, spectral bands, spatial height, and width simultaneously,
in this article, a new cross attention module called quadlet is
proposed, which can capture information using simultaneous in-
teraction of the channel, spectral depth and spatial location to
improve the classification accuracy of hyperspectral images. By
incorporating the quadlet attention module, a cross-dimensional
residual network (QuadNet) is proposed for HSIs classification. A
series of experiments conducted on four publicly available hyper-
spectral datasets showed that the proposed cross-attention residual
network can effectively establish the dependencies among different
dimensions of input tensor and achieve 98.22%, 99.88%, 99.10%,
and 96.46% overall accuracy on IN, UP, SA, and UH datasets,
respectively.

Index Terms—Hyperspectral image classification, multibran-
ches cross-attention, multibranches cross-attention residual
network.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) can efficiently distin-
guish objects with similar appearance through contigu-

ous spectral signatures, which provide abundant and detailed
spectral information [1], [2]. They have been widely used in
various fields of Earth observation, such as agriculture, forestry,
land management, and military monitoring [3]. One of the
fundamental research areas of HSIs processing is classification,
which aims to classify each pixel in HSIs [4].
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Although hundreds of bands can provide rich spectral fea-
tures, they also cause severe band redundancy and the spectral
curse of dimensionality [5]. To solve these problems and extract
feature bands efficiently, many band selection and band extrac-
tion methods have been applied to HSIs over the past decades,
such as principal component analysis and search-based or clus-
tering methods. [6], [7]. However, the feature extraction methods
with manual intervention cannot achieve expected results with
a good generalization ability. Therefore, discriminative feature
extraction from HSIs remains challenging.

With the application of deep learning techniques, especially
deep convolutional neural networks (CNNs), HSIs classifica-
tion performance has made great progress [4]. According to
the difference of input features, CNN-based methods could
be roughly divided into spectral-based methods and spectral-
spatial-based methods. Spectral-based methods [8], [9] utilize
the spectral signatures of each pixel as input, without considering
the spatial information. Spectral-spatial-based methods [10],
[11], [12] extract patches that consist of the central target pixel
and its neighboring pixels to effectively integrate both spectral
and spatial features. Besides CNNs, recurrent neural networks
(RNNs) [13], gated recurrent unit network (GRU) [14], long
short-time memory [15], and generative adversarial networks
(GANs) [16], [17], [18] have also been widely explored for HSIs
classification.

The abovementioned models extract features using deep neu-
ral networks but without attention modules. Attention mech-
anisms have also been introduced to improve the image clas-
sification results [19]. The attention mechanism is an emerging
technique in recent years to simulate the signal processing mech-
anism unique to the human vision system, and it quickly acquires
the target regions that need to be focused on [20], [21]. The aim
of attention is to create dependencies among different channels
within feature maps and capture the meaningful information
encoded in channel dimensions. The attention mechanism has
been widely studied in the field of computer vision [22], [23],
as well as in HSIs classification tasks [24], [25].

However, most of the attention modules applied in the exist-
ing networks establish interrelationships between the spectral
channels and the spatial features, together or separately, for
HSIs classification, while ignoring the importance of cross-
dimensional interaction with the number of obtained feature
maps [26]. 3-D convolutional layers create three-dimensional
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feature maps from inputs with spatial and spectral dimensions
and the feature maps correspond to the learned representation
of the input data. Incorporating the number of feature maps
in an attention module of 3-D CNNs can selectively highlight
the most informative features and suppress both irrelevant and
noisy features. Therefore, incorporating the number of feature
maps in an attention module can improve the quality of the
learned features and increases the accuracy of the model. To
simultaneously model the interactions among the number of
feature maps, spectral depth, and spatial locations, i.e., height
and width, inspired by the triplet attention mechanism [27], a
new quadlet attention is proposed in this article for accelerating
the learning of discriminative spectral and spatial features during
models training. Quadlet attention constructs the relationship
among different dimensions of the input tensor, i.e., the number
of feature maps, spectral channels, and spatial locations to ex-
tract the cross dimensional attention weights by capturing cross
dimension interaction using a four-branch parallel architecture.

Consider the shape of input tensor (B,C,D,H,W )where the
batch size B, the number of feature maps C, spectral depth D,
spatial height H , and width W are generated during the forward
propagation of CNNs. The corresponding four independent
branches of quadlet attention can be modeled as (D,H,W ),
(C,H,W ), (D,C,W ), and (D,H,C), to establish the depen-
dencies between channels, bands, spatial height, and width,
respectively. Quadlet attention encodes interchannels and spatial
information for a given input tensor and develops interdimen-
sional interdependence through permutation operation, followed
by a cost effective residual connection. The proposed quadlet
attention module is utilized to design a simple and effective
cross dimensional spectral-spatial residual interaction network
for HSI classification. The main contributions of this article are
summarized as follows.

1) We integrate a simple and effective cross dimensional
attention called triplet attention in HSI classification.
Moreover, we consider one additional dimension to further
propose the quadlet attention, which could establish the
dependencies between any three dimensions among the
number of feature maps, spectral depth, the spatial height
and width of input tensor.

2) The quadlet attention module is integrated with an im-
proved SSRN which enables learning of cross dimensional
spectral-spatial feature representation for the HSIs classi-
fication task.

