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Abstract—The rape planting plots are fragmented and have
the same temporal variation characteristics as other land types,
the rape planting area is cloudy and rainy, and the optical remote
sensing images are limited, all make it difficult to extract the rape
planting areas. Aiming at the above-mentioned problems, this study
used microwave remote sensing data combined with the compact
polarimetric technique to construct a dual-polarization radar index
to classify rape planting areas and analyzed the influence of time
series combinations on the extraction accuracy of rape in South
China. First, based on m-χ compact polarimetric decomposition,
a dual-polarization radar vegetation index (RVI) was constructed.
Then, based on Sentinel-1 data, the dynamic time warping (DTW)
threshold classification method was used to extract rape planting
areas in six counties in the main rape-producing areas in the middle
and lower reaches of the Yangtze River, China. Finally, a random
forest algorithm was used to analyze and screen the optimal time
series combination of the extracted regional rape planting areas.
Among the 94 rape samples obtained in the field, 74 samples were
accurately classified as rape, and the overall accuracy was 78.72%.
Six ground samples were used to verify the accuracy of the rape
planting area extraction results, and the F-1 score was 81.00%.
The above-mentioned results indicated that the rape planting area
extraction approach based on the RVIm-χ and DTW threshold clas-
sification methods yields high accuracy in regional rape planting
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area extraction from dual-polarization SAR data, and RVIm-χ is
characterized by certain regional scalability and stability.

Index Terms—Planting area, polarization decomposition, radar
vegetation index (RVI), rape, sentinel-1 data.

I. INTRODUCTION

RAPE (Brassica napus L.) is one of the most important oil
crops in the world, and it is the main source of edible

vegetable oil, feed protein, and biological lubricating oil; thus,
it has significant economic value in food manufacturing and
pharmaceutical industries [1], [2]. China’s rape planting area
and production are among the highest in the world, providing
more than 50% of the oil supply for Chinese residents every
year. According to the rape planting area and production data
for the past ten years, the annual planting area of rape in China is
between 5.5 and 7.5 million hectares, the annual yield is between
1800 and 2100 kg/ha, the annual production of rapeseed is be-
tween 10 and 15 million tons, and the overall trend is on the rise
(http://www.stats.gov.cn). Real-time, dynamic, and large-scale
monitoring of rape planting areas is of great significance for
guiding agricultural production, maintaining the stability of the
grain and oil markets, and ensuring the life and health of the
people of China.

The fragmentation of rape planting plots and seasonal changes
in other land covers, such as woodland and water, with the
same temporal characteristics as rape in single-phase or mul-
tiphase remote sensing images make the extraction of rapeseed
planting areas difficult. Therefore, there are few studies related
to the extraction of rape planting areas using remote sensing
technology. Most of the previous studies on rape extraction
were based on optical remote sensing data [3], [4], using the
optical vegetation index and combining it with the phenological
information of rape to construct extraction models. However, the
weather in the main rape-producing areas is cloudy and rainy,
and the lack of high-quality optical data due to the influence of
meteorological conditions such as clouds, rain, and fog, and the
fragmentation of rape planting plots have led to great difficulties
in monitoring rape planting areas [5], [6]. Synthetic aperture
radar (SAR) provides all-day and all-weather observations and
is not affected by meteorological conditions; additionally, the
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side-looking imaging capability of SAR systems makes them
sensitive to crops and soil structure and characteristics [7],
[8]. In particular, C-band microwave radar signals can reach
the crop canopy and are highly sensitive to the 3-D structure
of plants [9], [10]. Studies on crop planting area extraction
using SAR have focused on grain crops [11], [12], [13], and
there are fewer studies related to rape. The current research
on rape based on SAR is mainly parameter inversion [5], [14].
Sentinel-1 remote sensing data are currently the only free SAR
data (http://esa-sen4cap.org/). Sentinel-1 satellites consist of
two polar-orbiting satellites in the same orbital plane, and they
were successfully launched on April 3, 2014 and April 25,
2016. The satellites are equipped with a C-band SAR system
and have four imaging modes, of which the interferometric
wide (IW) swath mode acquires data over 250 km at a spatial
resolution (single look) of 5 m × 20 m (range × azimuth),
thus providing a high spatial resolution and large coverage. The
Sentinel-1 SAR system covering the main rape-producing areas
in the middle and lower reaches of the Yangtze River in China
has a revisit period of 12 days and can provide data for the
remote sensing-based extraction of rape-planting areas in the
region [15].

