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Enhanced Feature Extraction From Assimilated
VTCI and LAI With a Particle Filter for Wheat Yield

Estimation Using Cross-Wavelet Transform
Yue Zhang, Pengxin Wang , Kevin Tansey , Dong Han , Chi Chen, Junming Liu, and Hongmei Li

Abstract—To further reveal the relationships between different
variables and yield at each growth stage of winter wheat, an
approach for estimating regional yields of winter wheat at mul-
tiple time scales was developed by assimilating the CERES-Wheat
model simulations and remotely sensed observations. Specifically,
the particle filter assimilation algorithm was chosen to assimilate
the simulated soil moisture at the depth of 0–20 cm and leaf
area index (LAI) and MODIS retrieved vegetation temperature
condition index (VTCI) and LAI. The resonance periods of time
series assimilated VTCIs and LAIs at different growth stages of
winter wheat with crop yield were analyzed separately using the
cross-wavelet transform to determine the variation relationships
between the assimilated variables and yield at multiple time scales,
and the calculated weights of assimilated VTCI and LAI at each
growth stage of winter wheat were used to establish a yield estima-
tion model. Both assimilated VTCI and LAI could comprehensively
integrate the effects of the CERES-Wheat model simulations and
remotely sensing observations, and cross-wavelet transformed time
series VTCIs and LAIs at each growth stage had specific resonance
periods with the time series yields, regardless of whether they were
assimilated or not. Compared with the unassimilated variables,
assimilated VTCI and LAI were given greater weights at the key
growth stages, namely VTCI at the jointing and heading-filling
stages and LAI at the heading-filling and milk maturity stages,
enhancing feature extraction and the accuracy of yield estimation
was improved.

Index Terms—CERES-wheat, cross-wavelet transform, data
assimilation, vegetation temperature condition index (VTCI), yield
estimation.
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I. INTRODUCTION

A S ONE of the major food crops, timely and accurate esti-
mation of regional wheat yields can provide effective sup-

port for agricultural management and food policy formulation
[1]. In recent years, remote sensing technology has been widely
used for regional yield estimation because of its advantages of
being able to acquire data over large areas and rapidly. At the
same time, it also has the shortcoming of lacking mechanical
descriptions of crop growth, crop development, and yield for-
mation as well as the relationships between crop growth and
meteorological, soil, and environmental factors. Significantly,
crop growth models can continuously simulate the dynamic
response of crop growth and development by inputting data,
including weather, soil, crop cultivars, and agronomic man-
agement practices [2]. However, limitations in data availability
and quality have restricted the ability of crop growth models to
precisely quantify the spatial heterogeneity of environment and
crop growth, and consequently affected the accuracy of yield
estimation at the regional scale, particularly for the simulation
of crop canopy development and soil moisture [3], [4], [5]. Based
on previous work, the real-time, macroscopic characteristics
of remotely sensed data and the continuity and mechanics of
crop growth models are complementary. Data assimilation, as
an effective method to combine remote sensing information
and crop growth models [6], has been recently used in re-
gional yield estimation studies with high accuracy [7], [8], [9],
[10].

Data assimilation methods can mainly be divided into vari-
ational assimilation approaches and sequential assimilation ap-
proaches. In contrast to variational assimilation approaches,
which solve for the global optimum, sequential assimilation ap-
proaches emphasize solving for the optimal estimate at a single
moment, i.e., the forecast field of the model is continuously
updated with new observations so that the initial field at the
next moment is formed and updated sequentially to obtain the
overall optimal solution. The ensemble Kalman filter (EnKF)
algorithm and the particle filter (PF) algorithm are representative
methods in sequential assimilation approaches. In particular, PF
utilizes the entire probability density function of the model states
given the observations in computing the posterior weights for
resampling prior states and parameters [11], [12], [13], [14].
Compared with the EnKF, PF is not strictly limited by Gaussian
distributions [15]. Currently, the PF algorithm has been widely
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used in crop growth monitoring and yield estimation studies
[16], [17].

In recent years, when using the assimilation method for
regional yield estimation, variables that are closely related to
crop growth are often selected. Among them, the leaf area index
(LAI) is an important variable to characterize light interception
and absorption, vegetation growth conditions, and productivity
[18]. Many studies have demonstrated that the assimilated LAI
could reduce model uncertainty and improve the accuracy of
yield estimates [19]. In addition to LAI, soil moisture is an
important state variable and a major controlling factor for crop
water stress. In the assimilation system, observations of the
volumetric moisture content in the top few centimeters of the
soil layer could be taken from remote sensing sources (e.g.,
ESA CCI, SMOS, and SMAP) [20]. However, the accuracy of
these remotely sensed soil moisture products decreases as the
moisture content of vegetation increases as the measurement
is unable to sufficiently penetrate through dense vegetation
to detect surface soil moisture [20], [21], [22]. Based on the
triangular distribution of land surface temperature (LST) and
normalized difference vegetation index (NDVI) at the region
level, Wang et al. [23] proposed the vegetation temperature
condition index (VTCI) to monitor the crop water stress. Sun
et al. [24] explored the relationship between the soil moisture
and VTCI in the Guanzhong Plain, China, and obtained the
conclusion that VTCI is a near real-time drought monitoring
index, which has a significant linear correlation with soil mois-
ture at the depth of 0–20 cm. Xie et al. [25] obtained remotely
observed soil moisture in the assimilated systems based on the
linear relationship between VTCI and soil moisture at 0–20 cm
depth to achieve regional yield estimation, further demonstrating
the feasibility of using the relationship between VTCI and soil
moisture for research. Han et al. [26] further integrated the
time series LAIs and VTCIs into the crop growth model to
achieve high accuracy wheat yield estimation, demonstrating the
advantage of using time series data of the two variables for yield
estimation.

