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Spatial-Spectral ConvNeXt for Hyperspectral
Image Classification

Yimin Zhu ¥, Kexin Yuan

Abstract—Hyperspectral image (HSI) classification is a diffi-
cult task due to the heterogeneous spatial-spectral information,
high-dimensionality, and noise effect in the HSI. Lately, an en-
hanced convolutional approach, i.e., ConvNeXt, has demonstrated
astronger feature representation capability than the popular vision
transformer approaches. This article presents a spatial-spectral
ConvNeXt approach, called SS-ConvNeXt, for hyperspectral clas-
sification. To better learn the spatial and spectral information in
the HSI, the Spatial-ConvNeXt block, Spectral-ConvNeXt block,
and spectral projection module are, respectively, designed. The
depthwise and pointwise convolutions are adopted to reduce the
model size and prevent vanishing gradient. The proposed model
is evaluated against 14 other state-of-the-art methods on four
different HSI datasets. Moreover, extensive ablation studies are
conducted to investigate the roles of building blocks in the proposed
model. The results demonstrate that the proposed method not
only can achieve a high classification accuracy but also can better
preserve class boundaries and reduce within-class noise.

Index Terms—ConvNeXt, convolutional neural networks, deep
learning, hyperspectral image classification (HSIC), spatial-
spectral ConvNeXt (SS-ConvNeXt).

1. INTRODUCTION

YPERSPECTRAL image classification (HSIC) aims to
Hestimate the semantic class labels for each pixel on a
hyperspectral image (HSI) [1]. It is one of the most important
HSI processing tasks, and has been widely used to support
various applications, e.g., land cover and crop mapping [2],
[3], urban monitoring [4], minerals mapping [5], etc. Despite
its importance, the HSIC is a challenging task due to the hetero-
geneous spectral-spatial information, high dimensionality, and
noise effect in an HSI, which make it very difficult to extract
discriminative features from the HSI [6].

Traditional feature extractors have been used to support
the HSIC [7], [8], [9], e.g., principal component analysis
(PCA) [10], local binary pattern (LBP) [11], morphological
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profile (MP) [12], and extended multiattribute MP (EAMP) [13].
However, these feature extractors are mostly knowledge driven,
and as such, cannot effectively adapt to the data characteris-
tics for the enhanced HSIC. On the other hand, data-driven
feature learning approaches, represented by deep convolutional
neural networks (CNNs), have led to an improved spatial—
spectral feature extraction capability that greatly boost the HSIC
performance; e.g., see [14], [15], [16], [17], [18], [19], [20],
[21], and [22]. Recently, the transformer [23] model, originally
designed for natural language processing (NLP), has proven
stronger feature learning capability than CNNs by using the
attention mechanism and has been successfully used for the
HSIC [24], [25], [26], [27], [28]. Nevertheless, transformer
models have a quadratic complexity with respect to the input
size, leading to a high computational cost and the risk of
overfitting given limited training samples. To overcome these
limitations, more recent transformer approaches, e.g., Swin
transformer [29], tend to reuse key CNN features, such as local
windows and weight sharing mechanisms. Transformer-based
architectures become increasingly like CNNs [30]. Therefore,
for enhancing the HSIC, it is essential to explore enhanced CNN
approaches that avoids transformer’s limitations.

Recently, to compare with transformer models, i.e.,vision
transformer (ViT) [31] and Swin transformer [29], the Con-
vNeXt method [32] is proposed to improve the traditional CNN
approaches. The ConvNeXt introduces the Swin transformer
design concepts to modernize standard residual neural networks
(ResNet), leading to a better performance than transformer-
based architectures on ImageNet classification [33], object de-
tection, and semantic segmentation tasks on COCO [34]. Con-
vNeXt’s success is owing to rethink and redesign the key CNN
components. From the macrodesign perspective, the ConvNeXt
has four main characteristics. First, the ConvNeXt adopts a four
stages architecture, and changes the stage compute ratio into
(3, 3,9, 3), which represents the number of blocks in each stage
and likely to be the optimal distribution of computation. Second,
the ConvNeXt uses a 4 x 4 nonoverlapping convolution to
aggressively downsample the input images at the network’s be-
ginning. Third, following the strategy proposed in the ResNeXt,
the ConvNeXt uses depthwise convolution and 1 x 1 convo-
lution to separate the mixed spatial and channel information.
Fourth, motivated by the transformer block, the ConvNeXt also
uses inverted bottlenecks and revisits the use of large-sized
convolutions. At the microscale, fewer activation functions and
normalization layers are adopted in the ConvNeXt, which is
the same with transformer models. Moreover, the ConvNeXt
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performs better by replacing ReLLU with GELU and substituting
batch normalization (BN) with layer normalization (LN). The
aforementioned macro and microdesigns make the ConvNeXt
a cutting-edge model. Given the advantages of the ConvNeXt,
the critical research question is how to adapt ConvNeXt under
the consideration of effectively extracting spatial and spectral
feature separately, one of the prime challenges in HSIC. This
article, therefore, presents a new spatial-spectral ConvNeXt
approach, called SS-ConvNeXt, for hyperspectral classification,
with the following characteristics.

1) To better learn the discriminative spatial and spectral in-
formation in the HSI, we design a new Spatial-ConvNeXt
(Spa-cv) block and a Spectral-ConvNeXt (Spe-cv) block.
The Spa-cv and Spa-cv blocks are used to implement a
four-stage architecture, with the number of blocks being
(3, 3, 9, and 3), respectively. The Spa-cv block is used
to implement the first two stages, and Spe-cv is used to
implement the last two stages.

2) We use both depthwise and pointwise convolutions to
reduce the model size and prevent vanishing gradient.
To decouple spatial and spectral information learning,
instead of using depthwise and pointwise convolutions
together in all blocks, we use depthwise convolution in
Spa-cv for spatial information learning and use pointwise
convolution in Spe-cv for spectral information learning.

3) To better learn the rich spectral information in the HSI,
instead of performing downsampling in the spatial domain
using 4 x 4 and 2 x 2 convolution layers, as conducted
in the ConvNeXt, we perform projection in the spectral
domain using the pointwise convolution layer to enhance
discriminative features in stages regularly, which we call
the spectral projection module (SPM).

The aforementioned characteristics of the proposed model
enable efficient discriminative spatial-spectral feature learning,
leading to an enhanced HSIC approach that can better address
the key HSI challenges. We qualitatively and quantitatively
evaluate the classification performance of the proposed methods
on four HSI datasets. The results demonstrate that the proposed
model not only can achieve high classification accuracy but also
can better preserve class boundaries and reduce within-class
noise. The proposed model approach shows significant im-
provement over the original ConvNeXt (i.e., ConvNeXt-T [32])
approach and various state-of-the-art (SOTA) CNNs-based and
transformer-based backbone networks.