The characteristics of crop microwave radiation and the in-
teractions between crops and radar microwaves are complex.
With the rapid development of radar remote sensing technology,
which can now obtain large amounts of data, determining how
to extract target crop features from radar remote sensing data
has become a key issue in the microwave remote sensing of
crops [16], [17], [18]. Polarimetric decomposition technology
can effectively obtain the radar polarization characteristics and
accurately extract the land cover distribution [19], [20], [21],
[22]. Polarimetric decomposition is mainly used in analyses of
fully polarized SAR data [23], [24], [25]. Fully polarized data,
which contain a variety of information such as horizontal po-
larization and cross-polarization, have been widely used in crop
classification, but there are limitations in terms of data download
speed and mapping bandwidth [14]. Therefore, the emergence
of compact polarimetric SAR systems has attracted the attention
of researchers due to the low design complexity, large imaging
range, and strong observation capabilities of these systems [26],
[27], [28]. With the development of compact polarization de-
composition theory and methods, applied research involving
compact polarization is being continuously performed [14],
[29], [30], [31], [32]. A compact polarimetric SAR system is
essentially a dual-polarization system, and compact polarization
decomposition can be applied to dual-polarization SAR data.
Although many scholars have studied compact decomposition,
there is still a lack of knowledge regarding whether compact
polarization decomposition techniques can be applied in crop
classification involving dual-polarization radar data. In addi-
tion, the radar vegetation index (RVI) reflects the distribution
information and growth status of crops [32], [33], which can
be used in time series analyses of radar data. At present, the
commonly used RVIs mainly include those based on the cross
sections of cross-polarization backscattering and copolarization
backscattering [34], RVIs obtained using the eigenvalue spec-
trum obtained from the coherency matrix T [35], and the RVI

based on Freeman polarimetric decomposition and calculated
considering volume scattering, dihedral scattering, and surface
scattering [36]. However, the data for the above three RVI
types need to be decomposed into full-polarization radar data,
which is difficult to do in cases with dual-polarization SAR
data.

Crops have specific and regular plant characteristics that
change with the growth period. Using time series remote sensing
images to establish correlations among plants in different pheno-
logical stages and specific crop planting areas has always been
an important research task and research hotspot in agricultural
remote sensing [37], [38], [39]. The key to the classification of
land cover based on time series of remote sensing images is
to perform similarity analyses of the time series data, that is,
to quantitatively evaluate the similarity between the time series
of the pixels to be classified and the reference time series for
the target land classes using a certain standard. Representative
similarity methods include the Euclidean distance (ED) [40],
[41] and dynamic time warping (DTW) methods [42], [43], [44].
Affected by factors, such as pixel deformation and sensor noise,
the pixel value at a certain time in a time series of remote sensing
data may be missing or abnormal. There can be large deviations
when using the conventional ED to measure the similarity be-
tween pairs of unequal-length sequences. The DTW algorithm is
a typical optimization method based on the concept of dynamic
programming, and it is mainly used to detect the similarity
between pairs of sequences. The principle of DTW is to use a
time warping function that satisfies certain conditions to describe
the time correspondence between the input sequence and the
reference sequence. Then, the warping function corresponding
to the minimum cumulative distance is solved when the two
sequences match. Compared with other similarity evaluation
methods, DTW overcomes the scale displacement problem to a
certain extent, solves the matching problem for unequal-length
time series, and can mitigate the effects of outliers to achieve an
enhanced matching result for similar features. In recent years,
the DTW algorithm has been combined with optical remote
sensing vegetation indices and applied for the classification of
remote sensing images and the classification and extraction of
vegetation or land cover [45], [46], [47].

Based on the above discussion, to address the difficulties of
rape planting area extraction in the South China region, we
combined the compact polarimetric SAR technique to construct
a dual-polarization radar index to classify the rape planting area
in South China and further analyzed the influence of time series
combination on the extraction accuracy of rape. To provide
technical support and reference for obtaining full-coverage and
high-precision monitoring results for rape planting areas. This
article aims:

1) to construct a dual-polarized RVI based on m-χ compact
polarimetric decomposition;

2) to extract rape planting areas based on Sentinel-1 data
combined with DTW and threshold classification methods
for six counties in the main rape-producing areas in the
middle and lower reaches of the Yangtze River, China;

3) to analyze the best time series combination for rape plant-
ing area extraction using the random forest (RF) algorithm.

http://esa-sen4cap.org/
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Fig. 1. Overview of the study region.