When using the assimilated variables for regional yield esti-
mation, fewer studies have explored the relationships between
the time series of the assimilation variables at each growth
stage and the time series yields, while multiple time scales
help to analyze the effects of characteristic variables on final
yield at different time scales, thus revealing underlying rules
hidden in the time series. As an effective time series analysis
method, wavelet transform has the feature of time-frequency
multiresolution, which allows a more detailed description of the
internal structure of time series. Wavelet transform has been
widely used in the field of remote sensing such as vegetation
phenology analysis [27], image fusion and compression [28],
and classification [29]. With the continuous development of the
wavelet transform, the cross-wavelet transform has emerged,
a technique for multisignal, multiscale analysis based on the
wavelet transform [30]. The cross-wavelet transform combines
wavelet transform and cross-spectrum analysis to characterize
the correlation degree and phase relationship of two time se-
ries at different time scales, and the analysis method based
on cross-wavelet transform has been widely used in drought

[31], and hydrology [32]. Characteristic variables at different
growth stages respond to different degrees of crop yield, and the
cross-wavelet transform can analyze the relationship between
time series at multiple time scales. Importantly, to the best of our
knowledge, there are few reports of regional yield estimation
using a combination of data assimilation and cross-wavelet
transform.

This article proposed a regional yield estimation approach that
combined data assimilation and cross-wavelet transform. In this
study, the PF assimilation method was used to assimilate soil
moisture at the depth of 0–20 cm and LAI from the CERES-
Wheat model simulations with remotely sensed retrieved VTCI
and LAI, allowing the assimilation results to fully integrate
the effects of the crop growth model simulations and remote
sensing observations. The cross-wavelet transform was used to
analyze the correlation between time series assimilated vari-
ables at each growth stage of winter wheat and time series
yields to achieve a high accuracy regional yield estimation.
In summary, the objectives are to 1) achieve two-parameter
assimilation of VTCI and LAI, and to further explore the effect
of data assimilation on yield estimation results; 2) determine
the period variation relationships that exist between time series
assimilated variables and time series yields at the temporal
scale; 3) explore the applicability of combining the data assim-
ilation method with cross-wavelet transform for regional yield
estimation.

II. STUDY AREA AND DATA

A. Study Area

The study area is the Guanzhong Plain, which is located in
the central part of Shaanxi province, China (see Fig. 1). The
climate is a temperate continental monsoon climate, with an
annual average temperature ranging from 6° to 13 °C. It is warm
and rainy in summer, and cold and dry in winter, with average
annual precipitation ranging from 500 to 700 mm. The soil types
of Guanzhong Plain include manural loessial soil, cinnamon
soil, dark loessial soil, and yellow-cinnamon soil. Among them,
manural loessial soil is the main cultivation soil. It is formed
in natural cinnamon soil through the long-term application
of manure and maturation of tillage and is a powdered loam
with high organic matter and nitrogen and phosphorus nutrient
contents in the surface layer, which is fertile and has a long
cultivation period and good arable properties. Due to its suitable
geographical conditions, it has become an important commercial
grain production base. The main type of cultivation is the rotation
of winter wheat and summer maize in irrigated areas and there
is only one wheat cultivation in a year in rain-fed areas. Winter
wheat is sown in early or mid-October and harvested in early
June of the following year. Considering the growth of winter
wheat, this article focused on the overwintering stages, i.e.,
March to May. It can be divided into four growth stages [33]: the
green-up stage is from early March to mid-March, the jointing
stage is from late March to mid-April, the heading-filling stage
is from late April to early May, and the milk maturity stage is
from mid-May to late May.
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Fig. 1. Location of the study area in Shaanxi province in China, winter wheat planting areas, county boundaries, and distribution of sampling sites.

B. Remote Sensing Data

1) MODIS-retrieved VTCI: Daily LST and NDVI from
MODIS MYD11A1 and MYD09GA products, with a spatial
resolution of 1 km from March to May in the years 2011 to 2020
were calculated and retrieved. Next, using the maximum value
composite and minimum value composite methods, the VTCI
for the 10-day interval was calculated using a 10-day time scale
according to the following formulas [24], [34]:

VTCI =
LSTmax (NDVIi)−LST (NDVIi)

LSTmax (NDVIi)−LSTmin (NDVIi)
(1)

LSTmax (NDVIi) = a+ bNDVIi (2)

LSTmin (NDVIi) = a′ + b′NDVIi (3)

where LSTmax(NDVIi) and LSTmin(NDVIi) are the maximum
and minimum LST values of all pixels in the study area when the
NDVI value is equal to NDVIi, which are called the warm and
cold edges, respectively. LST(NDVIi) is the LST value when
the NDVI value is equal to NDVIi. The coefficients a, b, a′, and
b′ are approximated by the scatter plots of NDVI and LST in the
study area.

The average of the VTCI for the 10-day intervals included
at each growth stage was calculated as the VTCI value for
that growth stage. Based on the distribution map of winter
wheat planting areas in each county of the Guanzhong Plain,
the average VTCI value of the pixels contained in the growing

areas in each county was taken as the VTCI value for that growth
stage in that region for that year.