The rest of this article is organized as follows. Section II
introduces related work in detail. The proposed quadlet attention
module and the developed QuadNet architecture are described
in detail in Section III. The experimental setup and results are
provided in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

A. HSIs Classification Using Conventional Networks

Many conventional networks without attention mechanisms
have been widely explored for HSIs classification. From the 1-D
spectral perspective, Hu et al. [8] directly classified HSIs from
the spectral domain using a 1-D CNN. Gao et al. [9] extracted

spectral information and transformed the 1-D spectral array to
a 2-D feature map. Then, they classified the HSIs by stacking
convolutional layers with kernel sizes of 1× 1 and 3× 3. For
2-D spatial frameworks, Yu et al. [28] took the original data
as input and employed a 2-D CNN for HSIs classification.
Ding et al. [29] trained a 2-D CNN framework where the
kernel size was adaptively learned from the data to classify
HSIs. More common approaches involve extracting spectral
and spatial features jointly for HSIs classification. For instance,
Roy et al. [30] proposed a hybrid spectral convolutional neural
network (HybridSN), which includes spectral-spatial 3-D-CNN
and spatial 2-D-CNN. The former learns the joint spectral-spatial
feature representations, and the latter extracts more abstract
spatial information. Zhong et al. [31] developed a supervised
deep learning framework called spectral-spatial residual net-
work (SSRN) for HSI classification. SSRN includes four con-
secutive residual blocks to capture discriminative features from
spectral signatures and spatial contexts. Paoletti et al. [32]
proposed a deep pyramidal residual network to extract deeper
spectral-spatial representations through more convolutional fil-
ters of the network. Zhang et al. [33] designed a multiscale dense
network to combine and make full use of different scale fea-
tures. Mou et al. [34] proposed a fully end-to-end conv–deconv
network for unsupervised spectral-spatial feature learning. The
proposed conv–deconv network can largely alleviate the reliance
on training sample data with labels and solve the problem
of a limited number of hyperspectral remote sensing image
samples.

In addition to CNNs, other types of networks, such as
RNNs GANs, have also been applied for HSIs classification.
Mou et al. [35] considered HSIs as sequenced data and ex-
plored the efficient RNN for HSIs classification. In addition,
Hang et al. [36] considered spectral signatures to be sequences
and used GRUs to create a cascaded RNN model to separate the
important representation from the redundant data. To deal with
the issue of limited sample data and the challenge of gathering
ground-truth labels, Hang et al. [37] proposed a multitask gen-
erative adversarial network (MTGAN). The proposed MTGAN
consists of a generator network for hypercube reconstruction
and classification, and a discriminator network to discriminate
between the real and reconstructed data. Similarly, Roy et al. [38]
introduced a generative model which can efficiently tackle the
problem of classwise imbalanced training samples for HSIs
classification.

B. HSIs Classification Using Attention-Aided Networks

In recent studies, attention module has been introduced to
establish the dependencies within spectral bands or spatial loca-
tions. Paoletti et al. [39] designed an attention-aided capsule
network to increase hyperspectral classification performance
and computational efficiency. The attention mechanisms could
help extract and identify the most representative and meaningful
features of the images. Yu et al. [40] presented a feedback
attention-guided spectral-spatial dense CNN to address the prob-
lem of information redundancy and inefficient representations
of spectral-spatial features for hyperspectral classification tasks.
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Fig. 1. Overall architecture of the proposed multibranch cross attention residual network.

Yang et al. [41] proposed a cross-attention spectral-spatial
network to solve the problem of the high sensitivity of con-
volutional features extracted from the HSIs. However, it still
exhibited a poor classification performance for the pixels near
the edges. Hang et al. [42] designed an attention-aided CNN
model to fully explore the discriminative features by focusing
on the spectral bands and spatial positions within small hyper-
cubes. Zhu et al. [43] proposed a residual spectral-spatial at-
tention network (RSSAN) for HSIs classification. Nevertheless,
a notable limitation of RSSAN was the lack of utilization of
3-D CNN for discriminative spectral-spatial feature extraction.
Haut et al. [44] incorporated the attention mechanisms to the
residual networks for characterizing the spectral-spatial infor-
mation. This approach resulted in an improved classification
performance but the quality of the captured features needed
to be enhanced further. Mou et al. [45] developed a spectral
attention module to selectively highlight the most important
spectral bands in HSIs using the gating mechanisms. Despite
their method achieved promising results, it lacked an inter-
pretation for assessing the importance of the spectral bands
obtained through the spectral attention module. Li et al. [46]
developed a double-branch dual-attention mechanism network
(DBDA), which enables learning of complementary spectral
and spatial features by utilizing channel attention and spatial
attention separately. Mei et al. [47] introduced a novel approach
named the spectral-spatial attention network for HSI classifica-
tion. The network utilized a combination of RNNs with attention
to capture spectral correlations within a continuous spectrum,
and CNNs with attention to model the spatial relevance between
neighboring pixels in the spatial domain. However, the gener-
alization of these methods to complex scenarios was not taken
into consideration. Wu et al. [48] constructed a 3-D CNN-based
residual group channel and spatial attention network for HSIs
classification. The attention modules selectively strengthened
the informative features in the input data, enhancing both the
spatial as well as channelwise representations. The developed

method improved the classification accuracy but also resulted in
an increase in the number of network parameters.

Furthermore, the self-attention transformers have also been
applied in the field of HSIs classification [49], [50], [51], [52].
Liu et al. [53] designed a scaled dot-product central attention
module to extract spectral-spatial information from the central
pixels and their adjacent pixels. Based on the proposed atten-
tion module, a central attention network was developed, which
achieved superior classification performance. Zhao et al. [54]
presented a graph transformer network with graph attention
mechanism to learn node features on heterogeneous graphs. The
proposed method can solve the problem of zero weight edge
in heterogeneous graph through assigning weights for edges.
Nonetheless, most of the aforementioned methods primarily
focus on establishing dependencies among spectral and spatial
dimensions, ignoring the potential interaction across different
dimensions, such as the number of feature maps.

III. PROPOSED METHOD

Fig. 1 shows the overall architecture of the proposed multi-
branched cross attention residual network (QuadNet). The pro-
posed method mainly consists of four crucial steps as follows.

1) Extraction of HSIs small hypercubes and low-level repre-
sentations.