II. DATA PREPARATION AND PREPROCESSING

A. Study Region

The middle and lower reaches of the Yangtze River are the
most important planting areas of rape in China. Six coun-
ties (districts) along the Xiangjiang River in Hengyang and
Yongzhou cities (Qidong County, Hengnan County, Leiyang
County, Changning County, Qiyang County, and Lengshuitan
District) in southern Hunan Province in the middle and lower
regions of the Yangtze River were selected as the study re-
gions to verify the feasibility and applicability of regional rape
planting area extraction methods based on RVIm-χ and DTW
threshold classification. The study region covers a total area of
12771 km2. According to the Hunan Statistical Yearbook 2020
(http://tjj.hunan.gov.cn/hntj/index.html), the sown area of rape
in the study region is approximately 140 800 hectares, account-
ing for approximately one-quarter of the total sown area of rape
in southern Hunan. The study region is distributed along the
Xiangjiang River and is in the subtropical monsoon climate zone.
The terrain of the study region is hilly, the soil type is mainly red
soil, and the main crop planting system is a two-cropping system
that involves winter rape and one-season rice. An overview of
the study area is shown in Fig. 1. The Sentinel-1 SAR system
covering the main rape-producing areas in the middle and lower
reaches of the Yangtze River in China has a revisit period of 12
days. During the 160- to 200-day growth period of winter rape,
at least 13 scenes of Sentinel-1 SAR images can be obtained,
and 213-1 (8191) time series combinations can be obtained. To
quickly screen the optimal time series combination for extracting
the rape planting area and verify the accuracy of the extraction

results, a typical test area was established in southern Qidong
County, covering an area of 1024 km2.

B. Remote Sensing Data

Winter rape in the study region is sown from October to
mid-May of the following year. The rape seedling stage is from
late November to December, and the bolting stage, flowering
stage, silique stage, and maturity stage of winter rape begin in
early January, mid-February, late March, and late April in the
following year, respectively. The experimental remote sensing
data used in this study are Sentine-1 single look complex data,
which are obtained in IW swath mode, and the polarization mode
is VV+VH dual polarization. A total of 13 scenes of Sentinel-1
time series remote sensing images were used in this study, and
the relative orbit number of the images was 11; additionally,
the imaging dates were December 9, 2020, December 21, 2020,
January 2, 2021, January 14, 2021, January 26, 2021, February
7, 2021, February 19, 2021, March 3, 2021, March 15, 2021,
March 27, 2021, April 8, 2021, April 20, 2021, and May 2,
2021. Using SNAP software, the downloaded Sentinel-1 data
were preprocessed, with orbit correction, radiometric calibra-
tion, band debursting, and terrain correction steps, and the spatial
resolution was resampled to 20 m × 20 m. The Sentinel-1 time
series images in the study region and the corresponding rape
growth period are shown in Table I.

C. Ground Samples

The data acquisition date of ground sampling was March 3,
2021, which corresponds to the flowering stage when the char-
acteristics of rape plants are more obvious than those of other

http://tjj.hunan.gov.cn/hntj/index.html
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TABLE I
LIST OF SENTINEL-1 TIME SERIES IMAGES IN THE STUDY REGION

land cover types. In the typical test area, a total of 1000 sampling
points were collected, including 200 sampling points for rape,
water, bare land, woodland, and buildings. The odd-numbered
sampling points were used to construct the standard time series
curves of the RVIs of five typical land cover types in the typical
test area. The even-numbered sampling points were used to
verify the accuracy of image classification and rape extraction.
In addition, a total of 94 rape sampling points and 6 ground
samples were collected across the entire study region to verify
the accuracy of rape extraction over a large region and to further
test the regional stability of RVIm-χ. The ground sampling
points and samples were recorded, attributes were added, and
transformations were projected; then, the processed samples
were overlaid on the Sentinel-1 remote sensing images. The
distributions of ground sampling points and samples in the study
region are shown in Fig. 2.

III. METHOD

To obtain full-coverage and high-precision remote sensing
monitoring results for the regional rape planting area, the dual-
polarization SAR data were first decomposed by m-χ compact
polarization, and the secondary scattering, volume scattering,
and surface scattering components were extracted. Then, based
on polarimetric decomposition, RVIm-χ was constructed by
using the secondary scattering, volume scattering, and surface
scattering components. Finally, combined with DTW threshold

classification, the regional rape planting area was extracted from
Sentinel-1 SAR data. The technical route is shown in Fig. 3, and
the specific steps are as follows.

1) Sentinel-1 time series data were preprocessed through
orbit correction, radiometric calibration, band debursting,
and terrain correction steps, and the compact polarization
covariance matrix (C matrix) was obtained.

2) m-χ compact polarimetric decomposition was performed
with the C matrix from Sentinel-1 data, and the corre-
sponding secondary scattering Pd, volume scattering Pv,
and surface scattering Ps components were obtained.