2) MODIS-retrieved LAI: LAI was extracted using the
MODIS MCD15A3H product with a spatial resolution of 500 m
and a temporal resolution of 4 days. Due to the influence of
clouds and shadows, the MCD15A3H product has data gaps. To
address this issue, the original time series LAIs were smoothed
by using the upper envelope Savitzky–Golay (S–G) filter [35].
The LAI smoothed by the upper envelope S–G filter is more
consistent with the actual growth of winter wheat. To ensure that
LAI and VTCI had the same value range and spatial resolution,
the LAI after the S–G filter was normalized to 0-1, and the
VTCI was resampled to 500 m by using the nearest neighbor
method. The maximum value of LAI contained every 10 days
was taken as the LAI at 10-day intervals, and the LAI of each
growth stage was calculated from the LAI of multiple 10-day
intervals contained in that stage. Similar to VTCI, based on the
distribution map of winter wheat planting areas in the counties
of the Guanzhong Plain, the average LAI of the pixels in the
planting areas in each county was taken as the LAI value of the
region for the winter wheat growth stages of the year.

C. Field Measured Data

In this article, 12 typical planting sites in the Guanzhong Plain,
all located in the main winter wheat growing areas from 2011 to
2020, were selected as sampling sites, and their distribution was
shown in Fig. 1. The measurements obtained from each sampling
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site were used to calibrate and run the CERES-Wheat model.
Specifically, during the sowing period, soil physicochemical
parameters such as pH value and soil moisture were measured in
each of the seven layers of the soil profile (0–12 cm, 12–20 cm,
20–50 cm, 50–80 cm, 80–120 cm, 120–160 cm, 160–200 cm) at
each sampling site. At the jointing and heading stages, record the
cultivar, sowing method, height, planting density, coverage rate,
fertilization date, fertilization amount, irrigation date, irrigation
amount, and other information of winter wheat at each sampling
site, and LAI and soil moisture at the depth of 0–20 cm were
measured.

D. CERES-Wheat Simulated Data

The CERES-Wheat model, as an individual crop growth mod-
ule of Decision Support System for Agrotechnology Transfer,
can specifically simulate the development, growth and senes-
cence, biomass accumulation and partitioning, and leaf and grain
growth of wheat [36]. The input parameters of the CERES-
Wheat model mainly included crop management information,
soil characteristics, weather data, and crop genetic information
[37]. Among them, field management information was obtained
through field investigation and actual measurements, including
crop cultivar, sowing date, planting density and depth, fertil-
izer application date and quantity, irrigation date and quantity,
and previous crop type. Soil data include those measured in
Section II-C above. Weather data were measured at 43 weather
stations distributed in the Guanzhong Plain, and the weather data
of each sampling site were measured by the nearest weather sta-
tion, including daily maximum and minimum air temperatures,
precipitation, and solar radiation. Genetic parameters control
growth and development processes and are closely related to
plant morphological development and grain yield [25]. Before
applying the model to the Plain, it is necessary to calibrate crop
genetic parameters based on the “trial and error” method to
obtain more accurate simulation results [37]. The main aspects
were 1) to verify whether the simulated LAI and soil moisture
of winter wheat at the jointing and heading stages were close
to the measured LAI and soil moisture; 2) to verify whether the
simulated harvest date of winter wheat was close to the field
survey. To verify the calibration accuracy of the CERES-Wheat
model, soil moisture at the depth of 20 cm and the LAI from field
measured sample sites in 2014 were compared with the model
simulations. The results indicated that the root-mean-square
error (RMSEs) between the simulated and measured LAIs and
between the simulated and measured soil moisture contents
were 1.15 m2·m−2 and 0.02 mm3·mm−3, respectively, and the
differences between the simulated and surveyed harvesting dates
were all less than 7 days. Considering that the calibration was
conducted over different years and that the wheat cultivars
differed slightly among fields, these errors were considered
acceptable.

Considering that the simulated VTCI of the sampling sites
required for this article could not be obtained directly from the
CERES-Wheat model, and based on the results of Sun et al.
[24], a similar method was used to obtain the simulated VTCI.
A linear regression relationship was established between soil

moisture simulated with the CERES-Wheat model at 10-day
intervals from 0–20 cm depth and the corresponding remotely
sensed VTCI at 10-day intervals determined by site latitude and
longitude. The linear regression relationship showed a Pearson
correlation coefficient of 0.354, p<0.01, and based on this linear
relationship, the simulated VTCI of the sampling sites were
obtained from the soil moisture simulated. The LAI simulated
by the sampling sites with the step size of days can be obtained
directly from the model output, and the maximum value of the
simulated LAI data at a 10-day interval in the winter wheat
growing season is taken as the simulated LAI at the 10-day
intervals.

E. Winter Wheat Planting Area and Yield Data

Accurate winter wheat planting area and distribution are
crucial for winter wheat yield estimation. However, reliable,
published data sets are lacking. The winter wheat planting area
records obtained from the National Bureau of Statistics (http:
//www.stats.gov.cn/) indicate that the winter wheat planting area
has been relatively stable in the last decade. In addition, the
planting area of winter wheat accounts for more than 90% of
the total planting area in the Guanzhong Plain, and some studies
had also shown that although the use of a generalized cropland
mask may affect the yield estimation accuracy, it was feasible
to use a generalized cropland mask for regional crop yield
estimation [38]. Therefore, the MODIS land cover type product
MCD12Q1 was used for the extraction of planting areas. In
this article, the International Geosphere Biosphere Programme
(IGBP) classification scheme included in the MCD12Q1 product
was specifically selected. We used the MODIS reprojection tool
to process MCD12Q1, including conversion of remote sensing
image format and map projection, and overlaying with the ad-
ministrative boundary vector of the study area. Then, the results
were extracted according to the IGBP classification scheme to
obtain the winter wheat growing areas. Yield data were obtained
from the official release of the Shaanxi municipal statistical
yearbook of each county data.