The remainder of this article is organized as follows. Section I
introduces the proposed model. Section III presents the relevant
experimental results and highlights the comparison of our results
with other results. Section IV draws the discussion. Finally,
Section V concludes this article.

II. PROPOSED FRAMEWORK

A. Problem Formulation

The HSI is denoted by X, where the ¢th pixel z; is extracted
as a 3-D cube of size W x W x P, with W being the patch
size and P being the number of bands in the HSI. The class
labels of x; is denoted by y;, which takes discrete values, i.e.,
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yi € {1,2,...,C}, where C'is the total number of classes. The
task of the HSIC aims to estimate the labels of all pixels, i.e.,
Y = {y;|i € T'}, where T is a total number of pixels. Deep-
learning-based approaches solve this task by mapping z; to y;
using a neural network model y; = g(x;, ©), and estimating the
model parameters O using training samples. Once g(z;, ©) is
established, it can be used to predict all pixels in X and generate
classification maps.

B. Overall Architecture

Fig. 1 shows the overall architecture of the proposed SS-
ConvNeXt model. As we can seen in the top row of Fig. 1, the
proposed model consists of four stages, where the first two stages
are implemented by the Spa-cv block and the last two stages
implemented by Spe-cv block. The Spa-cv block uses depthwise
convolutions for spatial information learning, whereas the Spe-
cv block uses pointwise convolutions for spectral information
learning. Different stages are connected by SPM via a pointwise
convolution layer. The adaptive average pooling (AAP) layer
and a fully connected layer are used to generate the class label.
Mathematically, the proposed model can be formulated as

©) = FC(AAP(GELN(Spe-cv(PCy, ;LN
x (Spe-cv(GELN(PC 1
x (Spa-cv(PCy 1 LN(Spa-cv(GELN
x (PCr1(24))))))))))))) (1)

where PC;,; is the pointwise convolution layer, i.e., a con-
volution layer with kernel size being 1. GELN represents the
coactivation function of GELU and LN layer.

g(fﬂz‘,

C. Spa-cv Module

As indicated in Fig. 1, we design a new Spa-cv module to
implement the first two stages in the proposed model, where
Spa-cv consists, sequentially, of a depthwise convolution layer,
a layerwise convolution (LN) layer, an expansion linear layer, a
GELU activation layer, another linear layer, and a dropout and
scaling layer. The residual learning approach is also adopted
by using a skip connection operation. The use of depthwise
convolution in the Spa-cv module encourages Spa-cv to focus
on learning the spatial information in the HSI. Moreover, with
less parameters, depthwise convolution also reduces the size of
the proposed model.

The Spa-cv module in (1) can be expressed as

Spa-cv(input) = input + LayerScaleDrop
x (FC(GELU(FC(LN
x (DConv, 3(input)))))) 2

where DConvsys is depthwise convolution with a total of 64
convolution filters of size 3 x 3 X 1 in the first Spa-cv module
and 128 same-sized convolution filters in the second Spa-cv
module.
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Architecture overview of the proposed SS-ConvNeXt approach. The top row indicates a four-stage architecture, with the first two stages implemented

by the Spa-cv block and the last two stages implemented by the Spe-cv block. Depthwise convolutions are used in Spa-cv for spatial information learning, and
pointwise convolutions used in Spe-cv for spectral information learning. Different stages are connected by the SPM via a pointwise convolution layer. W is the
spatial size of patch. P is the number of band. LN denotes layerwise normalization. AAP denotes adaptive average pooling layer.

D. Spe-cv Module

As indicated in Fig. 1, we design a new Spe-cv module to
implement the last two stages in the proposed model, where
Spe-cv consists, sequentially, of a pointwise convolution layer,
a layerwise convolution (LN) layer, an expansion linear layer, a
GELU activation layer, another linear layer, and a dropout and
scaling layer. Similar to Spa-cv, the residual learning approach
is adopted by using a skip connection operation. The use of
pointwise convolution in Spe-cv encourages the Spe-cv module
to focus on learning the spectral information in the HSI in an
efficient manner.

The Spe-cv module in (1) can be expressed as

Spe-cv(input) = input + LayerScaleDrop

x (FC(GELU(FCLN(
x (PConvi«1 (input)))))) 3)

where PConv; 1 is pointwise convolution with a total of 256 1
x 1 convolution filters in the first Spe-cv module and 512 filters
in the second Spe-cv module, respectively.

E. Spectral Projection Module (SPM)

As indicated in Fig. 1, we design SPM to connect different
stages using pointwise convolution layer. By applying the SPM
to patch-wise samples, more discriminative features in spectral
domain can be established in stages regularly, instead of per-
forming spatial downsampling as in the ConvNeXt model. In
detail, before the first and third stages, we insert a pointwise
convolutional layer, an LN layer, and a GELU layer. Before
the second and the last stage, we add LN layer and pointwise
convolution layer.

III. EXPERIMENT RESULTS AND ANALYSIS

A. Data Description

To evaluate the performance of the proposed method, four
classical HSI datasets are adopted, i.e., Indian Pines (IN),! Pavia

![Online]. Available: https://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes

University (PU), WHU-Hi-HongHu (WHHH), and WHU-Hi-
HanChuan (WHHC).?

1) IN Data: IN data were collected in 1992 by the Airborne
Visible/Infrared Imaging Spectrometer sensor over Northwest-
ern Indiana, USA. The HSI consists of 145 x 145 pixels at
a ground sampling distance (GSD) of 20 m and 220 spectral
bands covering the wavelength range of 400-2500 nm with a
10-m spectral resolution. In the experiment, 24 water-absorption
bands and noise bands were removed, and 200 bands were
selected. There are 16 mainly investigated categories in this
studied scene.

2) PU Data: PU data were acquired by the Reflective Optics
System Imaging Spectrometer (ROSIS) sensor over PU and its
surroundings, Pavia, Italy. This dataset has 103 spectral bands
ranging from 430 to 860 nm. Its spatial resolution (SR) is 1.3 m,
and its image size is 610 x 340. Nine land-cover categories are
covered.

3) WHHC Data: WHHC data were captured by Headwall
Nano-Hyperspec imaging sensor equipped on a Leica Aibot
X6 UAV V1 platform on June 17, 2016, in Hanchuan, Hubei
province, China. It contains 1217 x 303 pixels, with an SR of
0.109 m, and 274 bands from 400 to 1000 nm. There are 16
classes in this studied scene.

