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Object Tracking in UAV Videos by Multifeature
Correlation Filters With Saliency Proposals

Yan Zhang

Abstract—The purpose of object tracking is to locate a given
target in image sequence, such as people and vehicles. In recent
years, with the development of unmanned aerial vehicle (UAV) tech-
nology, object tracking in UAV videos has engaged many scholars.
It has been widely used in traffic control, water quality inspection,
wildlife census, and other fields. However, low resolution, scale
change, occlusion, and other challenges have been restricting the
development of the tracker. To solve the aforementioned problems,
we put forward multifeature correlation filters with saliency pro-
posals. First, we use histogram of oriented gradient features, gray
(I) features, and color names features to heighten the representation
information of the target, so that our algorithm can accurately
locate small targets. Then, we introduce saliency proposals to repo-
sition the occluded target. Finally, we use dynamic update weights
instead of the fixed update weights to mitigate the adverse effects
caused by template degradation. Experiments demonstrate that
our tracker has achieved satisfactory tracking accuracy and AUC
scores have reached 0.462, 0.417, and 0.425 on UAV123@10FPS,
UAV20 L, and UAVDT datasets, respectively.

Index Terms—Correlation filter, object tracking, saliency
proposals, unmanned aerial vehicle (UAV) videos.

I. INTRODUCTION

BJECT tracking has always been a hot topic in the field
O of computer vision [45], [46]. It is mainly used to con-
tinuously predict target position according to the information
in the initial frame. In view of its strong practical application
value, it has been diffusely put into use in national defense,
industrial manufacturing, and other fields. So far, many tracking
algorithms have been proposed and achieved excellent perfor-
mance. However, most of these algorithms are only applicable
to videos taken by cameras. When they are used in UAV videos,
their performance tends to decline significantly.
The above reason is mainly due to some unique challenges in
the UAV scenario. Let us see Fig. 1(a) for an instance, the two
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Fig. 1. Some challenges in UAV videos. (a) Similar background. (b) Low
resolution. (c) Occlusion.

cars have the same apparent characteristics, i.e., their contour
and color are similar, which is easy to make the algorithm
track the wrong target and ultimately lead to tracking failure.
Fig. 1(b) also makes clear that the target has very low resolution,
which often only takes up dozens of pixels. In this situation,
most algorithms are difficult to extract enough feature infor-
mation. Besides, occlusion is also one of the challenges. From
Fig. 1(c), we can see that the car is occluded by the brand and
will eventually disappear from view. When the target reappears,
how to relocate the target is a problem that all algorithms have
to consider.

Up to now, a mass of algorithms have been put forward.
The most popular algorithms are based on deep learning [18],
[22], [41] and correlation filter [1], [2], [4], [5], [6], [10],
[12], [13], [20], [24], [29], [48]. The algorithms based on
deep learning relies on the robust feature extraction capability
of a neural network to obtain the efficient representation of
the target. Dsiam [18] adaptively fuses the deep features of
different layers, and further improves the model performance
by suppressing background information. Hu et al. [22] fused
the appearance information and motion information, and the
two features complement each other to predict the target more
accurately. STN-Track [41] introduces the transformer [32] to
stengthen the global interaction capability of the algorithm. But
the above algorithms rely on a general processing unit (GPU) to
speed up the calculation, which is difficult to deploy on UAVs.
Therefore, the algorithms based on correlation filter seems to be
more suitable for UAV tracking.

Correlation operation is used to describe the similarity be-
tween two objects. The similarity is proportional to the response
value. In view of this, minimum output sum of squared error
(MOSSE) [2] uses a correlation filter for object tracking for
the first time. Depending on Fourier transform, its speed can
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reach 600FPS. On the basic of MOSSE, kernelized correlation
filter (KCF) [20] introduces kernel trick, which greatly improves
the discrimination ability of the classifier. Considering that the
target scale is constantly changing, it is difficult to fit the target
effectively with a fixed scale. Adaptive correlation filter with
long-term and short-term memory (ILCT) [29] introduces a cor-
relation filter responsible for target confidence and a correlation
filter responsible for adjusting scale. To improve efficiency, spa-
tial correlation filter (SCF) [48] reconstructs the support vector
machine (SVM) model by taking advantage of the properties of
the circular matrix, and combines the alternating optimization
process with the discrete Fourier transform to get the optimal
solution in real time.