F. Construction of Time Series Data

Considering that the time series constructed for each variable
at each growth stage covered data of 24 counties from 2011 to
2020 and the time series was too long, this article divided the
time series into three groups according to the distribution of
counties in the Guanzhong Plain. Eight counties were selected
as a group without replication, and each group had 10 a of data
from 2011 to 2020, so the length of each time series was 80 a.
And each group of data had four growth stages of VTCI, LAI,
and corresponding yield, respectively, for a total of 9 time series,
so there were 27 time series in 3 groups.

III. METHODS

A. PF Assimilation Algorithm

The PF algorithm used in this article was based on the imple-
mentation of Nagarajan et al. [14] and Bi et al. [12]. The basic
implementation process can be divided into two phases; forecast

http://www.stats.gov.cn/
http://www.stats.gov.cn/
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and update. In the forecast stage, the initial state variable xk of
the model is perturbed with a given random distributed random
noise vik (i = 1, 2, …, N) to obtain the initial state xi

k at time k. N
particles propagate through the state equation, and the forecast
state xi

k+1 is obtained. The state equation for each particle in
the filter is defined as follows:

xi
k+1 = f(xi

k, uk) (4)

where f( · ) is the state equation, which represents the CERES-
Wheat model in this article; uk represents the model drive
parameters. Subsequently, the prior state (xi

k+1) is converted into
observations yik+1 through the measurement operators H( · )

yik+1 = H
(
xi
k+1

)
+ εk+1 (5)

where εk+1 represents the observed noise sequence at time k+1.
In the update stage, the importance weight of each particle

(wî
k+1) is calculated by using the model predicted state, remote

sensing observations, and the initial importance probability den-
sity (q(xi

k+1|xi
k, yk+1)), as in

wî
k+1 = wi

k

p
(
yk+1|xi

k+1

)
p(xi

k+1|xi
k)

q(xi
k+1|xi

k, yk+1)
(6)

Next, the weights (wî
k+1) are normalized to obtain the nor-

malized particle weights wi
k+1. At the same time, considering

the problem of sample weight degradation, this article used a
less computationally intensive residual resampling method [39]
to resample the posterior probability density of states, remov-
ing particles with smaller weights and retaining or replicating
particles with larger weights. Setting the weight of each particle
after normalized resampling is wi

k+1,res, and the state estimate
value xk+1 at the k + 1 is as follows:

xk+1 =
N∑
i=1

wi
k+1,res x

i
k+1 (7)

where N was set to 200 based on sensitivity analysis [16].

B. Cross-Wavelet Transform

The Morlet wavelet was chosen to meet the requirements of
this article for time series analysis. Morlet wavelet is expressed
as [40]

Ψ0 (t) = π
−1/4 exp (itw0) exp(−t2

/
2) (8)

The corresponding frequency domain wavelet function is

Ψ(ω) = π
−1/4exp

[−(sω−ω0)
2/
2

]
H(ω) (9)

where t denotes time, ω0and ω represent the dimensionless
angular frequency and angular frequency, respectively, s stands
for the scaling scale andH(ω) represents the Heavyside function
that satisfies the following conditions when ω > 0, H(ω) = 1,
when ω ≤ 0, H(ω) = 0.

The cross-wavelet power spectrum focuses on the interre-
lationship between the sequences in the high-energy region
in the time-frequency domain [41], and reflects the resonance
periods between the two time series. The wavelet cross-spectrum

Wxny(s) between the time series VTCIs or LAIs at each growth
stage of winter wheat and the time series yields is [40]

Wxny(s) = Wxn
(s)Wy(s)

∗ (10)

where Wxn
(s) represents the wavelet transform coefficients

of the time series VTCIs or LAIs at four growth stages, and
Wy(s)

∗stands for the complex conjugate of the wavelet trans-
form coefficient of the time series yields. The larger the cross-
wavelet power spectrum(|Wxny(s)|), the stronger the correlation
between the two series at this time scale, which is used to
determine the resonance periods between the time series VTCIs
or LAIs at different growth stages of winter wheat and the time
series yields.

C. Wavelet Cross-Correlation Analysis

This study utilized wavelet cross-correlation analysis to fur-
ther quantify the correlation between time series. The wavelet
cross-correlation coefficient CWRn

(s) between the time series
VTCIs or LAIs at each growth stage and the time series yields
can be expressed as [42]

CWRn
(s) =

Cov(Wxn
, Wyn

)s√
σ2(Wxn

(s))
√
σ2(Wy(s))

(11)

where σ2(Wxn
(s)) and σ2(Wy(s)) denote the variance of the

time series VTCIs or LAIs and time series yields wavelet coeffi-
cients corresponding to scale s, respectively. Cov(Wxn

, Wyn
)s

is the covariance of the time series VTCIs or LAIs and time
series yields wavelet coefficients at scale s.

Based on this CWRn
(s), the wavelet cross-correlation degree

of time series VTCIs or LAIs and time series yields was defined
as

CWCCDxny
= ∫ CWRn

(s) f(CWRn
(s))ds (12)

where f(CWRn
(s)) represents the weight coefficient of time

series VTCIs or LAIs and time series yields on the time scale s.

D. Construction of Regional Yield Estimation Model

Since the selected sampling sites are mainly distributed in
winter wheat planting areas of the Guanzhong Plain, it is con-
sidered to represent the growth situation of winter wheat in the
whole Plain. Therefore, the regional assimilated VTCI and LAI
were obtained by inputting regional MODIS-retrieved VTCI
and LAI into the linear relationships that the sampling site
scale assimilated VTCI and the MODIS-retrieved VTCI, and the
sampling site scale assimilated LAI and the MODIS-retrieved
LAI, respectively. The cross-wavelet transform was applied to
the regional-scale time series assimilated VTCIs and LAIs with
time series yields, respectively, and the wavelet cross-correlation
degrees were calculated and normalized to obtain the weights
of VTCI and LAI at each growth stage of winter wheat. As
this article divided the time series into three groups, the weights
of the same growth stage in the three groups were averaged to
obtain the final weights of VTCI and LAI at each growth stage,
thus constructing a bivariate yield estimation model based on
assimilation weighting. In this article, the first group would be
analyzed as an example.
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Fig. 2. VTCI trends for winter wheat growth stages at (a) Shiniu, Qian county, rain-fed sampling site, and (b) loquat, Sanyuan county, irrigated sampling site, in
2015.