4) WHHH Data: WHHH data were acquired on November
20, 2017, by the Headwall Nano-Hyperspec imaging sensor
equipped on a DJI Matrice 600 Pro UAV platform over the area
of Honghu City, Hubei province, China, with an SR of 0.043 m,
and image size of 940 x 475, and 270 bands in the range of from
400 to 1000 nm. Twenty-two land-cover categories are covered.

B. Experimental Setting

1) Evaluation Metrics: To quantitatively evaluate the pro-
posed method and other compared methods, we choose three
commonly used metrics, i.e., overall classification accuracy
(OA), average classification accuracy (AA), category accuracy
(CA), and Kappa coefficient (k).

2[Online].
htm

Available: http://rsidea.whu.edu.cn/resource_ WHUHi_sharing.
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2) Implementation and Training Details: Our proposed SS-
ConvNeXt model is implemented on the PyTorch 1.10.2 plat-
form using a workstation with Intel(R) Xeon(R) CPU ES5-2640
v4, 256-GB RAM, and an NVIDIA GeForce RTX 2080 Ti
11-GB GPU. Training, validation, and test samples are extracted
as 3-D cubes.

To train the proposed model, the CrossEntropy loss function
is adopted and the gradient descent approach, i.e., the Adam
optimizer [35], is used to estimate the unknown parameters in
the proposed model. The ExponentialLR scheduler is adopted,
and the initial learning rate is set to be 0.0001 and decayed by
multiplying a factor of 0.9 after each one-tenth of the total 400
epochs. We set batch size of 16, 32, 64, and 64 and patch size of
9,9, 13, and 13 for IN, PU,WHHC, and WHHH, respectively,
to allow a better computational efficiency.

C. Compared Methods

1) Methods Implemented: A total of eight other state-of-the-
art deep learning models are selected and implemented for com-
parison, i.e., SVM, 1D-CNN [14], 2D-CNN [36], 3D-CNN [37],
SSRN [38], HybridSN [17], A2S2K-ResNet [39], SSFTT [40],
SSRes [41], and SSTN [42]. For fair comparison, we use the
same model settings that were described in corresponding arti-
cles.

2) Methods With Published Results: In addition, published
results of a total of six advanced methods are used to further
verify the effectiveness of the proposed method, including few-
shot learning-based approaches (i.e., S-DMM [43], UM 2L [44],
and DCFSL [45]), CRF-based approaches (i.e., CNNCRF [46]),
and transformer-based model (i.e., SpectralFormer [26] and
SST-FA [28]).

3) Methods for Ablation Studies: Moreover, to investi-
gate the performance gain of the proposed SS-ConvNeXt,
five variants of SS-ConvNeXt (i.e., SS-ConvNeXt(E), SS-
ConvNeXt(D), SS-ConvNeXt(F), Spa-ConvNeXt, and Spe-
ConvNeXt) as well as the ConvNeXt-T [32] model are also
compared in the ablation studies. Fig. 2 shows the architecture
design of variants of the SS-ConvNeXt. In Fig. 2, the SS-
ConvNeXt(E) is the same with the SS-ConvNeXt, except that it
exchanges the location of Spa-cv and Spe-cv modules in the SS-
ConvNeXt. The difference between the SS-ConvNeXt(D) and
SS-ConvNeXt is that the SS-ConvNeXt(D) replaces the SPM
in the SS-ConvNeXt with the 2 x 2 spatial downsampling layer
before stages 2 and 4. The SS-ConvNeXt(F) fuses the Spa-cv and
Spe-cv modules in a branch manner, with three feature fusion
methods, i.e., point-wise multiplication, point-wise addition,
and concatenation. The Spa-ConvNeXt and Spe-ConvNeXt only
use the spatial and spectral modules, respectively.

D. Numerical Evaluation

‘We conduct experiments on these four datasets to investigate
the classification accuracy performance of the SS-ConvNeXt
and other compared algorithms under a different number of
labeled samples; four errorbar plots are drawn based on the
OA. The proportion of training samples, fixed training samples,
and training samples for per class for the IN dataset is in the
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Variants of the SS-ConvNeXt used for ablation analysis. Zoom in for

set {1%, 3%, 5%}, {100, 150, 200, 250, 300}, and {5, 10,
15}, respectively. For PU dataset, the proportion of training
samples, fixed training samples, and training samples for per
classisin the set {1%, 3%, 5%}, {100, 150, 200, 250, 300}, and
{5, 10, 25}, respectively. The proportion of training samples,
fixed training samples, and training samples for per class for the
WHHH dataset is in the set {0.1%, 0.3%, 0.5%}, {200, 300,
500}, and {10, 25, 50}, respectively, so is the WHHC dataset.
Each experiment was repeated ten times and the results were
averaged.

The results are shown in Fig. 3(a)—(d). In general, the clas-
sification accuracy of each algorithm increases as the number
of training samples increases. Moreover, deep learning models
exhibit better stability in their classification results, as reflected
by their lower standard deviation compared to the traditional
classification methods (i.e., SVM and 1D-CNN); as anticipated,
the results unequivocally demonstrate that the proposed SS-
ConvNeXt surpasses other methods with superior OA values on
all four datasets. Since the labeling process of HSI data samples
is time consuming, the classification performance in the case
of small samples can better test the quality of the algorithm.
For example, in the PU dataset, under 1% training proportion,
our SS-ConvNeXt’s OA can reach 98.50%; and in the WHHH
dataset, under 0.1% training ratio, our SS-ConvNeXt’s OA can
reach 92.8%, which is much higher than other algorithms.

Tables I-IV also shows the numerical results of four datasets.

1) For IN dataset, in Table I, the proposed SS-ConvNeXt

model achieves an OA of 94.34% with only 200 labeled
training samples, which is 4% higher than the second best
method, i.e., SSTN. In Fig. 3(a), the bar of the proposed
method is much higher than the other methods, regardless
of the number of training samples. With the increase
of training samples, the OAs obtained by the proposed
method increase very fast, but its standard deviations
decreases.

2) For PU dataset, in Table II, the SS-ConvNeXt achieves

an OA of 96.83% with only 200 labeled training samples,
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Fig. 3.  Errorbar plots of OA (averaged by ten runs) achieved by other networks and the proposed model, SS-ConvNeXt, on four datasets with different training
samples. Globally, as is shown in the picture, the proposed model, SS-ConvNeXt, achieves the best classification accuracy compared with other representative

networks. (a) IN dataset. (b) PU dataset. (c) WHHH dataset. (d) WHHC dataset.