However, boundary effects caused by cyclic sampling
inevitably limits the performance of the algorithm.
Spatial-temporal adaptive feature weighted correlation
filter (FWDCF) [12] assigns different weights to pixels by
constructing adaptive feature weights, which not only suppresses
background information, but also enhances target information.
Inspired by passive attack learning, spatial-temporal regularized
correlation filter (STRCF) [24] applies temporary regularization
to acorrelation filter. A dual color clustering and spatio-temporal
regularized correlation regressions-based complementary
tracker (CSCT) [13] introduces a two-color clustering histogram
model on the basic of STRCF. For the purpose of improving
the separability, some algorithms [1], [6], [10] combine the
correlation filter and deep feature to heighten the robustness
of the tracker. A correlation filter-based dual-flow tracker
(DFTrack) [5] uses additional motion features to enable the
tracker to track the object more accurately. Besides, Chen et
al. [4] used a storage unit to store the historical information
of the target, which greatly alleviated the negative impact
caused by the change of the target. In view of various
challenges in the UAV scenario, we propose the multifeature
correlation filters with saliency proposals. Specifically, in
order to describe the target in the UAV video more accurately,
we use histogram of oriented gradient (HOG), color names
(CN), and gray (I) features, and use the peak-to-side lobe
ratio (PSR) to adaptively fuse these features. In addition,
due to the frequent occurrence of occlusion, the saliency
proposals strategy is introduced to enable the algorithm to
continue tracking after the object reappears. Finally, we use
adaptive weights instead of fixed weights to prevent template
degradation. Our main contributions can be summarized
as follows.

1) We integrate HOG, CN, and I features to get the efficient
representation of the target, and use PSR for feature fusion,
so that the fused features can be more robust to various
challenges. The application of multiple features further
improves the discriminant ability of the classifier.

2) We introduce the saliency proposals strategy to enable the
algorithm to continue tracking after occlusion. In this case,
the long-term tracking capability of the algorithm can be
effectively improved.

3) We use dynamic weights instead of the original fixed
weights to update the model. The adaptive model up-
date strategy can effectively prevent the template from
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being polluted by noise and make the algorithm more
robust.

The rest of this article is organized as follows. Next, related
works are introduced in Section II. We present our algorithm in
detail in Section III, including features fusion, saliency propos-
als, and the dynamic weight update strategy. In Section IV, we
list the results of our algorithm under multiple benchmarks. We
analyze and discuss the results in Section V. Finally, Section VI
concludes this article.

II. RELATED WORKS
A. Object Tracking by Correlation Filters

Correlation operations are used to describe similarities be-
tween two objects. The similarity is proportional to the response
value. The main idea of correlation filters is correlation opera-
tions. These algorithms use a mass of samples to train correlation
filters, and then perform correlation operations between the
trained correlation filters and the search image. The location of
the target is considered to have the greatest response. In addition,
these algorithms use Fourier transforms to improve efficiency
by avoiding tedious calculations. MOSSE [2] first applied this
idea to object tracking in 2010. Thanks to the Fourier transform,
its speed can reach 600FPS. Because MOSSE only uses the I
feature and the number of training samples is small, its accuracy
is not satisfactory. The real-time tracking speed has attracted a
mass of scholars, and correlation filters have developed rapidly
since then.

In order to train more robust correlation filters, circulant struc-
ture tracking with kernels (CSK) [19] uses cyclic sampling to
increase training samples. More samples significantly improve
the discriminant ability of the correlation filter to the target.
But in the meantime, it also inevitably introduces the boundary
effect. Background-aware correlation filter (BACF) [23] uses
real training samples to train the correlation filters rather than
the false samples produced by shift sampling. Spatially regular-
ized correlation filter (SRDCF) [9] raises the spatial constraint
weights to the ridge regression function to restrain background
noise. On this basis, STRCF [24] introduces a temporary reg-
ularization term on the basic of SRDCEF to further alleviate the
influence of boundary effects. But SRDCF and STRCF use fixed
regularization constraints, which is obviously unreasonable.
Saliency-aware dual regularized correlation filter (DRCF) [15]
adapts to adjust the constraint weight through the saliency-aware
strategy, which effectively alleviates the above problem. Al-
though the regularization constraint effectively alleviates the
influence of boundary effect on algorithm performance, it also
reduces the solving efficiency of objective function, which ulti-
mately reduces the speed of algorithm. Weighted sample based
correlation filter (WSCF) [17] introduces a simple objective
function that not only supposes background noise interference,
but also causes little extra time consumption.