Fig. 3. Observed and assimilated VTCIs and 10-day cumulative precipitation for winter wheat growth stages at (a) shiniu, Qian county, rain-fed sampling site,
and (b) loquat, Sanyuan county, irrigated sampling site, in 2015.

IV. RESULTS AND ANALYSIS

A. Sampling Site Scale Assimilation

1) Assimilation of VTCI at Different Types of Sampling Sites:
To evaluate the accuracy of the assimilation, specific sampling
sites were selected for analysis. Taking the rain-fed sampling
site in Shiniu, Qian County, and the irrigated sampling site in
Luqiao, Sanyuan County in 2015 as examples, the impact of
assimilation on VTCI was analyzed by comparing the changes
of observed (retrieved) VTCI, simulated VTCI, and assimilated
VTCI, respectively (see Fig. 2). At the rain-fed sampling site
[see Fig. 2(a)], from early to mid-March, both the observed
VTCIs and the simulated VTCIs showed an upward trend, but
the observed VTCI values were significantly higher than those
of the simulated. The assimilated VTCIs can comprehensively
consider the influence of observations and simulations, and the
values were in between. In mid-April, the observed VTCI value
was high, and the VTCI value after assimilation decreased due
to the influence of the simulated value. At the irrigated sampling
site [see Fig. 2(b)], from early to late March, the VTCIs after the
assimilation can make corresponding adjustments according to
the changes in simulated and observed values, so that they can

objectively reflect the changes of VTCI. At the same time, in the
process of analysis, it was found that some assimilation results
deviated from the simulated and observed values. For example,
in Shiniu, Qian County, the assimilated VTCI in early April
was significantly high. The reason for this result was that the
limited sample size during the use of the assimilation method
tended to cause sample depletion in the PF [43], [44]. Overall, the
assimilated VTCI can synthesize the influence of the observation
values and the simulated values.

To further validate the assimilation of VTCI and considering
that VTCI can reflect the effects of water stress during crop
growth in real-time, the relationships between observed VTCI,
assimilated VTCI and 10-day cumulative precipitation were
further analyzed. Here, the analysis was still performed using
the two sampling sites from 2015 mentioned previously as ex-
amples, as shown in Fig. 3. When the accumulated precipitation
in Shiniu, Qian County in early March was less than 10 mm,
the observed VTCI was significantly higher, and the assimilated
VTCI was significantly decreased, which was more consistent
with the changes in precipitation. The cumulative precipitation
for early April reached a peak of over 80 mm for the ten days. At
this time, the VTCI before and after assimilation was above 0.8,
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Fig. 4. LAI trends for winter wheat growth stages at (a) Shiniu, Qian county, rain-fed sampling site, and (b) Luqiao, Sanyuan county, irrigated sampling site, in
2015.

but compared with the observed VTCI, the assimilated VTCI
was significantly improved and more realistically reflected the
actual precipitation variability. In early March, at the irrigated
sampling site in Luqiao, Sanyuan County, the cumulated pre-
cipitation was less than 5 mm. The assimilated VTCI was able
to respond to changes in the environment on time, and its
value was significantly lower. Cumulative precipitation peaked
in early May, with VTCI above 0.7 before and after assimilation.
Based on the abovementioned analysis, it was found that the
assimilated VTCI values were able to respond better to changes
in precipitation compared to the observed VTCI values.

2) Assimilation of LAI at Different Types of Sampling Sites:
For the analysis of the results of the assimilation of LAI, we still
used the sampling sites of two counties in 2015 as examples to
compare to the observed (retrieved) and simulated LAIs and
analyze the changes in LAI after assimilation, as shown in
Fig. 4. At the Shiniu, the rain-fed sampling site [see Fig. 4(a)],
the simulated LAI peaked in late April, and the assimilated
LAI can comprehensively consider the effects of the observed
LAI and the simulated LAI, which can reduce the impact of
excessively high simulated value. At the Luqiao, the irrigated
sampling site [see Fig. 4(b)], both the simulated LAI and the
observed LAI reached their peaks in late April, but the observed
value was higher than the simulated value. The assimilated LAI
can effectively synthesize the effects of simulated and observed
values. To summarize, the assimilated LAI can better take into
account the changes in both the observed LAI and the simulated
LAI.

The assimilation results were analyzed at individual sampling
sites, in order to verify the overall assimilation accuracy, and the
errors between assimilated and observed values were calculated
for all sampling sites from 2011 to 2020. Specifically, for VTCI,
the mean absolute error (MAE) between the assimilated VTCI
and the observed VTCI was 0.07, and the RMSE was 0.09. For
LAI, the MAE is 0.45 m2·m−2, and RMSE is 0.59 m2·m−2.
To sum up, it can be concluded that the assimilated VTCIs
(LAIs) were closer to the observed VTCIs (LAIs). Based on the
abovementioned analysis, the assimilated sampling site scale
VTCI and LAI were linearly regressed with the remote sensing

observation sampling sites VTCI and LAI, and the coefficients of
determination (R2) were 0.78 and 0.77, respectively, to realize
the extension from sampling site scale to regional scale, i.e.,
regional assimilation of VTCI and LAI.