2) Establishment of dependencies among the number of fea-
ture maps, spectral channels, spatial height and width
through the quadlet attention module.

3) Extraction of spectral-spatial features via triplet attention-
aided spectral-spatial residual blocks.

4) Classification by fully connected layer and softmax func-
tion.

A. Preprocessing of HSI Data

Suppose the HSI data are represented as H ∈ Rh,w,b, where
h,w denote the spatial dimension, i.e., height and width, and b
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TABLE I
PARAMETERS CONFIGURATION OF QUADNET FOR THE IN DATASET

denotes its spectral dimension, namely, the number of bands of
the hyperspectral data. Among all pixels, suppose there are N
pixels with category labels {x1, x2, . . . , xn} ∈ R1×1×b, and the
number of land-cover categories is c, then the corresponding true
values of N pixels are {y1, y2, . . . , yn} ∈ R1×1×c. To consider
both the spectral and spatial information from HSIs, the central
pixel with ground truth label and their neighborhood pixels in
a certain range of spatial dimensions are extracted simultane-
ously, thus forming a small hypercube of X ∈ Rp×p×b, where p
denotes the patch size. All the N samples with their associated
labels are randomly divided into training sets (Xtrain), validation
sets (Xval), and test sets (Xtest), respectively. Xtrain is used to
train the model and optimize the model parameters, Xval is used
for model selection during training, and Xtest is used for final
model evaluation.

B. Overall Classification Framework

Let us consider Indian pine (IN) dataset with the size of
200× 145× 145 as an example. The overlapping patches are
extracted to create small hypercube of the size 200× 11× 11.
The input data of shape (B, 1, 200, 11, 11) are given to the
initial 3-D convolution layer, where B represents the batch
size, 1 is the number of feature maps and 200, 11, and 11
denote the spectral bands, height, and width, respectively, of
the extracted hypercube of the IN dataset, as shown in Fig. 1.
Table I shows the model parameters for each block. The network
takes a small hypercube as input and the first 3-D convolution
layer is applied to extract low-level features by considering the
convolution operations in both spectral and spatial dimensions
with the help of a 3-D convolutional kernel of size (7, 1, 1), and
stride of (2, 1, 1), followed by a batch normalization (BN) layer.
We consider the input small hypercubes as the initial feature
map with the number of 1, and the number of kernels in the first
layer, i.e., the number of output feature maps is set to 24. The
first 3-D convolutional layer will increase the number of feature
maps from 1 to 24, decrease the spectral dimension from 200
to 97, and keep the same spatial dimension. BN is applied after
every convolutional layer to prevent the model from overfitting.

To establish the cross dimensional interaction among differ-
ent dimensions of feature maps, i.e., number of feature maps,
spectral depth, and spatial locations, a quadlet attention module,
which can effectively extract the meaningful feature represen-
tation using the interaction of all the dimensions of the feature
maps is introduced and explained step by step in the following
section. The quadlet attention module does not change the shape
of its input feature map, so the shape of the output feature map
obtained after the attention module is still (B, 24, 97, 11, 11).
After exploring the interaction in different dimensions of the
feature maps, the feature extraction is further performed using
a 3-D convolution with a kernel size of (1, 1, 1) and stride of
(1, 1, 1), followed by a BN, and a ReLU activation layer. Then
four successive triplet attention aided spectral-spatial residual
blocks are used to further extract spatial and spectral features. Fi-
nally, two fully connected layers are used to obtain the predicted
label. Fig. 1 shows the framework of the proposed QuadNet
network, which is described in the following sections.

1) 3-D Convolution: Suppose the input feature
map of the lth 3-D convolutional layer is defined by
(B,Cl−1, Dl−1, H l−1,W l−1), where Cl−1 is the input channel,
i.e., the number of input feature maps, and Dl−1, H l−1, and
W l−1 represent the spectral depth, spatial height, and width of
the (l − 1)th layer output feature maps. The lth convolutional
layer has Cl convolutional kernels of size (kl1, k

l
2, k

l
3), and

subsampling strides of (s1, s2, s3). Zero padding is also
employed to keep the shape of output feature maps unchanged.
Then the lth convolutional layer generates an output feature
map of shape (Cl, Dl, H l,W l), where the number of output
feature maps is equal to the number of kernels Cl. The spectral
depth Dl equals to 1 + (Dl−1 − kl1)/s1, spatial height H l

equals to 1 + (H l−1 − kl2)/s2, and the spatial width is similar
to its height. The lth 3-D convolutional layer with BN operation
could be expressed by as follows:

Xl
p =

⎛
⎝Cl−1∑

j=1

ReLU

(
X̂

l−1

j

)
∗Wl

p + blp

⎞
⎠ (1)
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Fig. 2. Proposed quadlet cross attention module.

X̂l−1 =
Xl−1 − μ

(
Xl−1

)
√

σ2(Xl−1) + ε
· γ + β (2)

where, ∗ denotes the convolution operation,Xl−1
j is the jth input

tensor, Wl
p and blp are the weights and additive inductive bias of

the pth filter bank in the lth convolution layer. BN is represented
in (2), where μ and σ2 represent the expectation and variance, γ
andβ are the learnable parameters during the training process.R
is activation function and calculated as ReLU(x) = max(0, x).

2) Quadlet Attention: This attention aims to model the cross
dimensional interaction of input tensor, which include the num-
ber of feature maps, spectral depth, spatial height and width,
respectively. The quadlet attention module Fquad(·) takes the
convolutional feature map with shape (B,C,D,H,W ) as input,
where C denotes the number of feature maps, D is the spectral
depth, and H , W are the spatial height and width, respectively,
and produces a calibrated feature map O of the same shape as
the input

O = Fquad(X; θ) (3)

where, θ represents the learnable parameters of the attention
function. Fig. 2 illustrates the structure of the quadlet atten-
tion module which considers the convolution operation in four
different branches to learn the dependencies between the di-
mensions (D,H,W ), (C,H,W ), (D,C,W ), and (D,H,C)
of the input tensor. Here, we ignore the batch size dimension
and only consider the last four dimensions of the feature maps,
i.e., (C,D,H,W ).