TABLE I
CLASSIFICATION ACCURACIES AVERAGED BY TEN EXPERIMENTS (VALUES £ STANDARD DEVIATION) ON THE IN DATASET USING 200 TRAINING SAMPLES (OPTIMAL
RESULTS (OA,AA,CA,k) ARE COLORED SHADOW AND OPTIMAL STANDARD DEVIATION IN BOLD)

Class no. | Color Method
SVM 1D-CNN 2D-CNN 3D-CNN SSRN HybridSN A“S“K-ResNet SSFTT SSRes SSTN SS-ConvNeXt

1 57.63+19.04 6891£11.09 57.83+9.39  81.82+13.65 91.58+7.21  86.32+16.49 96.84+3.68 85.87+14.43  91.7448.80  89.95+6.87 93.48+5.23
2 57.46£9.20  57.25£6.43  49.94+4.77 70.64£8.66  76.19£16.59  80.55+6.74 87.81+6.92 78.2748.58 86.77+£5.08  90.92+5.99 93.91+1.89
3 45.64+6.43  46.01£7.72  41.71£8.57 56.39+12.29 75.40£17.76  73.26+7.84 85.67+8.99 83.39+14.25  88.70£5.06  73.16+7.44 95.35+4.89
4 25.79+14.51 25.95%11.52  27.97+5.81  62.33%16.50 52.24+21.03 53.71+13.08 76.43+14.67 64.14£13.93  90.00£9.38  78.76%7.10 84.18+8.94
5 68.54+7.88  59.69+13.48  36.31x9.28  63.06£11.04 82.01£1547  84.96+4.55 87.35+9.64 82.90+£6.63  72.84+8.75  87.65+5.00 86.09+7.47
6 89.44+6.09 87.7845.14  67.34£6.53  61.75+10.40  97.02+4.78  97.53+1.49 97.78+2.78 94.81£3.48  94.3242.32  98.00£0.70 98.16+0.96
7 85451481  88.574.46  68.57+12.76 91.32+1430 94.29+9.20  99.05+2.01 100.00£0.00  96.79£5.94  97.50£3.78  96.36x10.00  98.93+3.39
8 88.81£5.15 88.16£6.72  89.4443.17  76.81£10.59  96.48+2.65 94.92+4.78 97.83+3.54 96.09+2.25 98.244£2.70  95.27+4.85 99.67+0.67
9 59.29+10.13  77.00£9.54  89.00£8.00  82.47x18.17 89.23+19.59  90.00£13.59 98.46+4.87 92.00£11.35  98.50£2.42  91.43+7.38 99.002.11
10 58.26+8.40  61.60+7.31 56.63+7.13 74.67+8.43 69.76+9.75 72.1245.74 82.44+6.09 82.03+8.64 83.79+6.00 88.41+3.91 88.80+3.94
11 63.94+339 75944328  70.50£5.96  81.10£5.16  88.15+3.95  84.01+5.34 89.66+3.86 88.58+5.66  92.09+3.06  93.82+4.35 95.72+2.62
12 36.86+4.72  30.96£10.67 33.78+7.44  64.28+6.87 61.73+20.27 63.77+13.46 81.96+7.93 73.9549.75  76.24+11.74  85.43+8.28 92.1447.15
13 88.84+5.84  86.63x6.39  64.00+12.10 57.48£12.73  95.17+5.01  97.72+6.24 95.72+4.99 94.05+8.60  95.0246.24  91.06+3.43 99.02+0.56
14 86.05+5.65  91.00+¢3.50  88.33+1.85  87.65+5.51  97.06+2.76  95.17+3.52 96.99+3.08 91.84+6.07  97.11x1.14  97.84%1.42 98.70+1.59
15 27.26+3.88  41.32+4.73 41424620 59.89£10.22 73.33+20.11 70.29+14.33 94.88+8.54 76.06£12.79  86.24+13.18  73.25£14.88  91.27+7.10
16 84.2044.86  87.85+4.46  78.60+13.60 71.89+16.41 92.25+8.49  88.75+20.03 96.00+6.48 89.46+11.26  97.42+4.22  94.0247.12 96.34+4.16

OA(%) 63.81£1.99  67.32+1.70  60.95+2.64  72.67+3.73  82.81+5.69  82.391.17 89.46+2.16 85.13+2.36  89.39+1.86  90.12+1.23 94.3420.94

AA(%) 63.9742.36  67.16£2.01 60.09£2.64  71.47+4.09 83.24+6.93 83.26+1.47 90.99+1.64 85.56+2.95 90.41+1.83 89.08+2.16 94.31+1.31

k*100 59.49+224  62.41+1.98  5528+3.01  69.39+4.16  80.66+6.72  80.36x1.41 88.27+2.34 83.06+2.72  87.91+2.11  88.90+1.37 93.55+1.07

TABLE II

CLASSIFICATION ACCURACIES AVERAGED BY TEN EXPERIMENTS (VALUES £ STANDARD DEVIATION) ON THE PU DATASET USING 200 TRAINING SAMPLES (OPTIMAL
RESULTS (OA,AA,CA,k) ARE COLORED SHADOW AND OPTIMAL STANDARD DEVIATION IN BOLD)

Class no. | Color ‘ M§th0d ]
SVM 1D-CNN 2D-CNN 3D-CNN SSRN HybridSN  A°S®K-ResNet SSFTT SSRes SSTN SS-ConvNeXt

1 82.16+4.97  83.30+3.26  87.30£1.76 94.7244.53 94.16+4.85  94.05+4.19 96.28+2.67 742441248  91.25+3.73  93.09£1.79  96.92+2.06
2 84.44+4.11  94.35%239  90.26+1.71 98.72+4.53 98.61+0.89  98.37+1.35 98.78+0.66 98.84+1.24  93.19+1.84  93.62+#1.37  98.93+1.25
3 56.02+10.74  45.3248.93  47.33+£7.81  72.14%13.52  69.03£13.74  76.06+8.08 74.04%8.58 57.98+14.60  66.07+12.47 86.33+5.65  91.01+2.86
4 83.45+6.07 77.44£542  91.45+6.79 89.60+3.64 91.16£2.66  96.60£5.15 93.51£3.19 86.07+4.93  94.92+1.22  92.52+1.51 93.2244.01
5 97.39+2.76  98.48+6.53  95.42+4.88 99.36+0.48 99.50+0.54  99.98+0.05 99.20+2.08 99.69+0.65  99.51+0.44  99.69+0.59  99.95+0.06
6 79.15+6.89  48.63£7.10  53.96+8.60 96.39+3.40 91.60+4.89  75.59+6.83 86.39+6.40 92.33+4.37  91.72%4.45  99.66+0.57  94.47+3.41
7 58.39+18.25 70.20+9.18  58.30x11.83  779.82425.75 83.07+10.99 94.31+3.24  87.89+11.12 94.43+6.65  86.10£7.05  98.34+1.28  95.05+4.57
8 73.61£5.00 83.954£5.10 70.90+10.89  89.25+9.66 90.4246.22  80.07x6.90 89.49+6.87 92.18+4.71  90.29+5.12  95.41+1.78  95.49+1.88
9 99.78+0.18  99.30£1.29  88.98+5.46 95.12+1.74 98.88+1.21  89.13+9.29 98.00+1.85 82.75#7.61  96.86£3.18  98.29+0.98  95.4442.26