Besides, Fu et al. [14] proposed multifeature learning as a way
to enhance target representation. The use of multiple features
fully considers the limitations of each feature, so that various
features complement each other, making the algorithm to be
applied to more challenging scenarios. Real-time UAV tracking
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based on PSR stability (PSRS) [40] also involve the use of
multiple features. Consider that the size of the target will change
as it moves. How to make the bounding box adapt to the target
size is a problem that all algorithms have to consider. Scale
adaptive kernel correlation filter (SAMF) [26] and accurate scale
estimation for robust visual tracking (DSST) [7] raise the scale
estimation strategy. In this case, the algorithm is able to adjust
the size of the bounding box in real time to better track the target.
Many algorithms [1], [6], [10] now combine correlation filters
with deep learning to complement the stengths of each other.

B. Re-Detection Mechanism

Occlusion is easy to occur when the target is moving. As
shown in Fig. 1(c), the target is occluded by an obstacle. At this
point, the target completely disappears from view, which means
that no algorithm can locate the target. The target in the bounding
box must be the background. At this time, the update of the
model will bring adverse effects. However, a robust algorithm
should be able to reposition the target when the occlusion is over.
Therefore, many algorithms with a redetection mechanism have
been proposed.

Wang et al. [39] combined correlation filters with deep learn-
ing. Specifically, correlation filters are used for object tracking,
but when tracking quality in the current frame is not good, you
only look once version 3 (YOLOV3) is deployed into the algo-
rithm to prevent the tracker from tracking the wrong target. The
method in [31] expands the area where the target may appear,
and then calculates a pixel-by-pixel color score map, which is
used for redetection. Given that the color score of each pixel
represents the probability that it is the target, the target location
can be determined through the score map. Reliable re-detection
for long-term tracking (RDCF) [36] finds the rough location of
the target by sparse coding, and then selects several candidate re-
gions by particle filter. Finally, these candidate regions are scored
by minimum reconstruction error. Similar to RDCF, Wang et al.
[34] used inverse sparse representation directly to reposition
the target.

Because of the lower resolution of the target in a UAV video,
occlusion occurs more frequently. Therefore, a redetection al-
gorithm is necessary for UAV tracking. Inspired by these algo-
rithms, we propose a redetection algorithm based on saliency
proposals. Specifically, we calculate the saliency information
of the image patch to determine the rough area, and then per-
form the correlation operation on these positions with corre-
lation filter. Finally, the exact location is obtained through the
response patch.

C. Model Update Strategies

Most algorithms use a fixed learning rate to update the model,
which can easily lead to model degradation. If occlusion occurs,
inappropriate updates at this time will reduce the performance
of the tracker. To deal with the difficulty, many algorithms have
been presented.

PSRS [40] introduced PSR stability, and the model is updated
only when the PSR stability is higher than a fixed value. In [43],a
stability function is used to assess the confidence of the response
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patch, updating the model only when it is greater than the mean
of the historical frames. But the above methods still only use a
fixed learning rate to update the model. Xue et al. [42] used
a moving average to update the model. In addition, to cope
with occlusion, the model is updated by the template of the first
frame. Fu et al. [16] updated the classifier with Gaussian process
regression. Given some serious challenges in UAV videos, it
is necessary to introduce an adaptive update strategy into the
tracking algorithm.

III. PROPOSED METHOD

In this section, we will introduce the proposed algorithm
in detail, including feature fusion, saliency proposals, and the
dynamic weight update strategy. The flowchart is presented in
Fig. 2. First, we extract HOG, CN, and I features of image
patch, and fuse these features through PSR to generate the final
response patch. We then determine if redetection is necessary
by calculating PSR of the final response patch. That is, if the
PSR is less than the predesigned threshold, we consider the
current frame to be of poor quality and use saliency proposals to
relocate the target. Finally, we use dynamic weights to replace
the original fixed weights to prevent template degradation.

A. Feature Fusion

Considering that the target in UAV videos often has low
resolution, it is difficult to describe the target effectively with a
single feature. Therefore, we combine HOG, CN, and I features
to enhance the target representation information. As we all know,
different features can represent information at different levels of
the target. For example, HOG and CN represent the contour
and color information of the target, respectively. In this case, the
fusion of the above features can make the algorithm applicable to
more challenging scenarios. In addition, we use PSR to enhance
and fuse these features. The definition of PSR is shown below

Ogl (Z)
where  gmax() i8S the maximum  response  and

i € {HOG, CN, I}. g and og are the mean and variance of
the sidelobe, respectively.