Fig. 3. Single branch in quadlet attention module, take the second branch as
an example.

The quadlet attention mechanism is implemented via four
independent branches for extraction of the cross-dimensional
feature information, and they are named Fc(·), Fd(·), Fh(·), and
Fw(·), respectively, according to their corresponding rotational
dimensions. To establish the cross-dimensional relationship of
input feature maps with a shape of (B,C,D,H,W ), the ex-
tracted features are aggregated using an elementwise addition
operation as

Fquad(X; θ)

=
Fc(X; θc)⊕ Fd(X; θd)⊕ Fh(X; θh)⊕ Fw(X; θw)

4
(4)

where, θc, θd, θh, and θw represent trainable parameters of the
four branches of the quadlet attention module, i.e., Fc, Fd, Fh,
and Fw, respectively. ⊕ is the elementwise addition operation.
Each branch of the quadlet attention module is explained next

Fc(X; θc) = σ(BN(Conv3D(Z−pool(X))))⊗ I(X) (5)

Z − pool(X) = [MaxPool(X),AvgPool(X)]. (6)

The Fc(X; θc) branch is used to build interaction among the
spectral depth, spatial height and width of the feature maps. To
do this, global maximum pooling and average pooling are first
performed in the number of feature maps dimensions, as shown
in (6), where MaxPool and AvgPool represent max pooling and
average pooling, respectively. The results produce a feature map
with a shape of (2, D,H,W ). After that, feature extraction is
performed using 3-D convolution followed by a BN operation to
produce the intermediate feature of dimensions (1, D,H,W ).
To obtain the cross-dimensional attention weights, the interme-
diate features are passed through a sigmoid (σ) function, and
finally the dot product (⊗) with the input features denoted by
identity function I(X) is conducted to obtain the output features

Fd(X; θd)

= σ(BN(Conv3D(Z−pool(X̄D,C,H,W ))))⊗ X̄D,C,H,W .
(7)

The second branch Fd(X; θd) is used to perform the inter-
actions among the number of feature maps, the spatial height
and width. First, the positional relationship is created between
feature maps C and spectral depthD in the feature map by rotat-
ing the input tensor, and this produces feature maps X̄D,C,H,W .
Then global pooling and average pooling are performed in the
spectral depth dimension and the resultant feature is concate-
nated to obtain the output feature map of shape (2, C,H,W ).
The term “rotation” means the permutation of the dimensions of
the input tensor. In Fig. 3, the red arrow represents the dimension
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permutation operation, which can be viewed as a rotation opera-
tion. Then, the 3-D convolutional layer, BN blocks are utilized in
the last three dimensions, including the number of feature maps,
height, and width, to capture the cross dimensional interaction.
Finally, the obtained feature maps are passed through the sig-
moid function to produce the corresponding attention weights.
The obtained attention weights are produced with the original
permuted feature maps, and the dimensions of the spectra and
channels are exchanged again to obtain the final output of shape
(C,D,H,W ), as shown in Fig. 3.

Fh(X; θh)

= σ(BN(Conv3D(Z−pool(X̄H,D,C,W ))))⊗ X̄H,D,C,W .
(8)

In the third branchFh(X; θh), the cross-dimensional attention
weights between the spectral depth D, the number of feature
maps C, and the spatial width W are constructed. Similar to the
second branch, the input feature map is firstly permuted between
the number of feature maps C and the spatial height H to obtain
a feature map X̄H,D,C,W . Next, the height H dimension is
globally and averaged pooled and concatenated along the second
dimension, i.e., spatial H dimension, to obtain a feature map
with shape (2, D,C,W ). The output is passed through a 3-D
convolution layer, followed by BN and a sigmoid (σ) function,
to calculate the attention weights of spectral, channel, and width
dimensions. Finally, the output is further rotated to keep same
with its original input feature shape (C,D,H,W )

Fw(X; θw)

= σ(BN(Conv3D(Z−pool(X̄W,D,H,C))))⊗ X̄W,D,H,C .
(9)

The fourth branchFw(X; θw) is similar to the second and third
branches of quadlet attention to capture the relationship infor-
mation among spectral, height, and channel. The input features
are first permuted in C and W dimensions to obtain a feature
map of shape (W,D,H,C). Then, global and average pooling,
followed by 3-D convolution and BN, are applied, which is then
passed through the sigmoid activation function to obtain the
cross-dimension attention weights. After the elementwise dot
product between attention weights and input tensor, we obtain
the output feature map having the same shape as its input.

The calibrated features of shape (C,D,H,W ) generated by
each branch of quadlet attention module are then aggregated
using elementwise addition and the result is divided by the
total number of branches, as shown in (4). It can be seen from
(4) that the triplet attention is a special case of the quadlet
attention (shown in Fig. 2), which ignores the cross dimensional
interaction in the channel dimension of the input tensor, and
hence, we can rewrite the (4) as

O = FTA(X; θ) =
Fd(X; θd)⊕ Fh(X; θh)⊕ Fw(X; θw)

3
(10)

where, FTA(X; θ) denotes the triplet attention applied on input
tensor X .