3) RVIm-χ was obtained by using Pd, Pv, and Ps. Combined
with ground samples, the standard time series curves of
the RVIm-χ values of typical land cover types in the study
region were constructed with data that fell within the 90%
confidence interval at each time step.

4) Based on a typical sample area, the significance of the time
series data was assessed using the RF algorithm, and the
contribution of the data at each time point was analyzed.
Optimal time series combinations were obtained.

5) Based on the optimal time series, referring to the standard
time series curves of RVIm-χ values, the DTW algorithm
was used to compare the similarity between the time series
curves of pixels to be classified and the standard time series
curves. Based on the similarity index in DTW, the thresh-
old value was set to conduct land cover classification.
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Fig. 2. Distributions of ground sampling points and samples.

Fig. 3. Overall technical route.
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Finally, the classes with the same or similar land cover
were merged to obtain the results for the extraction of the
rape area in the region.

A. m-χ Compact Polarimetric Decomposition and
Construction of the Radar Vegetation Index

From the Stokes vector or covariance matrix, the param-
eters with clear physical significance can be obtained, and
they include the polarization degree m, phase difference δ, and
roundnessχ of two orthogonal polarization components, among
others [26]. Notably, m is used to characterize the random degree
of scattering, δ is used to distinguish even scattering and odd
scattering, and χ reflects the proportion of surface scattering to
secondary scattering for fully polarized waves.

The scattering vector
−→
klof VV and VH dual-polarization SAR

data is

�kl =

[
SVV

SVH

]
. (1)

Based on the scattering vector
−→
kl , the compact polarization

covariance matrix C can be obtained as

C2 =
〈
�kl�k

∗T
l

〉
=

⎡
⎣
〈
|SVV|2

〉
〈SVVS

∗
VH〉

〈SVHS
∗
VV〉

〈
|SVH|2

〉
⎤
⎦ (2)

where ∗ indicates a complex conjugate and <.> indicates the
spatial statistical mean.

The Stokes vector form of VV+VH dual-polarization data is

g =

⎡
⎢⎢⎣
g0
g1
g2
g3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

〈
|SVV|2 + |SVH|2

〉
〈
|SVV|2 − |SVH|2

〉
2�〈SVVS

∗
VH〉

−2�〈SVVS
∗
VH〉

⎤
⎥⎥⎥⎥⎦ (3)

where �(•) represents the real part of the complex number, (•)
represents the imaginary part of the complex number, and g0 is
the total power of the echo.

m, δ, and χ can be obtained from the Stokes vector, as shown
in the following equations:

m =

√
3∑

i=1

g2i

g0
(4)

δ = − arctan

(
g3
g2

)
, δ ∈ [−180◦, 180◦] (5)

sin 2χ = − g3
mg0

, χ ∈ [−45◦, 45◦] . (6)

The polarimetric decomposition expression based on param-
eters m, δ, and χ is shown in the following equations:

Pd = mg0 (1 + sin 2χ)/2 (7)

Pv = (1−m) g0 (8)

Ps = mg0 (1− sin 2χ)/2 (9)

where Pd, Pv, and Ps represent the secondary scattering com-
ponent, volume scattering component, and surface scattering
component, respectively, that is, the components of different
scattering mechanisms for the selected scattering target.

The incident radar wave enters the vegetated area and ex-
periences multiple scattering, and the scattering echo involves
random scattering waves. The effect of vegetation on radar
microwaves is mainly volume scattering. Therefore, the larger
the proportion of volume scattering is to total scattering, the more
likely the target is to be vegetation. To effectively distinguish
rape and other typical land cover types in the study region,
RVIm-χ is obtained, as shown follows:

RVIm−χ =
Pv

Pd + Pv + Ps
. (10)

The value range of RVIm-χ is [0, 1]. When the radar signal
reaches water or bare land, the volume scattering component
Pv tends to zero theoretically, and the value of RVIm-χ also
tends to zero. When the observation area includes woodland
or crops, the observed energy decreases due to single-phase
scattering between the ground surface and radar microwaves
that penetrate the vegetation or crop canopy and dihedral corner
reflection echoes from radar microwaves at various incident
angles between the ground surface and tree trunks (or plant
stems); consequently, Ps and Pd decrease, and Pv increases.

B. DTW Algorithm

The central idea of the DTW algorithm is to find the optimal
mapping between two given time series by dynamic adjustment
and to determine the similarity of the two time series by cal-
culating the distance between the optimal mappings (i.e., DTW
distance), the smaller the distance, the higher the similarity.