We perform correlation operation between the feature patches
and the correlation filters to obtain the corresponding response
patches Res(i). From Fig. 3, we can see that these response
patches are uneven and have multiple peaks, which is unfavor-
able to the algorithm. In order to make these response patches
smoother, we enhance them through PSR

R(i) = PSR(i)Res(i) )

where R() is the enhanced response patch.

Through (1) and (2), we can obtain enhanced response patches
R(HOG), R(CN),and R(I). Next, we will fuse these enhanced
features. Since we fuse two features and perform the same
operation each time, we take R(HOG) and R(C N) as examples
for illustration. The fusion process is shown below

R(HC) = R(HOG) ® R(CN) 3)
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where R(HC) is the fused response patch and ® denotes
element-wise multiplication. Repeat the above operation, and
we can get the response patch R(HT) that fuses R(HOG) and

R(I), and R(CT) that fuses R(CN) and R(I). As shown in
Fig. 3, compared with the initial response patch, the enhanced
response patch is smoother and has an obvious peak.

Finally, in order to get the final response patch, we use PSR
to adaptively fuse these response patches

PSR(j .
Z S PS R R(j) @

where k, j € {HC, HI, CI}.

R(final)

B. Saliency Proposals

The target is easily occluded when moving, which brings
severe challenges to the tracker. In this case, most algorithms
cannot effectively track the objects that reappear after occlusion.
To effectively locate the occluded target after the target reap-
pears, the saliency proposals are introduced. Considering the fact
that there are often large differences in targets and backgrounds,
the saliency information can help the tracker reposition the
target. Specifically, the saliency proposals strategy consists of
the following two parts: 1) the saliency information of image
patch is extractedand 2) look for the areas that need to be
redetected.

We utilize the approach in [21] to obtain the saliency features
of the image. First, the image I (k) in kth frame is preprocessed.
We get the amplitude feature A(k) and phase feature P(k) of
image I(k) by Fourier transform F'(). The equations are as
follows:

A(k) = AC (F (I(K))) ©)
P(k) = PC(F(I(k))) . (©)
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(b) (©)

Fig. 4. Redetection based on saliency proposals. (a) Occluded target.
(b) Saliency map. (c) Saliency proposals.

The log spectrum representation L(k) can be obtained by
L(k) = log (A(k)) ©)

where log() is log function. A(k) can be approximately ex-
pressed by the convolution between H,, and L(k), so the spectral
residual (k) can be obtained by following

r(k) = H, — H, x L(k) ®)

where x denotes the convolution operator and H,, is defined as
1 1 e 1
1 1 1 e 1

Ho=5 | . : . : - O
1 1 e 1

The saliency features S(k) in the image patch can be acquired
by 7(k), and the saliency features are obtained by following

S(k) = G(k) « F~exp (r(k) + P(k))]? (10)

where G(k) is a Gaussian filter and F'~' is inverse Fourier
transform.

As shown in Fig. 4(a), when the occlusion is over, the car
comes back into our view. To ensure that our algorithm can
continue tracking this car, we cut out an image patch and extract
the saliency information of the image patch through (5)-(10).
The saliency map is shown in Fig. 4(b). Finally, we use the
adaptive thresholding [3] to segment the saliency map to obtain
the saliency proposals. In Fig. 4(c), the bright area is the area to
be redetected. After obtaining the saliency proposals, we carry
on the correlation operation between the filters and the areas to
be redetected to obtain the response patches of the redetected
areas. We think that in all response patches, the value represents
the probability that the corresponding position is the target.

C. Adaptive Model Update Strategy

In object tracking task, the algorithm needs to process con-
tinuous image sequences. This also means that the target is
constantly changing. Therefore, the robust algorithm should
be able to update the model in real time to make the most of
the temporal information of the target. Now, lots of algorithms
based on correlation filter will update the model at each frame.
However, they often use the fixed weight to update the model,
which is obviously unreasonable. For example, when occlusion
occurs, the target tracked by the algorithm is the background.
However, most algorithms will continue to update the template,
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Fig. 5. PSR varies with target conditions.

which will pollute the template and lead to template degradation.
For a tracker, the template plays a very important role. The
polluted template has adverse effects on the algorithm. To deal
with the above-mentioned problem, we use the dynamic weight
instead of the original fixed weight.