OA(%) 81.00£1.15  82.24+1.23  80.38+2.37 94.23+1.57 93.95+1.40  91.23+1.48 94.20+1.05 90.30+1.91  91.32+1.43  94.41£0.62  96.83+0.89

AA(%) 79.3742.07  77.88+1.53  75.99+2.53 90.57+3.06 90.71£2.79  88.24+2.06 91.50+£1.87 86.50£1.91  89.99+1.64 95.22+0.69  95.61+0.48

k*100 75.21%1.36  75.94+1.67 74.72+2.22 92.63+2.09 91.99+1.86  88.30+£1.97 92.30+1.40 87.16£2.51  88.62+1.86 92.71+0.78  95.80+1.18
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TABLE III
CLASSIFICATION ACCURACIES AVERAGED BY TEN EXPERIMENTS (VALUES £ STANDARD DEVIATION) ON THE WHHH DATASET USING 0.5% TRAINING SAMPLES
(OPTIMAL RESULTS (OA,AA,CA, AND k) ARE COLORED SHADOW AND OPTIMAL STANDARD DEVIATION IN BOLD)

Class no. | Color ‘ MélhOd
SVM 1D-CNN 2D-CNN 3D-CNN SSRN HybridSN  A?S”K-ResNet SSFTT SSRes SSTN SS-ConvNeXt
1 77.08+2.66  90.63+2.04  96.77+0.56  94.74£1.98  95.62+1.83  95.67+2.06 97.42£1.17 95.73£0.86  96.44+0.73  96.02+2.48 97.82+1.06
2 76.40£4.38  67.11+8.58  84.01x4.36  78.06x1.72  81.43x5.64  78.05+5.84 78.44+6.84 73.60+8.40  83.97+7.75  90.60+3.46 90.36+4.88
3 74.02£6.66  88.00+3.20 91.6x1.09 91.99£3.25  93.25+3.15  92.65+1.44 94.6+0.79 92.50+2.38  94.02+2.66  93.05+2.65 96.18+1.61
4 70.25£4.56  98.25+0.53  99.15x0.24  99.05+0.60  99.43x0.21  99.16+0.30 99.3+0.22 99.35£0.44  99.26+0.54  99.10+0.68 99.70+0.43
5 70.25£5.77  39.86x8.06  79.04%5.19  89.30+4.37  85.57+6.11  81.29+5.52 89.58+4.16 69.83+6.59  89.30+4.08  89.38+4.54 95.30+1.37
6 62.28+43.44  89.68+1.96  94.73x1.16  97.88+0.64  97.27x1.04  96.81x1.03 96.99+0.78 96.06£0.94  98.06+0.75  98.13%1.19 99.22+0.69
7 38.28+3.84  72.70+3.64  79.23¥2.92  90.52+3.43  88.68+4.02  86.69+2.65 90.63£1.72 88.58+2.83  92.24+2.24  87.89+5.07 97.36+1.39
8 15.69+8.06 6.24+2 .88 19.27£2.72  64.13+8.50  42.82+17.20  50.64+7.80 50.20+£6.91 47.34£5.26 5445595  62.63x14.67  81.23+8.20
9 65.41+£3.14  92.89+1.13  96.46x1.17  97.50£0.66  97.11+1.68  96.54+1.56 96.62+1.30 96.81£1.00  96.77+1.84  96.82+2.57 98.59+1.98
10 9.87£5.77 50.70£6.03  74.16+3.32  88.81£5.33  82.26x7.71  80.68+4.73 84.66+2.89 79.62+3.35  92.48+3.05  86.94+6.40 95.95+2.41
11 7.20+3.21 40.55+6.54  64.36£2.89  81.24+8.80  79.69£9.65  77.46%5.15 82.49+2.97 72.49+4.54  88.20+3.76  85.22+6.35 96.13+1.47
12 48.2248.64  47.71£6.80  69.34+4.31  77.83x6.71  70.75£9.56  60.87+4.68 75.57£3.36 65.98+5.24  82.91+3.79  79.86+5.80 90.98+3.43
13 43.06£7.38  64.28+4.76  79.51£3.52  87.83x2.39  83.09+£3.32  79.14+4.18 85.85+2.36 77.48+3.05  89.81+x1.39  91.91+2.03 95.29+1.63
14 46.21£3.52  59.8244.90  78.67+3.74  88.35+3.10  88.15+£3.07  81.45+5.73 87.95+4.91 85.11£3.75  93.70£1.89  93.20+3.79 96.36+1.19
15 38.63+10.11  34.39+£14.21 23.05+10.57 77.28+13.58 68.18+27.50 78.84+11.24 78.96+9.19 73.25+8.29  62.87+1522  97.13+3.08 87.37£5.23
16 56.88£12.80  78.33£6.97  92.73+2,88  98.24+0.97  94.58+5.28  90.67+3.05 94.40£1.56 90.3242.56  98.31x1.14  94.44+3.56 98.78+0.97
17 42.47+18.24 53391291  76.85£6.61  89.93+8.90  86.32+6.92  79.84+7.08 85.96+4.93 83.19£7.40  90.10+1.14  96.58+1.88 97.13£2.20
18 38.59+44.72  34.83£11.49 58.80+6.28  84.26+8.10  76.9£20.82  79.34+8.76 81.58+8.97 81.7246.51  85.79£6.10  89.71%3.68 94.18+2.57
19 11.35+¢4.27  74.04£393  85.62+2.77  86.10+4.81  86.95+545  84.15+3.73 88.14£2.85 86.99£2.20  92.96+2.29  90.27+3.81 95.88+2.70
20 48.67x11.57  59.79£6.96  86.03x4.44  91.78£1.20  78.53%£15.03  64.21£9.59 83.48+6.38 60.11£5.67  89.60+4.18  90.71+3.33 94.50+2.89
21 44.36+14.52  7.1244.72 29.44+8.04  62.99+23.32 45.78+23.14 48.33%13.98 64.7549.11 32.8248.45 44.17+17.11  62.90+13.52  79.39£10.32
22 58.03+£8.04  34.50+8.32  74.28+4.90  91.06+3.12  82.39+8.38  72.71+4.88 85.30£6.03 76.99+4.08  91.85+4.33  85.48+6.47 95.60+4.59
OA(%) 58.28+1.76  82.14+0.47  89.75+0.55  94.06£0.26  92.74+2.12  91.33£0.84 93.68+0.26 91.14£0.33  95.09+0.30  94.66+0.72 97.75+0.53
AA(%) 47.30£1.05  58.40£1.67  74.23+1.66  86.77+£5.94  82.03+6.16  79.78+1.82 85.13£1.17 78.44£1.02  86.69+1.39  89.00£1.44 94.24+1.31
k*100 50.50£1.65  77.21+0.61  87.02+0.70  92.52+0.43  90.86+2.69  89.09£1.05 92.04+0.34 88.76x0.41  93.82+0.38  93.28+0.90 97.170.66
TABLE IV