3) Triplet Attention Aided Spectral-Spatial Residual Block:
The residual network has been well designed to deal with the gra-
dient disappearance problem that occurs during the training of
hyperspectral classification tasks and has generated great interest
in the remote sensing research community. In order to extract
more robust spectral and spatial information, the triplet attention
aided SSRN, which incorporates a triplet attention layer after ev-
ery residual block is introduced. The output of quadlet attention
is then passed through a 3-D convolution followed by BN and
the ReLU activation function to perform feature normalization
with the help of (1, 1, 1) the pointwise convolutional kernel.
The gray shading structures in Fig. 1 show the triplet attention
aided spectral-spatial residual block. Why choosing triplet rather
than quadlet in the spectral-spatial residual block is mainly
based on the tradeoff between classification performance and
computational cost. In spectral-spatial residual blocks, both the
spectral and spatial residual blocks are repeated twice, which
requires us to use the attention module four times. In comparison
to the triplet attention module, the quadlet attention module has
more parameters and operations. If it is also used in subsequent
spectral-spatial residual blocks, the computational cost of the
network will be increased significantly.

To learn the robust representation, the normalized convolu-
tional feature input is passed through four consecutive triplet
attention aided spectral-spatial residual blocks. Each residual
block consists of a Conv3D layer followed by a BN and a
ReLU activation layers, and these three primitive steps are
repeated twice in a residual block for enhancing the feature
extraction as well as forward and backward propagation of
information. Suppose Xk−1 represents the input feature map of
the spectral-spatial residual blocks, which is parameterized with
FRN(X

k−1;ω1, ω2) and the output feature map is then passed
through the triple attention layer FTA(·), and the final feature
representation can be calculated as follows:

Xk+1 = I(Xk−1) + FTA(FRN(X
k−1;ω1, ω2))

(11)

FRN(X
k−1;ω1, ω2) = ReLU(BN(Xk ∗Wk+1 + bk+1) (12)

Xk = ReLU(BN(Xk−1 ∗Wk + bk)) (13)

where, I(Xk−1) is the skip function connects input to the output
of a residual unit, Xk+1 is the output of the triple attention aided
spectral-spatial residual block. ω1, ω2 are the parameters of the
triple attention aided spectral-spatial residual blocks, and ω1 =
{Wk,Wk+1}, and ω2 = {bk,bk+1} denote the weight matrix
and bias associated with the kth and (k + 1)th 3-D convolutional
layers, respectively.

In Fig. 1, we consider Lx as 2, which means two units of
both spectral and spatial residual blocks used sequentially are
investigated in order to improve the discriminative capability
of each residual block. One may readily distinguish between
spectral feature learning and spatial feature learning based on the
convolutional operation used to perform convolution in depth
or spatially to extract the robust feature representation. Each
residual block having 24 kernels shown in Fig. 1 and extracting
spectrally focused spatial features is done with the last two
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Fig. 4. Classification maps generated by different models over IN dataset. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA.
(g) SPANet. (h) ViT. (i) MFT. (j) QuadNet. (k) Ground truth.

ResBlocks whereas extracting spatially focused spectral features
is done with the first two ResBlocks. Table I shows the shapes
of the applied kernels and strides for both the spectral and
spatial residual blocks. The values of the hyperparameters (the
number of feature maps, the patch size and convolutional kernel
size) are determined by refereeing to the widely used setting
for A2S2K-ResNet [25] and SSRN [31]. As shown by many
existing research, the 3-D convolutional operation enables the
model to capture spatial and spectral dependencies among the
input data, which is essential for achieving high performance on
HSIs classification. Thus, 3-D convolutional operation is also
employed here. The receptive field of the convolutional filters,
which regulates the amount of features to be learned by the
model, is determined by the kernel size in a 3-D convolutional
operation. In our method, the kernel size is selected by referring
to the widely accepted setting, such as those in SSRN [31].
The kernel of size (7,1,1) with a stride of (2,1,1) in the first
convolutional layer is selected to reduce the spectral dimension
for saving computation resources. A kernel size of (7,1,1) is
used in the first two residual blocks to extract spectral features
whereas a kernel size of (1,3,3) is applied in the last two residual
blocks to extract spatial features.

As a result, the discriminative capability of the proposed
model is increased by cooperative learning of spectral and spatial
information. In addition, the triple attention is embedded in the
residual blocks to achieve spectral and spatial cross dimensions
interaction of the residual feature representation. The triplet
attention in the spectral-spatial residual block captures the spec-
tral and spatial cross dimensional relationship in spectral depth,
spatial height and width, respectively, ignoring the dimension of
the number of channels.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

The experiments are conducted on three widely used HSI
datasets, including IN, University of Pavia (UP), Salinas (SA),

and University of Houston (UH). The details of each dataset are
explained in the following.

1) The IN dataset was collected by the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) sensor over
the test site in northwest India in 1992. The IN dataset
has a size of 145× 145 pixels in the spatial dimension
and contains 224 bands in the spectral dimension. Twenty
four bands were excluded due to the effect of water vapor
absorption. The wavelength range is 400–2500 nm, and
the spatial resolution of each pixel point is 20 m. Out
of 21 025 pixels, a total of 10 249 pixels that contain
16 different kinds of vegetation classes are selected. 10%
of the selected samples are used for training, 10% for
validation, and 80% for testing. Fig. 4 shows the dis-
tribution of various categories in the IN dataset and the
colour representation for each land cover category in the
IN dataset.

2) The UP dataset was acquired by the reflective optics
system imaging spectrometer sensor in 2001 at the UP
in northern Italy. It contains 610× 340 pixels, each with a
spatial resolution of 1.3 m. The spectral dimension is 103
with wavelengths in the 430–860 nm range. All the pixels
with labels were classified into nine different urban land
cover types. The color representation and the number of
instances for each category are illustrated in Fig. 5. For
the UP dataset, 5% of the samples are used as training
samples, 10% as validation samples, and 85% used as test
samples.