From [2], we can know that the tracking status of the tracker
in the current frame can be described by PSR. When the tracking
quality is good, the PSR is often high. Otherwise, the PSR will
shake violently. From Fig. 5, it is clear that occlusion occurs
and PSR begins to drop sharply in the 358th frame. When the
car is completely occluded, the PSR is the lowest. As the target
gradually enters the field of vision, the PSR gradually rises.
After occlusion, PSR inclines to be stable once more. In light of
this, we intend to use PSR to measure the weight of the model.
Specifically, if the tracker can accurately track the target, we will
give a larger update weight; otherwise, the model has a small
update weight to prevent the model from being polluted.

However, in different scenarios, the fluctuation range of PSR
is also various. Therefore, we calculate the average value of
historical frames to measure the tracking status of the current
frame, as defined below

PSR,

= mean (Zf;i PSRl-)

an

where PSR, is the PSR in the tth frame and mean() denotes
the mean function. By comparing the PSR of the current frame
with the average PSR, we can evaluate the confidence of the
tracking result of the current frame. The larger the 3, the higher
the confidence, and we will assign greater update weight to the
current frame. Then, we use 3 to measure the update weight
V. Considering that the target does not change significantly
between adjacent frames, in order to prevent drastic changes
in update weights, we adopt an exponential form for updating
and set an initial learning rate

1

V = 71 T eaJr'yXB

12)
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where « and v are hyperparameters. Specifically, we use the
following equation to update the model:

2ol = (1 — V) 2% 4 pVa, (13)

where 7 is the initial update weight and 2! is the model in

(t — 1)th frame. 2; denotes the vectorized image.

IV. EXPERIMENTS
A. Experimental Setup

In the experiment, our algorithm was implemented with MAT-
LAB 2019a. The PC with an NVIDIA GTX 2080ti GPU and Intel
19-9900X CPU was used to carry out all the experiments. The
dimensions of HOG features, CN features, and I features are 31,
11, and 1, respectively. The cell of HOG features is 4 x 4. o and
v are 9.2 and —10.4, respectively. The initial learning rate 7 is
0.0245. In each frame, the size of the search area is five times
the size of the target. Besides, if the PSR of the fused response
patch is less than 9, the saliency proposals will be performed.

B. Datasets and Compared Algorithms

We evaluate our tracker through the UAV123@ 10FPS [30]
dataset, which contains 91 image sequences and 123
groundtruth. Unlike previous datasets, all image sequences in
UAV123@ 10FPS are captured by UAVs, covering massive chal-
lenges such as camera motion, occlusion, and fast motion. 20
long image sequences are extracted from UAV123@ 10FPS,
which constitutes the UAV20 L dataset. UAV20 L is mainly
used to measure whether the algorithm can track the target
for a long time. Besides, we also conduct relevant experiments
on the unmanned aerial vehicle detection and tracking dataset
(UAVDT) [11] dataset.

We compare our tracker with some classical trackers,
such as SAMF, PSRS, DSST, STRCF, SRDCF, discrimina-
tive correlation filter tracker with channel and spatial re-
liability (CSRDCF) [27], discriminative scale space tracker
(fDSST) [8], BACF and kernel cross-correlator (KCC) [33]. In
addition, we also compare our tracker with some trackers on
the basic of deep learning, such as hierarchical convolutional
features tracker (HCFT) [28], integrate boundary and center
correlation filter (IBCCF) [25], co-trained kernelized correla-
tion filter (CoKCF) [44], multi-task correlation particle filter
(MCPF) [47], unsupervised deep tracking (UDT)+ [35], fast effi-
cient convolution operators (fECO) [37], learning unsupervised
deep tracking (LUDT) [38], and improved learning unsupervised
deep tracking (LUDT)+ [38].

C. Evaluation Metrics

Center location error (CLE) and overlap ratio (OR) are often
used to evaluate the tracking results. Specifically, CLE refers to
the distance between the predicted position and the groundtruth,
which is defined as

CLE = \/(l"tr — 2g0)? + (e — Ygr)? (14)
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where (x4, ys) is center coordinate of prediction result and
(2gt,Yqt) is center coordinate of the groundtruth. OR is used to
represent the overlapping area between the predicted position
and the groundtruth, which can be obtained by following

SN Sy

OR = Spr U Sy

15)

where Sy and S represent the predicted position and the
groundtruth, respectively. N and U refer to intersection and
union, respectively.