B. Multiple Time Scale Resonance Periods Analysis

1) Analysis of Resonance Periods Between Time Series VTCIs
and Time Series Yields: Based on the Morlet wavelet function,
the first group was taken as an example to analyze the resonance
periods between the time series assimilated VTCIs at each
growth stage and time series yields, respectively. For assimilated
VTCIs (see Fig. 5), there was a resonance period of mainly 2-3
a at the green-up stage, which showed a positive correlation
with VTCI lagging yield change, indicating that there was a
lagging effect of water stress on yield at the green-up stage. At
the jointing stage, there were resonance periods of 5-6 a, 10–13 a,
and 22–26 a between the time series assimilated VTCIs and the
time series yields. At the 10–13 a resonance period, a negative
correlation was observed where assimilated VTCI overtook the
yield change. It can be understood that at the jointing stage,
the effect of water stress on yield was not fully evident in time
during the shorter resonance period, and as the resonance period
expanded, when the water stress situation eased, i.e., rehydra-
tion, it can have different degrees of compensatory effects on
dry matter accumulation in different organs of winter wheat, but
to a limited extent, which would eventually lead to a negative
correlation between the two. In the resonance period of 22–26
a, the assimilated VTCI and yield were positively correlated in
the same direction, indicating that assimilated VTCI and yield
varied simultaneously in this resonance period. The analysis of
the resonance periods between VTCI and yield at the jointing
stage showed that the resonance periods between VTCI and yield
were complex and had a relatively large impact on yield during
this growth stage. At the heading-filling stage, there were mainly
resonance periods of 2-3 a, 14–16 a, and 22–26 a between the
time series assimilated VTCIs and the time series yields. In the
2-3 a period, assimilated VTCI was negatively correlated with
yield change, with assimilated VTCI ahead of yield change.
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Fig. 5. Cross-wavelet power spectrum of assimilated VTCI and yield at the (a) green-up stage, (b) jointing stage, (c) heading-filling stage, and (d) milk maturity
stage.

At the 14–16 a period, it showed a positive correlation lagging
behind the change in yield. The resonance period was more
pronounced at 22–26 a and passed the standard background
spectrum test with a confidence level of 95%, showing a positive
correlation of VTCI ahead of the change in yield. At the milk
maturity stage, assimilated VTCI and yield had resonance peri-
ods of 5-6 a, 10–12 a, and 22–26 a. Among them, the resonance
period of 22–26 a was more pronounced and passed the standard
background spectrum test with a confidence level of 95%. It also
showed a positive correlation between VTCI and yield changed
simultaneously, i.e., VTCI can characterize yield change at the
milk maturity stage in real time. And the resonance periods
between VTCI retrieved by MODIS and yield at each growth
stage were consistent with those between assimilated VTCI and
yield.

The abovementioned analysis showed that the resonance char-
acteristics of the time series assimilated VTCIs and time series
yields were more complex at the jointing and heading-filling
stages. In contrast, at the green-up and milk maturity stages,
the resonance characteristics showed relatively stable periods
of temporal resonance with VTCI lagging behind and chang-
ing in synchrony with yield, respectively. It showed that the

resonance changes between VTCI and yield contained more
attributes that influence final yield at the jointing and heading-
filling stages, and therefore, VTCI was more important at the
jointing and heading-filling stages relative to the green-up and
milk maturity stages. The results obtained previously for the
relative importance of the various growth stages of VTCI with
winter wheat yield were consistent with those of previous
research [45].

Note: The thick black solid line enclosed area in the figure
indicates that the power spectrum value has passed the standard
background spectrum test with a confidence level of 95%, and
the thin black solid line is the influence cone of the wavelet
boundary effect and its envelope area is the effective value.
The arrows in the figure indicate the phase relationship, →
indicates that the yield and the assimilated VTCI are in the same
phase, representing that the two are positively correlated; ←
indicates that the yield and assimilated VTCI are in antiphase,
representing that the two are negatively correlated; ↗ and ↙
indicate the positive and negative correlations of assimilated
VTCI lagging yield change, respectively; and↘ and↖ indicate
the positive and negative correlations of the assimilated VTCI
ahead of yield change, respectively.
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TABLE I
WEIGHTS OF THE VARIABLES OBTAINED UNDER THE OBSERVED AND ASSIMILATED SOURCES AT EACH GROWTH STAGE BASED ON THE CHARACTERISTIC TIME

SCALES

2) Analysis of Resonance Periods Between Time Series LAIs
and Time Series Yields: By analyzing the results of the cross-
wavelet power spectrum of the time series LAIs at different
growth stages and the time series yields, the following results
were found. For assimilated LAI, there were resonance periods
of 14–18 a and 24–30 a with the yield at the green-up stage.
The positive correlation of LAI ahead of yield change passed
the standard background spectrum test with a confidence level
of 95%, indicating that the change in crop growth at green-up
had a significant effect on later growth. At the jointing stage, the
assimilated LAI resonated with the yield at 14–18 a and 26–30
a, and both showed positive correlations with LAI ahead of yield
change, with the resonance being more significant at 26–30 a.
There was a resonance period of 26–30 a between assimilated
LAI at the heading-filling and milk maturity stages and yield,
and LAI showed a positive correlation with simultaneous change
in yield. And the resonance periods between LAI retrieved by
MODIS and yield at each growth stage were consistent with
those between assimilated LAI and yield. The abovementioned
analysis showed that the early growth of LAI had a strong
influence on the later growth, with later growth stages of LAI
having a greater impact on yield. Therefore, the effect of LAI
on yield was greater in the last two growth stages compared to
the first two, and this result was in line with the findings by
Tian et al. [45].