CLASSIFICATION ACCURACIES AVERAGED BY TEN EXPERIMENTS (VALUES £ STANDARD DEVIATION) ON THE WHHC DATASET USING 0.5% TRAINING SAMPLES
(OPTIMAL RESULTS (OA,AA,CA, AND k) ARE COLORED SHADOW AND OPTIMAL STANDARD DEVIATION IN BOLD)

Method
Class no. | Color SVM IDCNN  2D.CNN __ 3D-CNN SSRN HybridSN _ AZS’K-ResNet  SSFIT SSRes SSTN  SS-ConvNeXt

T 82012222 92302097 9575098 95412077 94.60:430 9339%196  O477=1.11 _ 80.78£723 9755:081 05.00x181  98.62+0.56
2 58.63£1.73 71804271 87.67+L14 9227177  93.09+145 9011242 87974203  88.68+170 91.79+£3.56 9301226  97.29+1.19
3 59474343 72312346 70.94£5.13 9232309  87.91:529 8085434 8395378  76.78+4.02 90724405 90482316  97.20+2.17
4 75304470 9068243 72.43+7.98 96.0320.85  95.11x1.97  94.66+222  9495:202  95.17£124  9625£1.60  95.1742.59  96.69+1.82
5 10732556 15012691 50.7749.22 8675727 51.14£17.86 36.15:13.01  39.97£1221  38.10+12.80 83.32+11.86 81.67+1245  88.15:8.86
6 20.73£4.06 11452425 2447+4.02 5453:11.63 59.71£1028 53.68£6.37  60.192342  47.10£11.08 63.33£7.25 6294461  79.82£1030
7 56.0044.60  69.55+4.24 84.08+4.49 86.8622.37  84.79:645  8223+4.14 83832614  80.33:751  8575£4.45 0032267  94.24+2.44
8 49.79+1.88  68.15:2.41 74414232 88.98+251  88.18+2.80 85684231  85.19+201  81.87+#3.69 90412318  82.98+639  94.30+3.06
9 38994422 5697+5.66 66.95+3.56 8538+5.46  86.95+541 74994629 7781337  76.67£542 87724601 90404238  94.05+3.50
10 81.00£2.70 90324142 88714273 9629+1.77 96034230 93794437 9343256  93.10:4.36  94.65:2.68  98.160.83  97.82+2.52
11 82224280 86474248 94254139 9540+122  9627+150 9454236 9487217 91912335  97.64+203  96.53+129  98.17+1.21
12 21638309  22.65:4.96  65.7048.89 77.34+533 550041283 4976685  5579£1273  4420£9.15 78324939 60904929  93.932.78
13 35.86£2.24 48813450 66.86£2.62 7578+8.10  69.6744.19  67.1943.10 69424449 62524899  77.48+4.15 82114458 85332372
14 62124443 7948329 87.774226 8526+632 91.12+328  86.60+2.14  $8.60+245  8578+3.63  90.0242.02 90.71+2.60  94.83+1.48
15 4038£1022 47.80£1349 47243961 70974852 6027£13.18 55171032 562741239  52.48:830  75.0648.15  79.97+8.00  72.40+4.68
16 [ 96913044 9789040  99.01:0.26 9854132  99.14:0.53  99.28+0.36  99.16:0.50  98.92+0.51  98.72:0.98  99.54%0.20  99.56031

OA(%) 7320:0.42  81.83x0.42 87.61:064 0241x085 0210150 8980:1.12 00502068  87.02:1.65 93558046 0332£052  96.74+0.46
AA(%) 54.49+0.69  63.85:1.06 73.56£143 91.15:098  81.87+337  77.39£1.88  79.14+2.09  7521#225 87424131 8693144  92.65+1.17

£*100 68.94+0.48 78742049 8548+075 86.13x041 90.81:174 8813129  $8.95:078  8587+191  9247+0.54 92212061  96.20£0.54

which is about 2% higher than the second best method, i.e.,
SSTN. Moreover, in Fig. 3(b), the bar of the SS-ConvNeXt
is higher than the other methods in all cases, with the only
exception when there is five labeled samples per class. In
Fig. 3(b), the standard deviation of the SS-ConvNeXt is
lower than the other methods.

For WHHH dataset, in Table III, the SS-ConvNeXt
achieves an OA of 97.75% with only 0.5% training sam-
ples, which is about 2.6% higher than the second best
method, i.e., SSRes. Fig. 3(c) indicates that the proposed
methods can outperform all methods in all cases.

For WHHC dataset, in Table IV, the SS-ConvNeXt
achieves an OA of 96.74% with only 0.5% training sam-
ples, which is 3% higher than the transformer-based model
SSTN. In Fig. 3(d), with the increase in training numbers,
the SS-ConvNeXt significantly performs better than other
networks.

Table V compares the proposed method with the pub-
lished results of another advanced methods, which indi-
cates that the proposed approach performs the best in most
cases.

3)

4)

E. Visual Evaluation

Figs. 4-7 show classification maps of different methods
on four datasets. Region of interests are used to highlight dif-
ferences. Overall, on all datasets, the proposed SS-ConvNeXt
offers better classification maps that are closest to the ground-
truth map. Moreover, referring to RGB composite image, the
SS-ConvNeXt shows less inner class misclassification, more
accurate class boundaries and edges, and finer details with a
less oversmoothing phenomenon.