On the basic of CLE and OR, we also use precision score (PS)
and success score (SS) to quantitatively describe the tracking
result of the tracker. FPS is also used to describe the speed of
the tracker. In addition, we also use precision plots and success
plots to compare various algorithms more intuitively. In this
article, the legend of the precision plots shows the PS when the
threshold is 20. The legend of success plots denotes the SS when
the threshold is 0.5. Considering that the success plot is a closed
curve, the area under the curve can be calculated, which is area
under curve (AUC). We rank each tracker through AUC.

D. Comparison With Other Algorithms

1) Overall Performance Evaluation: We evaluate the overall
performance of our tracker on UAV123@ 10FPS dataset. From
Fig. 6(a), (b), and Table I, it is evident that our algorithm has
achieved the best tracking result. The PS, SS, and AUC of our
algorithm are 0.630, 0.559, and 0.462, respectively. Compared
with the baseline, that is BACF, the AUC of our algorithm is
improved by 0.049. Besides, STRCF, SRDCF and CSRDCF
have all introduced regularization terms to mitigate the impact
of boundary effects, so they have achieved good performance.
In particular, the AUC of STRCF reaches 0.457, which ranks
second. Because our algorithm is improved on the basis of BACF
and still uses real image patches instead of samples generated by
cyclic sampling to train the correlation filter, our algorithm can
also effectively alleviate the boundary effect. Benefiting from
the modules introduced in Section I1I, the AUC of our algorithm
is higher than STRCEF, which ranks first. For PSRS, it introduces
PSR stability to improve the model, but it only uses PSR stability
to update the model. In contrast, we not only use PSR to update
the model dynamically, but also use PSR to enhance features.
So compared with PSRS, the tracking result of our algorithm is
greater then it. However, although the use of multiple features
improves performance, it also causes lots of time. So the FPS
can only achieve 13.

2) Long-Term Tracking Performance: As we all know, the
longer the image sequence, the more challenges the target
will experience, which also brings greater difficulties to the
algorithm. Therefore, the long-term tracking performance is an
important indicator to measure the performance of the tracker.
In view of this, we carry on experiments on the UAV20 L
benchmark, and the results are presented in Fig. 6(c), (d), and
Table II. The PS, SS, and AUC of our algorithm are 0.596, 0.497,
and 0.417, respectively, which shows that our algorithm has
good long-term tracking performance. Due to the introduction
of the temporal regularization term and spatial regularization
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TABLE I
RESULTS ON UAV 123 @ 10FPS DATASET

Ours SAMF STRCF DSST SRDCF KCC CSRDCF PSRS fDSST BACF
PS 0.630 0.466 0.627 0.448 0.575 0.531 0.643 0.588 0.516 0.572
SS 0.559 0.397 0.544 0.311 0.511 0.447 0.536 0.526 0.459 0.506
AUC 0.462 0.326 0.457 0.286 0.423 0.374 0.450 0.432 0.379 0413
FPS 13 12 26 98 13 40 11 20 153 52
TABLE IT
RESULTS ON UAV20 L DATASET
Ours SAMF STRCF DSST SRDCF KCC CSRDCF PSRS fDSST BACF
PS 0.596 0.470 0.575 0.459 0.507 0.483 0.515 0.596 0.385 0.584
SS 0.497 0.381 0.515 0.290 0.405 0.369 0.442 0.480 0.327 0.525
AUC 0.417 0.326 0.411 0.270 0.343 0.324 0.360 0.400 0.288 0.415
FPS 17 13 22 68 9 35 10 16 98 40
term, the PS, SS, and AUC of STRCF are 0.575, 0.515, and TABLE 1II
0.411, respectively, which ranks second, only inferior to our RESULTS ON UAVDT DATASET
algorithm. From Table II, we can see that the AUC of most
algorithms is less than 0.4, which means that their long-term Tracker AUC FPS GPU
tracking performance is poor. We think that occlusion is more HCFT 0.355 19 v
likely to occur in long-term tracking tasks, and the saliency IBCCF 0.389 3 v
proposals strategy can effectively relocate the occluded target to CoKCF 0.319 20 v
mitigate the adverse impact of occlusion. In addition, because the MCPFE O' 403 0.6 v
algorithm based on correlation filter needs to update the model UDT<+ 0' 415 5‘6 v
every frame, inappropriate updates will accumulate frame by fECO O. 415 20 v
frame. This phenomenon is more obvious in long-term tracking LUDT 0' 418 78 v
tasks. The adaptive model update strategy can effectively avoid '
. . . LUDT+ 0.406 59 v
inappropriate updating of model to solve the above problem. Ours 0.425 16 X