3) The SA dataset was acquired by the AVIRIS sensor in SA
Valley, California. The dataset has 512× 217 pixels and
204 spectral bands with a spatial resolution of 3.7 m. The
54 129 pixels with labels were divided into a total of 16
different terrestrial categories. Fig. 6 shows the ground
truth and the number of labeled samples in the SA dataset.
During the experiment, 5% of the samples are selected
as training samples, 10% as validation samples, and the
remaining 85% are considered as test set.
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Fig. 5. Classification maps generated by different models on UP datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA.
(g) SPANet. (h) ViT. (i) MFT. (j) QuadNet. (k) Ground truth.

4) The UH dataset was collected over the campus of the
UH using a compact airborne spectrographic imager with
a spatial resolution of 2.5 m and a spectral range of
380–1050 nm. The dataset consists of 144 bands and cov-
ers an area of 340×1905 pixels. It contains 15 land cover
classes. Fig. 7 shows the ground truth and the number of
labeled samples in the SA dataset. During the experiment,
5% of the samples are selected as training samples.

B. Experiment Setup

To evaluate the effectiveness of the proposed QuadNet
method, we compare it with various state-of-the-art models
using these three adopted datasets. The reference models in-
clude a HybridSN [30], a deep SSRN [31], and its variants
with different attention mechanisms, e.g., A2S2K-ResNet [25],
DBMA [33], DBDA [46], RSSAN [43], and SPANet [55], re-
spectively. Besides, two representative transformer-based meth-
ods, vision transformer (ViT) [56] and multimodal fusion trans-
former (MFT) [52], are selected for comparison. It should be
noted that the MFT method used in our experiments is a modified
version where only the hyperspectral branch of that in [30] is
kept and the LiDAR part is removed. This is because this study
only involves HSI classification.

For all the models, cross-entropy is used as a loss function to
measure the classification effect of the model parameters during
training, and the Adam optimizer is chosen to back-propagate
the error gradient and update the model weights in the network
with a learning rate 0.001. The models are trained for 200 epochs

in each experiment. In addition, in order to prevent the model
from overfitting on the training set, an early stop strategy is
used. When the loss value of the model on the validation set
does not decrease for 50 consecutive times, the model training
is terminated and the weights with the lowest loss value on the
validation set are saved. The model weights corresponding to
the lowest loss values on the validation set are used to evaluate
the test set. The whole experiment is repeated three times, and
the AA and standard deviation of the three experiments are
obtained to avoid the randomness that may exist in a single run.
All experiments are performed on the compute Canada server
with 64 GB memory.

For the input tensor (i.e., extracted small patches), the min–
max scaling normalization is implemented before feeding it into
the deep learning models used in our experiments. Min–max
scaling normalization is a commonly used technique to scale
the input features to a fixed range of values, [–0.5, 0.5] here. It
can also help reduce the impact of different scales on the learning
process and improve the performance of the model.

C. Classification Results

In this section, the qualitative and quantitative experimental
results are analyzed. Three different evaluation metrics, includ-
ing overall accuracy (OA), average accuracy (AA), and kappa
coefficients (Kappa) are used for model evaluation.

1) Results on Random Split Datasets: We first conduct ex-
periments over the IN, UP, and UH datasets to compare the
performance with and without quadlet attention, the results are
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Fig. 6. Classification maps generated by different models on SA datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA.
(g) SPANet. (h) ViT. (i) MFT. (j) QuadNet. (k) Ground truth.

TABLE II
CLASSIFICATION RESULTS WITH TRIPLET AND QUAD ATTENTION MODULE

shown in Table II. The table shows that the classification per-
formances in terms of OA, AA, and Kappa have been improved
after incorporating the additional dimension, i.e., the number of
feature maps.

The classification results obtained by eight different methods
with 10% IN training data are given in Table III. From the table,
it can be seen that the HybridSN and RSSAN networks obtain
lower OA, i.e., HybridSN = 87.83% and RSSAN = 85.57%.
Among the six CNN-based networks incorporated different at-
tention modules, the method proposed in this article achieves the
best classification results with OA=98.22%, AA=98.18%, and
Kappa = 97.97%. The accuracy of class 9 reaches 100%. The
classification results of QuadNet outperform all other networks
that contain different spectral and spatial attention modules,
including A2S2K-ResNet (OA = 97.81%), DBMA (OA =

96.23%), DMDA (OA= 96.46%), and SPANet (OA= 91.16%).
This is because the proposed multibranches cross-attention can
simultaneously establish the dependencies among four different
dimensions, i.e., the number of feature maps, spectrum, spatial
height, and spatial width, thus achieving higher classification
results. Besides, the accuracy of ViT is relatively lower than that
of QuadNet, while MFT shows small decrease in performance
compared with QuadNet.

Fig. 4 shows the classification results of different methods
on IN dataset. It can be seen that a large amount of noise ap-
peared in the classification maps obtained using the HybridSN,
RSSAN, and ViT methods, indicating that a large number of
pixels are misclassified. The classification maps obtained by the
A2S2K-ResNet network have some confusion between Alfalfa
(red) and Hay-Windrowed (dark gray), and the classification
maps obtained by the DBMA and SSRN methods have con-
fusion between soybean-notill (yellow-brown) and corn-notill
(light green). The classification map obtained by the Quad-
Net network proposed in this article is the closest to the true
map, thus proving its superiority over the other seven methods.
However, a little misclassification happened in the boundary
region between corn-notill (light green) and soybean-notill (dark
green).

To verify the classification performance sensitivity of differ-
ent sample sizes for these models, the classification results of
the proposed QuadNet and other models are compared using
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Fig. 7. Classification maps generated by different models on UH datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA.
(g) SPANet. (h) ViT. (i) MFT. (j) QuadNet. (k) Ground truth.

TABLE III
CLASSIFICATION RESULTS OF DIFFERENT METHODS WITH 10% TRAINING SAMPLES ON THE IN DATASETS
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Fig. 8. OA, AA, and Kappa values over IN dataset under different training samples. (a) OA. (b) AA. (c) Kappa.