The conventional approach, as exemplified by the SVM and
ID-CNN models, yields classification maps that are noisy and
exhibit discontinuous land cover blocks, resulting in rough clas-
sification outcomes. Classic backbone networks, as exemplified
by 2D-CNN and 3D-CNN models, and HybridSN, show better
classification maps with less noise. The method based on the
residual network, as exemplified by SSRN, A2S?K-ResNet, and
SSRes, has strong feature extraction ability, which improves the
classification accuracy to a certain extent. A transformer-based
network, represented by SSFTT and SSTN, performs better
because of the attention mechanism.
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SS-ConvNeXt Ground truth map

Fig. 4. Classification maps obtained by other models and SS-ConvNeXt on the IN dataset with 200 training samples. A local area (red square) is demarcated and
zoomed for easy observation.

Fig. 5. Classification maps obtained by other models and SS-ConvNeXt on the PU dataset with 200 training samples. A local area (red square) is demarcated
and zoomed for easy observation.

A’S’K-ResNet SS-ConvNeXt

Fig. 6. Classification maps obtained by other models and SS-ConvNeXt on the WHHH dataset with 0.5% training samples. A local area (red square) is demarcated
and zoomed for easy observation (best view in zoom in).



5460 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE V
COMPARISON BETWEEN SS-CONVNEXT AND S1X OTHER ADVANCED METHODS ON DIFFERENT DATASETS (OPTIMAL RESULTS (OA,AA,k) ARE COLORED
SHADOW AND OPTIMAL STANDARD DEVIATION IN BOLD)

HSI Dataset Indian Pines (IN) Pavia University (PU)
Compare with few-shot learning methods | SS-ConvNeXt  S-DMM [43] UM2-L [44] DCFSL [45] SS-ConvNeXt S-DMM UM?2-L DCFSL
Sample size per category 5 - 5 5 5 10 10 5 5
OA(%) 80.69+3.40 - 72.09+2.20 66.81+2.37 81.81+4.36  88.01+2.78 87.59+2.43 80.92+3.55 83.65+1.77
AA(%) 88.50+1.91 - 64.84+3.17 77.89+0.86 86.45+1.89  91.80+1.28 92.89+1.30 77.77+3.19 83.77+1.74
Kappa 0.78+0.04 - 0.69+0.02 0.63+0.01 0.760.05 0.84+0.03  0.84+0.03  0.76+0.04  0.79+0.02
Training time(s) 506 - - - 300 567 - - -
Prediction time(s) 14 - - - 138 130 - - -
HSI dataset Indian Pines (IN) Pavia University (PU)
Compare with transformer-based methods SS-ConvNeXt SpectralFormer [26]  SST-FA [28] | SS-ConvNeXt SST-FA
Training samples number 15 per class total 200 50 per class total 200 total 200 total 200
OA(%) 91.87+2.11 94.34+0.94 81.76 88.98+1.96 96.83+0.89  93.37+1.96
AA(%) 95.40+1.11 94.31£1.31 87.81 68.15+1.06 | 95.61+0.48 85.01+3.78
Kappa 0.91+0.02 0.9420.01 0.79 0.87+0.01 0.96+0.01 0.92+0.02
Training time(s) 1203 1399 - - 1222 -
Prediction time(s) 13 13 - - 120 -
HSI dataset 'WHU-Hi-HongHu (WHHH) WHU-Hi-HanChuan (WHHC)
Compare with CRF-based methods SS-ConvNeXt CNNCREF [46] SS-ConvNeXt CNNCRF
Sample size per category 100 100 100 100
OA(%) 97.53+0.41 93.74 96.44+0.51 93.95
AA(%) 97.75+0.52 94.78 96.74+0.38 94.78
Kappa 0.97+0.01 0.92 0.960.01 0.93
Training time(s) 2784 502 2166 480
Prediction time(s) 346 811 370 412

* The CAs of SpectralFormer, SST-FA, S-DMM, UM2L, DCFSL, SST-FA and CNNCRF are directly quoted from references [43], [44], [45], [26], [28] and [46] respectively.

101 N S U8 L
’ T

Ground truth map

m RGB composite image

Watermelon Greens Trees
Road Bright object

SSRes SSTN -
§ o F i

Fig.7. Classification maps obtained by other models and SS-ConvNeXt on the WHHC dataset with 0.5% training samples. A local area (red square) is demarcated
and zoomed for easy observation (best view in zoom in).

TABLE VI
ABLATION ANALYSIS OF THE PROPOSED SS-CONVNEXT WITH A COMBINATION OF DIFFERENT MODULES AND ORIGINAL CONVNEXT-T ON THE IN DATASET
WITH 200 TRAINING SAMPLES (OPTIMAL RESULTS (OA,AA,CA, AND k) ARE COLORED SHADOW AND OPTIMAL STANDARD DEVIATION IN BOLD)

Case Spaev Spi(-]:\ipon;:slion Viodule OA In:t:es 100 blocks dims! #param | Training Time | Prediction Time
ConvNextT2(32] | X X 59.67+1.24 54.70+138 55.41+2.09 [3,3,9.3] [96,192,384,768] | 28.14M 1058s 10s
SS-ConvNeXt(D)}| v/ v X 86.98+0.67 83.59+1.29 85.58+0.74 [3,3,9,3] [64,128,256,512] | 14.64M 2662s 10s
SS-ConvNeXt(E) | v/ v X 92.92+40.98 93.18+1.17  92.07£1.05 [3,3,9.3] [64,128,256,512] | 12.94M 1571s 8s

Spa-ConvNeXt v X X 89.85+1.22 89.26+2.20 88.66+1.34 [3.3] [64,128] 1.41M 5435 2s
Spe-ConvNeXt X v X 91.71¥2.24  88.96+4.56 90.68+2.57 [9,3] [64,128] 1.41M 1074s 3s
mul 89.40+0.89 87.02+3.14 88.18+0.98 1619s 4s
SS-ConvNeXt(F) | v/ v add 90.15+2.41 88.21+4.13  88.89+2.77 | Spa:[3,3],Spe:[9,3] [64,128] 1.39M 1632s 4s
cat 91.5241.68 90.63+1.85 90.50+1.85 16265 4s
0356143 93.73%1.68 92.82+1.61 [1,1,3,1] 4.60M 835s 6s
SS-ConvNeXt v v X 93374122 93.2741.98  92.64+1.38 [2,2,6,2] [64,128,256,512] | 8.91M 1253 9s
94.03+0.83  94.31%1.17  93.34x0.94 [3,3,9,3] 13.12M 12415 125

! Here, “dim” means the output dimension of Spa-cv and Spe-cv modules respectively. For example, [64,128,256,512] means that the output dimensions of Spa-cv module are 64 and 128, the output dimensions of Spe-cv module are

256 and 512.