3) Comparison With Trackers Based on Deep Learning: We
compare our tracker with the trackers on the basic of deep
learning on the UAVDT dataset. As shown in Table III, the
AUC of our algorithm is significantly higher than other trackers.
Howeyver, because we fuse HOG features, CN features, and |
features of the image patch, which inevitably cause additional
time consumption. In this case, the speed of our algorithm is not
satisfactory. However, it is worth noting that these algorithms
based on deep learning rely on GPU to speed up the calculation.
However, our algorithm does not depend on GPU. In addition,
one of the advantages of a UAV is that it is lightweight, which
makes it difficult to carry additional hardware equipment. There-
fore, our tracker is more suitable for UAV tracking.

4) Attribute-Based Evaluation: We test the performance of
our algorithm in various attributes, and the results are presented
in Fig. 7. We introduce scale pools into our algorithm to select the
best target scale by calculating the maximum response. Although
the size of the target often changes, our algorithm still achieves
excellent performance. Similar object and background clutter
will have a negative impact on the tracker, making the predicted
position gradually deviate from the groundtruth. However, the
use of multiple features can make the algorithm locate the
target more accurately, which makes the predicted position have
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Fig. 7. Precision plots and success plots. The precision and AUC scores of success plots are given in brackets.
higher confidence. In this case, the impact of similar background TABLE IV
: st : RESULTS OF ABLATION STUDIES
and background clutter will be greatly mitigated. Besides, the
saliency proposals strategy enables our algorithm to track the -
occluded target again. From Fig. 7, itis evident that our algorithm Baseline +PL - +PI+P2  +P1+P2+P3
outperforms other algorithms when occlusion occurs. Viewpoint PS 0.572 0.617 0.622 0.630
change and camera motion are unique challenges in a UAV SS 0.506 0.542 0.553 0.559
video, which is also the biggest difference from a traditional AUC 0.413 0.448 0.456 0.462

video. It is clear that our algorithm has achieved satisfactory
performance in both scenarios.

5) Visualization Results: In order to qualitatively evaluate
our algorithm, we show some visualization results, as shown
in Fig. 8. In the first image sequence, its length exceeds 2000
frames, which is mainly used to measure whether the algorithm
can track the target for a long time. Obviously, in the 2100th
frame, our algorithm can still track the cyclist very well. How-
ever, other algorithms obviously start to appear tracking drift,
i.e., the bounding boxes are obviously larger than the size of the
target. In the second image sequence, the target of tracking is a
ship, which is gradually away from us. In this image sequence,
the biggest challenge is scale variation. At the beginning, the size
of the target is large. But later, the size gradually decreased, and
finally became only a point. It is apparent that our algorithm can
effectively fit the scale variation of the target. But both CSRDCF
and SAMF have failed to track the ship. In the third image
sequence, the tracked target has very low resolution, which only
takes up dozens of pixels. For most algorithms, it is difficult to
extract enough information. Thanks to the joint action of HOG,
CN, and I features, our tracker can still track the car with low
resolution. However, all of other trackers end in disaster. It can be
seen that our tracker is obviously superior to other trackers in this

challenging scenario. Let us look at the fourth image sequence.
The target is a surfer. In the process of surfing, deformation
often occurs, which easily makes the algorithm introduce too
much background noise. Even so, our tracker still achieves
satisfactory performance. In short, our tracker can be used
in multiple scenarios, such as scale variation, low resolution,
and so on.

E. Ablation Studies

To verify the function of feature fusion (P1), the saliency
proposals strategy (P2), and the dynamic update weight strategy
(P3), we carry on ablation studies on the UAV123@ 10FPS
dataset and the results are shown in Table IV. Because our
algorithm is improved on the basis of BACF, we use BACF as
the baseline for comparison. The combination of HOG, CN, and
I features effectively enhances the representation information of
the target and further improves the performance of the algorithm.
We can see that benefiting from the use of multiple features, the
PS, SS, and AUC of the algorithm increase by 0.045, 0.036,
and 0.035, respectively. It can be said that feature fusion has
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Fig. 8. Visualization results.

greatly improved the performance of our algorithm. Besides, as
described in Section III-B, the saliency proposals strategy can
effectively relocate the occluded target, which greatly improves
the performance of our algorithm in occlusion scenes. So the
PS, SS, and AUC increases by 0.005, 0.011, and 0.008, respec-
tively. Finally, when all modules are used, i.e., the algorithm we
proposed, the PS, SS, and AUC of our algorithm reach 0.630,
0.559, and 0.462, respectively. Compared with the baseline,
that is BACF, the AUC increases by 0.049. In general, feature
fusion enhances the representation information of the target, the
saliency proposals strategy is conducive to tracking the occluded
target, and the dynamic update weight strategy can effectively
prevent template degradation. From Table IV, it is evident that
the above modules are beneficial to the improvement of the
performance.