The principle of the DTW algorithm is to produce two se-
quences T = {T1,T2,T3,…,Tm} and R = {R1,R2,R3,…,Rn} of
lengths m and n, respectively. The distance matrix is defined

as Dm×n. The matrix element dij = |
√
(ti − rj)

2| is the ED
between element qi in T and element rj in R.

Dm×n =

⎡
⎢⎢⎢⎣
d11 d12 · · · d1n
d21 d22 · · · d2n

...
... · · · ...

dm1 dm2 · · · dmn

⎤
⎥⎥⎥⎦ . (11)

In matrix Dm×n, the set (W) of a group of adjacent matrix
elements is defined as a bending path, and the starting and
ending elements of the path are the two ends of the diagonal
of the distance matrix and meet the relevant continuity and
monotonicity constraints.

DTW (T,R) =
1

K

K∑
k=1

wk (12)

where max(m, n) ≤ K ≤ m+n-1. The DTW algorithm finds
the path with the smallest cumulative distance through dynamic
programming, and this path requires the shortest time to traverse.
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C. Time Series Screening With the RF Algorithm

The RF method can be used to evaluate the importance of time
series data, analyze the importance of the data at each point in
time and optimize the time series combinations.

When evaluating the importance of time series data using an
RF algorithm, it is necessary to use measurement indicators to
quantify the contribution of each time series to the tree in the
RF and sort the results.

In this study, the contribution of a time series is expressed by
the Gini index. Assuming that there are j time series datasets
X1, X2, X3, …, Xj and the RF has i trees and c categories, it is
necessary to calculate the variable importance measure (VIM)
of the Gini index for each feature Xj.

The Gini index of node q of the ith tree is calculated as

GI(i)q =

|C|∑
c=1

∑
c′ �=c

p(i)qc p
(i)
qc′ = 1−

|C|∑
c=1

(
p(i)qc

)2

(13)

where pqc represents the proportion of category c in node q, that
is, the probability that two samples are randomly selected from
node q and that their category labels are inconsistent.

The importance of feature Xj in node q of the ith tree, that is,
the Gini index change before and after node q branches, is

VIM(Gini)(i)
jq = GI(i)q −GI

(i)
l −GI(i)r (14)

where GI
(i)
l and GI

(i)
r represent the Gini indices of the two new

nodes after branching.
If the node of feature Xj in decision tree i is set to Q, then the

importance of Xj in the ith tree is

VIM(Gini)(i)
jq =

∑
q∈Q

VIM(Gini)(i)
jq . (15)

For i trees in the RF, the normalized VIM is

VIM(Gini)
j =

VIM(Gini)
j∑J

j′=1 VIM(Gini)
j′

. (16)

D. Accuracy Evaluation Index

To verify the accuracy of remote sensing classification and
rape planting area extraction, the overall accuracy and F1 score
are selected as evaluation indicators in this study. Specifically,
the overall accuracy equation is as follows:

A =
n0

n
× 100% (17)

where A is the overall accuracy, n0 is the total number of
rape pixels correctly extracted, and n is the total number of
image pixels. The higher the overall accuracy is, the higher the
extraction accuracy of the rape planting area.

The F1 score is an index used to measure the accuracy of
a two-category classification model in statistics; it considers
both the precision and recall of the classification model and the
corresponding equation is

F1 = 2
P ·R
P +R

(18)

where P = Tp/(Tp + Fp) is the precision and R =
Tp/(Tp + Fn) is the recall. Tp, Fp, and Fn denote true
positive, false positive, and false negative cases, respectively.

IV. RESULTS AND ANALYSIS

To quickly screen the optimal time series combinations ex-
tracted for the rape planting area and verify the accuracy of
the extraction results, a typical test area was established in
southern Qidong County, and encrypted observations of ground
data were obtained during the rape flowering period. First, the
characteristics of the RVIm-χ curves of different land classes
were analyzed based on typical test areas, and standard curves of
rape were extracted. Afterward, the importance of the time-series
data was analyzed based on RF, and the optimal time series was
obtained. Finally, the classification results of the whole area
were obtained based on the optimal time series and the DTW
algorithm.

A. RVIm-χ Time Series Analysis

Sentinel-1 time series data from December 2020 to May
2021 were preprocessed, and the steps included orbit correction,
radiometric calibration, band debursting, and terrain correction.
Then, the C matrix was obtained. m-χ compact polarimetric
decomposition was performed on the C matrix of Sentinel-1
data, and the secondary scattering Pd, volume scattering Pv,

and surface scattering Ps components were obtained. RVIm-χ

was obtained by using Pd, Pv, and Ps. Combined with ground
samples, the standard time series curves of the RVIm-χ values
of typical land cover types in the study region were constructed
based on data within the 90% confidence interval at each time
step. The time series curves of five typical land cover types,
including water, bare land, rape, woodland, and buildings, are
shown in Fig. 4.