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT METHODS WITH 5% TRAINING SAMPLES ON THE UP DATASETS

Fig. 9. OA, AA, and Kappa values over UP dataset under different training samples. (a) OA. (b) AA. (c) Kappa.

different proportions of training data. Table 8 shows the corre-
sponding OA, AA, and Kappa results. For the IN dataset, 2%,
3%, 5%, 10%, and 15% are chosen as the training data, and the
corresponding OA, AA, and kappa values of the QuadNet model
are depicted by the light blue curves in Fig. 8. It can be seen from
the figure that the classification performance of various models
increases with the number of training samples. The proposed
QuadNet has the best classification performance for ranging
amount of training samples. Under the condition of limited train-
ing sizes, QuadNet also obtains highest classification accuracy,
whereas the rest of the models, such as HybridSN and RSSAN,
are relatively worse in terms of OA, AA, and Kappa.

The classification results of different models on the UP dataset
are illustrated in Table IV. The UP dataset has more samples with
ground truth than the IN dataset, therefore, the OA of all methods
is higher than 95% with only 5% as training samples. Among

all the methods, the HybridSN, RSSAN, ViT similarly show the
lower OA in classification. Nevertheless, the QuadNet achieves
the highest OA (99.88%), AA (99.83%), and kappa (99.85%).

Fig. 5 shows the classification graphs obtained by different
models when 5% data are used for training. It can be seen
that large differences are observed between the ground truth
and the classification maps obtained by HybridSN, RSSAN.
For example, there is an obvious confusion of pixels between
bare soil (pink) and meadows (light green) in the maps. Since
the training data are sufficient, SSRN, A2S2K ResNet, DBDA,
DBMA, and the QuadNet proposed in this article, all achieve
an accuracy greater than 99.5%. Fig. 9 shows the OA, AA, and
kappa obtained under different number of training samples. Due
to the availability of sufficient labeled samples in UP datasets,
most methods demonstrate good classification performance.
However, to assess the model’s capability with fewer samples,
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS WITH 5% TRAINING SAMPLES ON THE SA DATASETS

Fig. 10. OA, AA, and Kappa values over SA dataset under different training samples. (a) OA. (b) AA. (c) Kappa.

we evaluate the classification accuracy using a smaller number of
samples. For the UP dataset, the training sample proportions of
1%, 2%, 3%, 4%, and 5% are considered, and it can be seen from
the figure that the proposed model still achieves better results
with small training sample proportions. When only 1% are
used for training, QuadNet achieves the highest OA (98.42%),
which is better than SSRN (97.58%), A2S2K ResNet (96.04%)
DBMA (97.41%), and DBDA (96.89%), as shown in Fig. 9(a).
In addition, it can be seen that HybirdSN and RSSAN are less
effective under small sample conditions.

Table V lists the average OA, AA, Kappa, and their test
standard deviations based on three runs using 5% of the SA
dataset. Similar to the IN and UP datasets, the proposed method
outperforms other network models. Specifically, the QuadNet
method achieves an OA of 99.10%, while SSRN, DBMA, and
DBDA are 98.03%, 98.75%, and 98.60%, respectively. Hy-
bridSN, RSSAN, ViT are relatively less effective. In terms of
AA and Kappa, the proposed QuadNet also display the highest
scores compared with SSRN, DBMA, and A2S2K ResNet. In
addition, the deviations obtained from the three experiments
show that QuadNet has the lowest deviations for OA (0.01%),
AA (0.02%), and Kappa (0.01%), which is lower than A2S2K
ResNet, DBMA, and DMDA. This indicates that the proposed
network has higher stability.

Fig. 6 illustrates the classification maps generated by dif-
ferent methods and the ground truth. It can be seen that the

classification maps obtained by QuadNet are the closest to the
ground truth, while other methods, such as DBMA, RSSAN,
and SSRN, display more confusion between Vineyard untrained
(orange) and grapes untrained (dark gray), resulting in a lower
classification accuracy. Similar to UP datasets, the SA dataset
also provides sufficient labeled samples. Therefore, we conduct
experiments using fewer training dataset proportions of 1%,
2%, 3%, 4%, and 5%, as shown in Fig. 10. Again, QuadNet
achieves better results than all other models at different amounts
of training sets.

To further demonstrate the effectiveness and robustness of the
proposed model, a relatively new and advanced dataset—the UH
dataset is also employed. Table VI displays the classification
results of various methods on the UH dataset. As evident
from the table, the proposed QuadNet outperforms all other
methods in terms of OA, AA, Kappa, and for the majority of
the classes, demonstrating its superiority. On the other hand,
ViT, HybridSN, and RSSAN exhibit lower accuracies when
compared to other CNN or transformer-based methods. Fig. 7
presents the classification maps generated by different methods
and provides a visual representation of the classification
performance of each method on the UH dataset. The maps
clearly demonstrate that the proposed method outperforms other
methods, as it generates more clear and distinct boundaries
between different land cover categories. Fig. 11 displays the
accuracy corresponding to different percentage (1%, 2%, 3%,
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TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS WITH 5% TRAINING SAMPLES ON THE UH DATASETS

Fig. 11. OA, AA, and Kappa values over UH dataset under different training samples. (a) OA. (b) AA. (c) Kappa.

Fig. 12. Spatial distribution of disjointed IN pine dataset. (a) Disjointed
training set. (b) Disjointed test set.

4%, and 5%) of training samples. As shown in the graph, the
proposed method (see the light blue curve) achieves the highest
accuracy even with a limited number of training samples,
demonstrating its superior generalization capacity.

Figs. 14–17 present the distribution of the extracted features
from four datasets for different methods using T-distributed
stochastic neighbor embedding (t-SNE). For the proposed
method, the same classes of samples are clustered together
and there is a significant difference among different categories,
further demonstrating the strong classification capacity of the
proposed method.