V. DISCUSSION

In this article, in order to accurately track targets in UAV
videos, we propose the multifeature correlation filters with
saliency proposals. As is well known, compared to videos
captured by cameras, targets in UAV videos often have lower
resolution, which means that algorithms are difficult to extract
sufficient representation information. To address the above issue,
we use HOG, CN, and I features to enhance the discriminative
ability of the algorithm. The existing algorithms [7], [26], [40]
fully demonstrate that the use of multiple features is benefi-
cial for improving tracking accuracy. However, our algorithm
utilizes PSR to enhance various features before fusing them.
From Table I, we can see that our algorithm has achieved

~==CSRDCF ===SRDCF ==——=SAMF =———=BACF -—DSST
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the best performance. Besides, Fig. 3 shows that the enhanced
response patch is smoother, considering that algorithms based
on correlation filters determine the position of targets through
maximum response. Therefore, a smooth response patch is more
advantageous for the algorithm to accurately predict the position
of the target. However, although the use of multiple features
improves the accuracy of the algorithm, it inevitably increases
computational complexity, which makes it difficult for our al-
gorithm to track targets in real-time. The FPS of our algorithm
is about 15. The future work will focus on achieving a balance
between tracking accuracy and tracking speed. Specifically, the
representation ability of manual features is too weak, such as
HOG features that can only describe the contour features of
the target, and CN features that can only describe the color
features of the target. Considering that deep neural networks
have stronger representation capabilities, we plan to replace
manual features with deep features. The shallow deep features
can describe the texture, color, and other features of the target,
which means we do not need to use very complex network
structures. In this case, feature extraction will not consume a
significant amount of time.

In UAV videos, occlusion is also an issue that cannot be
ignored. From Fig. 1(c), we can see that after the target is
occluded, the algorithm cannot continue tracking the target.
In order to enable our algorithm to reposition the target, we
introduce saliency proposals. Due to the overly complex net-
work structure of existing detection algorithms based on deep
learning, they often rely on GPU that is difficult to be carried
on UAVs for accelerating computation. Therefore, we use the
saliency features of an image patch to determine the areas that
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need to be redetected. Fig. 7 shows that our algorithm has
achieved excellent performance in occlusion attribute. Besides,
saliency proposals enable our algorithm to reposition the target
after occlusion ends, which also improves the long-term tracking
performance.

Another reason why our algorithm has robust long-term
tracking performance is that the adaptive model update strat-
egy effectively prevents template degradation. As is well
known, when the target is occluded, updates at this time often
contaminate the template, which will seriously affect the perfor-
mance of the algorithm. We use the PSR of each frame to dynam-
ically adjust the update weights. When the target is occluded,
the model hardly updates, which effectively prevents template
contamination. When the target reappears, our algorithm still
exhibits good robustness.

In general, the use of multiple features enhances the rep-
resentation information of the target, saliency proposals help
our algorithm reposition occluded target, and the adaptive
model update strategy effectively prevents template degradation.
The ablation experiments verify the effectiveness of the above
strategies.

VI. CONCLUSION

In this article, we propose the multifeature correlation filters
with saliency proposals. Specifically, we use HOG, CN, and I
features to better describe the target, and use PSR to enhance
these features. The enhanced feature patch is smoother, which
is conducive to the algorithm to accurately predict the location
of the target. In addition, considering that occlusion often occurs
in a UAV video, we introduce the saliency proposals strategy to
help our algorithm reposition the occluded target. In this case, the
long-term tracking performance of the algorithm will be greatly
improved. Finally, we use dynamic update weight to replace
the original fixed weight to adapt to the complex scene in UAV
videos. Experiments on several datasets show that our algorithm
can achieve satisfactory accuracy. However, our algorithm is
difficult to track the target in real time. In the future work,
we intend to use deep features to replace manual features. On
the one hand, deep features have stronger representation ability
than manual features. On the other hand, the use of shallow
features will not cause huge time consumption. Based on this,
the tracking accuracy and speed are expected to reach a balance.
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