In previous studies, whether using Sentinel-1 data alone or
using Sentinel-1 and Sentinel-2 data synergistically to extract
the dryland crop planting area, the applied methods were mainly
directly based on VV and VH polarized waves [2], [48], [49].
However, in southern China, the crop fields are fragmented, and
the shrubs are green all year. Thus, it is very difficult to extract
the planting area of tall crops such as rape based on VV or
VH polarized waves. As shown in Fig. 4(a) and (b), based on
the mean curves of the time series of the VV and VH bands,
the temporal characteristics of rape are not prominent, and it
is difficult to distinguish between rape and woodland by using
these two bands directly. As shown in Fig. 4(c), for the five
typical land cover types in the study region, the RVIm-χR values
of water, bare land, woodland, and buildings changed slightly
over time. The RVIm-χ values of water and bare land were small,
and the RVIm-χ values of water were lower than those of bare
land. Since both water and bare land are mainly characterized
by surface scattering in radar images, the surface scattering
component Ps was large, and the volume scattering component
Pv was small. Because buildings are mainly characterized by
secondary scattering and volume scattering in radar images, both
the secondary scattering component Pd and volume scattering
component Pv were large, thus influencing both the numerator
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Fig. 4. Standard time series curves of the RVIm-χ values of typical land cover types. (a). Standard curves of the VV band. (b). Standard curves of the VH band.
(c). Standard curves of RVIm-χ values. (d). Rape RVIm-χ curves.

and denominator of RVIm-χ; consequently, the RVIm-χ values
of the building class were moderate. The RVIm-χ values of
woodland were high, mainly due to the high-volume scattering
component Pv in radar images. The RVIm-χ values of rape
gradually increased with the growth and development of rape.
Shortly after rape is sown, the plant volume is small, and the
volume scattering component Pv in the radar image is small.
With the flowering and silique growth of rape, the volume of
rape increases, and the volume scattering component Pv also
increases. Especially during the rapid growth and flowering
periods (February 7, 2021 and March 15, 2021), the volume
scattering component Pv of plants increases significantly, and
the RVIm-χ values also increase significantly. In the late stage of
rape silique, the photosynthetic organs of rape gradually change
from leaves into rape siliques, the leaves begin to shrink, the
plant volume decreases, and the RVIm-χ values also decrease.
In addition, as shown in Fig. 4(d), due to the differences in rape
varieties, growth environments, and field management strategies
in the study region, there were also certain differences in the
growth phenology of rape, especially in the flowering period and
leaf shrinkage period. The above analysis suggests that RVIm-χ

can be used to distinguish rape and other typical land cover types
from time series when applied to Sentinel-1 dual-polarization
data.

B. Time Data Importance Analysis

Because of the effects of radar sensors, there was consider-
able coherent noise in the radar images. Increasing the number

of time-series SAR images involved in classification may not
improve the accuracy of remote sensing classification and rape
extraction, but it will reduce the speed and efficiency of remote
sensing classification. The RF method and Gini index were used
to evaluate the importance of the time series of data, and the
optimal time series combination for rape extraction was selected.
During the whole growth period of winter rape in the study
region, 13 scenes of Sentinel-1 SAR images were obtained, and
8191 time series combinations were obtained. In this study, 500
(odd-numbered) samples obtained on the ground were used to
construct the standard time series curves of the RVIm-χ values
of five typical land covers, and the other 500 (even-numbered)
samples were used to verify the accuracy of remote sensing
classification and rape extraction. The accuracy distributions
for 8191 time series combinations and the contributions of 13
time series to the overall accuracy fluctuations in land cover
classification and rape extraction are shown in Figs. 5 and 6,
respectively.

Based on the accuracy distributions of image classification
and rape extraction in Fig. 5, the overall accuracy of image
classification varies from 46.4% to 63.0%, mainly ranging from
51% to 60%, and the overall accuracy of rape extraction varies
from 22% to 75%, mainly ranging from 61% to 70%. The
overall accuracy of remote sensing image classification was
less affected by the time series combination selected, and the
lowest accuracy was greater than 50%. The overall accuracy
of rape extraction was greatly affected by the time series com-
bination selected, and it was necessary to further clarify the
optimal time series combination to improve the rape extraction
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Fig. 5. Accuracy distributions for image classification and rape extraction.