2) Results on Disjointed Datasets: The sampling method
using random selection of training data for HSIs is prone to the
problem that the training and test sets are similar. For classifying

Fig. 13. Spatial distribution of DUP dataset. (a) Disjointed training set.
(b) Disjointed test set.

any pixel, a patch with it as center is used as input. In the
random sampling method, the extracted patches for training
and testing always overlap in some extent. For example, two
adjacent pixels with one belonging to the training dataset and the
other for testing, a large portion of overlap exists between their
corresponding patches, thus the training and testing datasets are
not completely separated. To avoid this issue, disjointed datasets
that are sampled from nonoverlapping regions, as illustrated in
the figure below are used. This ensures that the training and
testing sets are entirely disjoint, thus avoiding any potential
spatial overlap between them for better evaluating the robustness
of the models. The training and test data distribution of disjointed
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Fig. 14. T-SNE visualization of extracted features for IN datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA. (g) SPANet.
(h) ViT. (i) MFT. (j) QuadNet.

Fig. 15. T-SNE visualization of extracted features for UP datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA. (g) SPANet.
(h) ViT. (i) MFT. (j) QuadNet.

TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON DISJOINTED DATASETS
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Fig. 16. T-SNE visualization of extracted features for SA datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA. (g) SPANet.
(h) ViT. (i) MFT. (j) QuadNet.

Fig. 17. T-SNE visualization of extracted features for UH datasets. (a) HybridSN. (b) SSRN. (c) A2S2K-R. (d) RSSAN. (e) DBMA. (f) DBDA. (g) SPANet.
(h) ViT. (i) MFT. (j) QuadNet.

Indian pine (DIP) and disjointed University of Pavia (DUP)
datasets are shown in Figs. 12–13. Table VII shows the classifica-
tion results of different models on DIP and DUP datasets. It can
be seen that the classification results of all models are degraded
by different degrees due to the spatial separation of the training
and test sets. However, the proposed method in this paper still
achieves the best classification results on both datasets. On the
DIP dataset, QuadNet produces OA=81.70%, AA=79.29%,
and Kappa=85.99%. For the DUP dataset, the OA, AA, and
Kappa are 87.88%, 90.82%, and 84.31%, respectively.

D. Ablation Study

Ablation studies are conducted to further validated the effec-
tiveness of different modules in the proposed QuadNet model.

TABLE VIII
ACCURACY ANALYSIS IN TERMS OF OA, AA, AND KAPPA FOR DIFFERENT

MODULES OF THE PROPOSED FRAMEWORK

Three different modules, i.e., triplet attention aided residual
network (TA-Residual), quadlet attention aided residual network
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TABLE IX
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON DISJOINTED DATASETS

(Quadlet-Residual) and the proposed QuadNet model are com-
pared. In the configuration of TA-Residual, quadlet attention
module is removed from the proposed QuadNet model and
the remaining model keeps the triplet attention aided spectral
and spatial residual blocks unchanged. The second model is
Quadlet-Residual, which removes the triple attention from the
residual blocks and remains the quadlet attention module in
proper position of the QuadNet model. The final scenario is
the proposed QuadNet model discussed in Section III.

Table VIII depicts the OA, AA, and Kappa classification
results of the ablation experiments over the IN, UP, and SA
datasets. Overall, it can be seen from the table that QuadNet in-
corporating both attentions, i.e., quadlet and triplet can improve
the classification results in terms of OA, AA, and Kappa for
three datasets and achieves the best performance. Therefore, it
demonstrates that the cross dimensional interaction among dif-
ferent dimensions, i.e., the number of feature maps, the spectral
depth, spatial height and width helps emphasize discriminative
power of features extraction by suppressing useless or redundant
information.

E. Computational Cost Analysis

Table IX illustrates the number of trainable weights and
computational cost during the training process of the proposed
QuadNet as well as other comparison networks. From the table,
one can see that HybridSN has the largest number of param-
eters due to the 3-D convolution operation with large kernel
sizes. The DBMA and DBDA methods have similar parameter
numbers because of the use of multiscale kernel in the feature
extraction process. The proposed method QuadNet has similar
number of parameters as SSRN, and fewer than A2S2K-ResNet.
RSSAN has the least number of model parameters. In terms of
floating point operations (FLOPs), proposed QuadNet has nearly
550×106, less than DBMA, DBDA, and SPANet, but more than
other models, such as SSRN and A2S2K-ResNet.

V. CONCLUSION

In this article, a cross-attention module named quadlet is
proposed for capturing the dependencies of HSIs across different
dimensions during the forward propagation of the network. The
designed quadlet attention can build the relationships among the
number of feature maps, spectral bands, spatial height and width.
Besides, triplet attention is incorporated to spectral-spatial resid-
ual blocks to enhance the learning of spectral-spatial features.
Based on the quadlet cross-attention module and improved
spectral-spatial residual blocks, a quadlet cross-attention aided
residual network is further built for the HSI classification task.
With the help of generalized triple attention, the developed
network can extract more discriminative features and boost the

classification performance. A series of experiments are con-
ducted and the results show that the proposed Quadlet-Residual
can achieve higher classification accuracy with limited samples
due to the extracted cross dimensional dependencies and dis-
criminative power of feature representation.

However, the constraint also needs to be noted even though the
proposed strategy yields encouraging results in the experiments.
The presented approach uses 3-D convolutional processes,
which could be computationally expensive when compared with
2-D convolution. Moreover, the attention module involves an
additional dimension—the number of feature maps, this also
increases the computation complexity. In the future, the effect
of different attention mechanisms, especially the self-attention
mechanisms, on the classification performance of HSIs will be
investigated.
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