The figure indicates that the SS-ConvNeXt outperforms other  F. Ablation Analysis
methods in identifying most areas for the Corn-notill class (the
red box on the left in Fig. 4) in the IN dataset, while also
maintaining more precise class boundaries and edges as shown in
the area that is zoomed in. The SS-ConvNeXt has also accurately

classified the building boundary on the PU dataset. The WHHH variants and the original ConvNeXt-T method. In Table VI, the

and WHHC datasets demonstrate that the SS-ConvNeXt has g3 ConyNeXtimplementations with different number of blocks
better performance in terms of clearer delineation, although the (ie., [1,1,3,11, [2,2,6,2,], and [3,3,9,3]) achieve the similar clas-
distribution structure of the ground cover of these two agricul- e e T

tural scenes is very large and complex.

Table VI shows the results achieved by variants of the pro-
posed SS-ConvNeXt model, whose architecture is illustrated in
Fig. 2. The ConvNeXt-T is also included for comparison. As
we can see in Table VI, the SS-ConvNeXt outperforms all its

sification performance. In this article, we use the number of
block in [3,3,9,3] as shown in Fig. 1. The poor performance
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Fig. 8. Classification maps obtained by different variants of the proposed SS-
ConvNeXtmodel, as well as the original ConvNeXt-T approach on the IN dataset
with 200 training samples.

of the ConvNeXt is probably due to the fact that it is not
designed for the HSIC, and thereby, cannot efficiently capture
the discriminative spectral and spatial information. Accuracies
of the SS-ConvNeXt is more than 1% higher than that of the
SS-ConvNeXt(E).

The difference between the SS-ConvNeXt(D) and SS-
ConvNeXt is that the SS-ConvNeXt(D) replaces the SPM in the
SS-ConvNeXt with a 2 x 2 spatial downsampling layer before
stages 2 and 4. The better performance of the SS-ConvNeXt and
SS-ConvNeXt(D) demonstrates the superiority of the proposed
SPM over spatial downsampling. The SS-ConvNeXt(F) with a
concatenation operation shows better results. We observe that
the parallel SS-ConvNeXt(F) performs worse than the serial
SS-ConvNeXt, which might be because different brunches of
the parallel SS-ConvNeXt(F) are concentrated in a manner that
is insufficient for interactions between the spatial and spectral
branches, whereas in serial SS-ConvNeXt, spatial and spectral
information is extracted by stages, allowing more efficient ex-
traction of both low- and high-level features in a hierarchical
manner.

Fig. 8 shows classification maps of different variants of the SS-
ConvNeXt. Overall, the SS-ConvNeXt provides better preserved
class boundaries with less within-class artifacts and noise. Direct
application of the original ConvNeXt-T model to HSIC gives the
worst results.

G. Hyperparameter Sensitivity Analysis and Feature Map
Visualization

Fig. 9 shows performance variation of the SS-ConvNeXt with
changes of patch size, learning rate, and different activation
functions (i.e., GELU and ReLU) on four datasets. Except for
IN dataset, the accuracy indicator increases with patch size
on the remaining three datasets. Additionally, the SR of these
four datasets is quite different. IN has an SR of only 20 m,
nevertheless, PU, WHHH, and WHI-Hi-HanChuan have an SR
of 1.3,0.043,0.109 m, respectively. This influence of the window
size can be interpreted as the smaller patch size containing insuf-
ficient spatial information on the high SR HSI dataset, and the
larger patch size is not conducive to extracting key information
on the low SR HSI dataset. Based on this observation, we set
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Fig. 10.  Feature maps achieved by different activation functions (i.e., GELU
and ReLU).

the patch size of the IN and PU datasets to be 9, and that of the
WHHH and WHHC datasets to be 13.

We also conduct ablation study on the learning rate strategy.
As we can see in Fig. 9(middle), the ExponentialLR strategy
enables a higher performance than all other fixed learning-rate-
based approaches. We, therefore, adopt ExponentialLR to train
our model.

As shown in the red box of Fig. 10, feature maps achieved
by the GELU function can better perceive detailed informa-
tion than the ReLU function. SS-ConvNeXt with ReLU fails
to perceive the boundary between different object types. The
OA is slightly improved with the use of GELU as shown
in Fig. 9(right). So, we use the GELU function in the SS-
ConvNeXt.

IV. DISCUSSION

A. “Serial structure (Spatial-Spectral)” or “Parallel scheme
(Spatial and Spectral)”

We propose a spatial-spectral ConvNeXt approach for HSIC.
The architecture of SSRN, SSTN, and SSRes are serial structure,
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which means extracting spatial information first, and then, spec-
tral information. The ablation analysis shows that serial structure
SS-ConvNeXt performs worth than the parallel scheme SS-
ConvNeXt(F), which combines the spatial and spectral branches
separately. At the same time, it is proved that only extracting
spatial or spectral information cannot solve the HSIC problem
well.

B. How the Window Size Affects the Accuracy?

The spatial size of input data is one of the main factors
that influence the HSIC performance. Based on the observation
in ablation analysis, smaller spatialized input contains insuffi-
cient spatial information on high SR HSI dataset (e.g., WHHH
dataset), and the larger spatialized input is not conducive to
extracting key information on low SR HSI dataset (e.g., IN
dataset). Consequently, to make a fair comparison, ensuring the
consistency of the window size of the same dataset is a fair
guarantee.

V. CONCLUSION

This article has presented a new spatial-spectral convolution
neural network model, called SS-ConvNeXct, for the HSIC. This
new model was inspired by the recent ConvNeXt model, which
has demonstrated stronger feature representation capability than
the popular ViT approaches. The proposed SS-ConvNeXt was
tailor designed to the characteristics of HSIs, and thereby, can
efficiently learn discriminative spatial-spectral information for
the enhanced HSIC. To better learn the spatial and spectral
information in the HSI, the Spa-cv and Spe-cv blocks were, re-
spectively, designed. The depthwise and pointwise convolutions
were adopted to reduce the model size and prevent vanishing
gradient. The proposed model was evaluated against 14 other
state-of-the-art methods on four different datasets. Moreover,
extensive ablation studies were conducted to investigate the
roles of building blocks in the proposed model. The results
demonstrated that the proposed SS-ConvNeXt not only can
achieve a high classification accuracy but also can better preserve
class boundaries and reduce within-class noise.
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