Fig. 6. Contributions of time series to overall accuracy fluctuations.

accuracy and operation efficiency of the applied classification
algorithm.

The contributions of the 13 time series to the overall accuracy
fluctuations in image classification and rape extraction are shown
in Fig. 6. The variations in images at different times have a
considerable influence on the accuracy of remote sensing clas-
sification and rape extraction. From Fig. 6, the five time series
that contributed the most to the fluctuations in the accuracy of
image classification were those on January 14, 2021, December
21, 2020, January 26, 2021, March 3, 2021, and January 2, 2021;
additionally, the five time series that contributed the most to
the fluctuations in the accuracy of rape extraction were those
on February 19, 2021, January 26, 2021, December 9, 2020,
February 7, 2021, and December 21, 2020. Most of the data
that highly contribute to fluctuations in the overall accuracy
of image classification and rape extraction were from the rape
seedling stage. On the one hand, the plant characteristics of
rape in the seedling stage are not significantly different from
those of other land cover types, and rape is especially easily
confused with bare land. On the other hand, the rape seedling
and bolting stages occur in winter and early spring, and the
differences in characteristics among typical land cover types are
quite large in the study region, especially those for water and
bare land. The above two factors have a combined effect on
the classification results, highlighting the influence of SAR data
from the rape seedling and bolting stages on the accuracy of
remote sensing and the accuracy of rapeseed extraction. From
a comprehensive perspective considering multiple factors, the
acquisition of high-quality SAR remote sensing images in the
rape seedling and bolting stages has a positive effect on both
rape extraction and image classification.

Fig. 7. Time series data distributions for high-accuracy combinations.
(a) Absolute quantity. (b) Absolute proportion. (c) Relative quantity.

C. Time Series Screening

First, an overall accuracy of remote sensing classification
greater than 60% and an overall accuracy of rape extraction
greater than 70% were selected as indicators, and further analysis
was performed on each time series to obtain the optimal time
series combinations. There were 1178 time series combinations
with an overall accuracy of remote sensing classification greater
than 60% and 300 time series combinations with an overall
accuracy of rape extraction greater than 70%. The time series
data distributions for the high-accuracy combinations are shown
in Fig. 7.

Based on the distributions of high-accuracy time series com-
binations in Fig. 7(a) and the proportional distributions of high-
accuracy time series combinations in Fig. 7(b), the time series
combinations with an overall accuracy of image classification
greater than 60% mainly included data from seven or eight
scenes. Moreover, the time series combinations with an overall
accuracy of rape extraction greater than 70% mainly included
data from eight or nine scenes. As shown in Fig. 7(c), the
proportion of high-accuracy time series combinations among all
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TABLE II
LIST OF HIGH-ACCURACY TIME SERIES COMBINATIONS

the obtained time series combinations showed that the overall
accuracy of image classification increased with the amount of
data contained in the time series combinations, and the overall
accuracy of rape extraction first increased and then decreased
slightly as the amount of data contained in the time series
combinations increased. That is, the larger the amount of data
contained in the time series combinations was, the higher the
overall accuracy of image classification and rape extraction. If
limited data were considered in a time series combination, the
features between rape and other land cover types could not be
effectively distinguished; conversely, considering too much data
could introduce redundant information and lead to increased
classification errors.

Based on the image classification and rape extraction results,
nine time series combinations with high classification or ex-
traction accuracy were selected for analysis. The classification
results are shown in Table II and Fig. 8, and the classification
accuracy is shown in Table III.

As shown in Fig. 8, for combinations that yielded high rape
extraction accuracy or high image classification accuracy, the
classification results for the rape planting area in the typical test
area were satisfactory, and the accuracy of rape extraction was
higher than that of image classification. The overall classification
accuracy was affected by the confusion of water and bare land.
Notably, both water and bare land are characterized by surface
scattering in radar images, and the RVIm-χ values were low for
both. Moreover, the study region was in a hilly area, and the
complex terrain interfered with the radar microwave signals.
In addition, the time series classification results involve the
synthesis of multiple time series features for classification. Bare

land in the seedling stage of rape might store water and be used
to plant early rice when the rape is mature.