C. Wavelet Cross-Correlation Analysis

1) Cross-Correlation Analysis of Time Series VTCIs and Time
Series Yields: Wavelet cross-correlation coefficient can reflect
the degree of correlation between two time series at different
scales in the whole time domain. The wavelet cross-correlation
coefficients between the assimilated VTCI at each growth stage
and winter wheat yield were obtained using the Morlet wavelet.
The results showed that the wavelet cross-correlation between
assimilated VTCI and yield alternated with peaks and troughs at
each growth stage as the time scale changed and there were nega-
tive correlation coefficients between VTCI and yield, indicating
that there was a clear periodic characteristic between VTCI
and yield at each growth stage, and VTCI showed a negative
correlation with yield. According to the definition of VTCI that
the smaller the VTCI value, the more severe the drought and

the lower the yield. The resonance periods corresponding to the
positive correlation between assimilated VTCI at each growth
stage and yield were selected as the characteristic time scales for
analyzing the relative importance of VTCI at each growth stage
to yield. The determined characteristic time scales were 2-3 a
at the green-up stage, 5-6 a and 22–26 a at the jointing stage,
14–16 a and 22–26 a at the heading-filling stage, and 5-6 a and
22–26 a at the milk maturity stage.

Wavelet cross-correlation degrees at characteristic time scales
were calculated and normalized to obtain the VTCI weights at
each growth stage (see Table I) while comparing the weights
obtained at each stage to explore the effect of assimilation or not
on the analysis of the relationship between VTCI and yield, i.e.,
a comparative analysis of the weights obtained from MODIS ob-
served (retrieved) VTCI and assimilated VTCI, which were both
cross-wavelet transformed. The analysis showed that before and
after assimilation, the relative weights of VTCI at each growth
stage were consistent, that was, the weight at the jointing stage
was the largest, followed by the heading-filling stage, and the
weights at the green-up and milk maturity stages were relatively
small. The jointing stage is the main stage of the growth of
winter wheat roots, stems, and leaves, and the absorption and
utilization of water in the soil are the most urgent. When soil
water is deficient, it will significantly affect the accumulation
rate of dry matter mass, thereby affecting the final growth and
yield of winter wheat. At the heading-filling stage, the growth
mode of winter wheat is mainly changed from nutritional to
reproductive growth. The crop water stress due to inadequate
water supply significantly affects the rate of photosynthesis,
and reduces the synthesis of starch, protein, and organic matter,
resulting in a significant decrease in the grain weight of winter
wheat. At the stage of milk maturity, the grain structure of the
wheat ear has been formed and shows strong tolerance to certain
water deficits. At the green-up stage, the leaf, stem, and root
organs of winter wheat grow more slowly and do not accumulate
much dry matter mass, so its water deficit has relatively little
effect on it. In conclusion, the weight of VTCI at each growth
stage determined by the resonance periods was reasonable. On
this basis, comparing the weights obtained from assimilated and
MODIS observed VTCI after the cross-wavelet transform, it can
be seen that the weights of VTCI at the jointing and heading-
filling stages increased after assimilation, from 0.277 and 0.268
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to 0.279 and 0.274, respectively. It was further demonstrated
that assimilation could further enhance the ability to extract the
importance of VTCI at the key stages of winter wheat.

2) Cross-correlation Analysis of Time Series LAIs and Time
Series Yields: For LAI, we found that wavelet cross-correlation
coefficients between the assimilated LAI and the yield, in some
stages, were negative. According to the prior knowledge that
LAI of winter wheat is positively correlated with yield within a
certain range, resonance periods corresponding to the positive
correlation between LAI at each growth stage and yield were
selected as the characteristic time scales to analyze the relative
importance of LAI to yield at each growth stage. The charac-
teristic time scales determined by the resonance periods were
14–18 a and 24–30 a at the green-up stage, 14–16 a and 26–30 a
at the jointing stage, and 26–30 a at the heading-filling and milk
maturity stages.

According to the determined time scales, the wavelet cross-
correlation degrees of the LAI of the four growth stages were
obtained, which were normalized to obtain the LAI weights of
each growth stage (see Table I). It can be seen that the weights
of LAI based on the resonance periods were greater at the
heading-filling and milk maturity stages than those at the green-
up and jointing stages, indicating that LAI has a stronger effect
on yield during the heading-filling and milk maturity stages of
winter wheat growth, while LAI has a less effect on yield at the
green-up and jointing stages. This is because, in contrast to other
stages, winter wheat undergoes mainly reproductive growth at
the heading-filling and milk maturity stages, which determine
the grain weight of winter wheat. Comparing the weights of
assimilated and MODIS observed LAI, it can be seen that the
weights of assimilated LAI added up to higher weights at the
latter two growth stages, which were more closely related to
yield. It was further shown that the assimilation method allowed
greater weights to be given to variables at growth stages that
were more closely related to yield, and enabled the effective
extraction of key features.

D. Construction and Application of Yield Estimation Models

Based on the obtained weights of VTCI and LAI at each
growth stage, the weighted observed VTCI and LAI, and the
weighted assimilated VTCI and LAI were calculated, respec-
tively, and bivariate regressions based on weighted VTCI and
LAI were performed on the yield to obtain the estimated yield
models. The constructed yield estimation models using observed
variables and assimilated variables had normalized root mean
square errors (NRMSEs) of 13.29% and 13.22%, R2s of 0.50 and
0.50, and mean relative errors (MREs) of 10.68% and 10.58%,
respectively. From the accuracy analysis, it was easy to see
that the estimated yield model constructed after assimilation
had slightly improved accuracy compared to the unassimilated
(observed) model, indicating the model based on PF assimilation
performed better. To further analyze the performance of the
models, the probability distribution of the estimated yields of
the above models was plotted and compared with the official
yields (see Fig. 6). It can be seen that the estimated yield
probability distribution curve of the yield estimation model

Fig. 6. Probability distributions of estimated winter wheat yield based on
different models and official yield values.

constructed using assimilated data was a good fit close to the
probability distribution curve of the official yields. Specifically,
the distribution probability curve of the model constructed by
assimilation had a slight shift to the left around 3000 kg/ha, a
slight decrease around 4000 kg/ha, and a slight upward shift
around 5000 kg/ha compared to the model constructed from
MODIS observations. All of these changes resulted in assimila-
tion results that were closer to the probability distribution curve
of the official yields. Therefore, we concluded that the bivariate
yield estimation model constructed with assimilated VTCI and
LAI by PF was superior to the unassimilated (observed) model.

V. DISCUSSION

The growth of wheat is staged; this article focusing on ex-
ploring the multiple time scale relationships that exist between
variables and yield at different growth stages using the cross-
wavelet transform. It was found that for VTCI, compared to
the lagging behind and changing in synchrony with the yield
at the green-up and milk maturity stages, respectively, at the
jointing and heading-filling stages, VTCI and yield exhibited
more complex and diverse relationships with ahead and lagging
as the time scale changes. In terms of LAI, there was a pos-
itive correlation between LAI and yield at the heading-filling
and milk maturity stages with simultaneous changes, further
demonstrating that LAI in the latter two growth stages can
characterize yield changes on time. When the weights of each
growth stage were obtained by calculating the wavelet cross
correlation, it was further found that VTCI at the jointing and
filling-heading stages and LAI at the filling-heading and milk
maturity stages were more strongly correlated with yield than
the other stages. This finding was consistent with Tian’s study
[45], which focused on the relationships between VTCI and
LAI and yield at different growth stages, except that the study
used a typical machine learning approach of back propagation
neural network. Furthermore, the construction process was more
straightforward and simpler. In contrast, this article constructed
a yield estimation model based on the investigation of the
resonance periods between VTCI and LAI and yield, which
made the construction process relatively complicated, but at
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the same time, it led to the model having better theoretical
support and interpretability. In the process of comparison, it was
found that machine learning methods, especially deep learning
methods, can better extract the nonlinear relationships existing
with variables and improve the estimation accuracy, but have
the problem of poor model interpretability. Therefore, in the
next step of research, we can try to combine wavelet analysis
methods, which have the advantage of interpretability, and deep
learning methods to improve the model in terms of both accuracy
and interpretability.

In this article, a method combining data assimilation and
cross-wavelet transform was proposed for the regional win-
ter wheat yield estimation study. First, the data assimilation
method is used to combine remote sensing data with the crop
growth model, and second, the cross-wavelet transform is used
to analyze the periodic variation relationships existing between
time series, thus, yield estimation was achieved. It was found
that the assimilated remote sensing variables were assigned
higher weights during the critical growth stages, thus explicitly
demonstrating the ability of assimilation to help achieve feature
extraction. However, when comparing the estimation accuracy
of the constructed models before and after assimilation, we
found that this study suffered from limited improvement in yield
estimation accuracy after assimilation. This may be due to the
fact that the Guanzhong Plain includes rain-fed and irrigated
croplands and when scaling conversions are made from the
sampling site scale to the regional scale, the scaling conversion
relationships are different for different cropland types. This
article only used a unified and simple linear relationship for
the scale transformation, which may result in the nonlinear
relationship features present in the transformation relationship
being ignored, thus weakening the prominence of assimilation
for feature extraction. Therefore, in future research, different
nonlinear relationships will be tried for different types of land
cover to perform the scale conversion process, thus improving
the accuracy of the assimilation-based yield estimation model.
Also, it is worth noting that remote sensing observations can
obtain the spatial distribution of environmental factors asso-
ciated with crop growth, whereas crop growth models cannot
simulate the spatial distribution of environmental factors in the
field, thus leading to a spatial mismatch between remote sensing
observations and crop growth simulations [7], [21]. Therefore,
the existing research can be improved by increasing the spatial
density of sampling data and improving the spatial analysis
function of the crop model from the perspective of spatial
matching.

VI. CONCLUSION

In this article, a multiple time scale approach for regional yield
estimation of winter wheat has been developed by combining the
crop model with remote sensing through assimilation and cross-
wavelet transform. Among them, the bivariate assimilation of
VTCI and LAI was achieved using the PF algorithm and further
enhanced the feature extraction of key growth stages, i.e., VTCI
at jointing and heading-filling stages and LAI at heading-filling
and milk maturity stages.

When the time series were analyzed using the cross wavelet
transform, it was further understood that there were period
specific variation relationships between the time series VTCIs,
LAIs and yields for different growth stages. The temporal varia-
tions between VTCI and yield at the jointing and heading-filling
stages were more complex, while the changes at the green-up and
milk maturity stages were more stable, i.e., the variation of VTCI
lagged and synchronized with the yield variation, respectively.
For LAI, it took priority over yield changes in the first two growth
stages of winter wheat and changed in parallel with yield in the
last two growth stages.

Compared with the yield estimation model constructed from
unassimilated variables, the accuracy of the model constructed
by assimilated VTCI and LAI has been improved and the
distribution of estimated yields was more consistent with the
official statistical yields. Therefore, the yield estimation model
constructed by combining data assimilation and cross-wavelet
transform further clarified the multitime scale variation relation-
ships between variables and yield based on combining remote
sensing and crop growth models, which can provide a reference
for regional yield estimation.
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