Tables II and III indicate that all the time series combinations
that yielded high rape extraction accuracy included the remote
sensing data obtained from March 15, 2021, April 8, 2021, and
May 2, 2021; these dates corresponded to the blooming, silique,
and maturity stages of rape, respectively. At these times, rape
plants were characterized by unique flowers or siliques, which
had characteristics that obviously differed from those of other
vegetation types and were highly distinguishable. Thus, the data
collected at the above times and used in image classification
increased the accuracy of rape extraction. Most of the time
series combinations that yielded high rape extraction accuracy
included remote sensing data obtained on January 2, 2021,
January 14, 2021, February 19, 2021, and March 3, 2021; these
dates corresponded to the rape bolting and flowering stages.
At these times, the characteristics of rape plants and typical
land cover types such as woodland and buildings were highly
different; therefore, including the corresponding data in remote
sensing classification improved the accuracy of rape extraction.
Most of the time series combinations that yielded high image
classification accuracy included remote sensing data obtained on
December 21, 2020, January 2, 2021, February 7, 2021, March
3, 2021, March 15, 2021, and March 27, 2021; these dates can
be divided into two time periods corresponding to winter and
early spring in the study region. In winter and early spring, the
differences in the characteristics of typical land cover types in
the study region are quite large, especially for water and bare
land; therefore, the data collected at the above times and used in
image classification increased the classification accuracy.
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Fig. 8. High-accuracy classification results in typical test areas. (a) Classification results for nine time series combinations that yielded high-accuracy rape
extraction. (b) Classification results for nine time series combinations that yielded high-accuracy image classification.

D. Classification Results for the Entire Study Area

To analyze the stability of the RVIm-χ values and the regional
expansion capability of the proposed classification method, the
RVIm-χ time series curves for typical land cover types con-
structed based on the typical test area were extended to image
classification and rape planting area extraction in the entire study
region. In the selection of time series combinations, the accuracy
(the overall accuracy of image classification was greater than
60%, and the overall accuracy of rape extraction was greater
than 70%) and efficiency (the amount of data contained in the
time series combinations was minimized, and early data were
prioritized) of image classification and rape extraction were
considered. A combination of six time series obtained on January
2, 2021, February 7, 2021, February 19, 2021, March 3, 2021,

March 15, 2021, and March 27, 2021, were used to conduct
remote sensing classification and rape extraction in the entire
study region, and the classification results are shown in Fig. 9.

The accuracy of the rape extraction results in the study area
was verified based on 94 rape sampling points and 6 ground
samples collected on March 3. Among the 94 rape sampling
points established in the field, rape was accurately classified
at 74 points, with an overall accuracy of 78.72%. Six ground
samples were used to verify the accuracy of rape extraction.
The ground samples and the rape extraction accuracy results are
shown in Fig. 10 and Table IV.

Based on the ground samples in Fig. 10, most of the rape plots
were accurately classified as rape, and some rape and other land
cover types were misclassified. The rape extraction results in
Table IV indicate that the F-1 coefficient ranged from 58.68% to
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Fig. 9. Remote sensing classification results for the study region.

Fig. 10. Ground samples. (a) Sample 1. (b) Sample 2. (c) Sample 3. (d) Sample 4. (e) Sample 5. (f) Sample 6.
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TABLE III
HIGH-ACCURACY CLASSIFICATION ACCURACIES IN TYPICAL TEST AREAS

TABLE IV
ACCURACY OF RAPE PLANTING AREA EXTRACTION IN THE STUDY REGION

91.26%. Sample 3 yielded the lowest overall accuracy, and the
F-1 coefficient was the smallest among those of the six ground
samples. Because the spatial resolution of the Sentinel-1 image
was only 20 m, the feature recognition ability of small plots
was relatively poor. Overall, the F-1 coefficient of the 6 ground
samples was 81.00%. The rape planting area extraction method
based on RVIm-χ and DTW threshold classification yielded high
accuracy in regional rape planting area extraction; this result
further highlighted the stability of RVIm-χ and the feasibility
of applying DTW time series classification in the time series
extraction of the rape planting area.

V. DISCUSSION

A. RVIm-χ Can Reflect the Temporal Variations in Rape Plants

In previous studies, whether using Sentinel-1 data alone or
Sentinel-1 and Sentinel-2 data synergistically to extract dryland
crop planting areas, the applied methods were mainly directly
based on VV and VH polarized waves [2], [48], [49]. However, in

southern China, the crop fields are fragmented, and the shrubs are
green year round. Thus, it is very difficult to extract the planting
area of tall crops such as rape based on VV or VH polarized
waves. In this study, based on m-χ compact polarimetric decom-
position, for Sentinel-1 dual-polarization SAR data, a new dual-
polarization RVI was constructed based on m-χ decomposition,
and it was used to distinguish rape and other typical land cover
types in time series. From the experimental results and analysis,
the RVIm-χ values of water, bare land, woodland, and buildings
changed slightly, while the RVIm-χ values of rape changed
greatly over time. The RVIm-χ values of rape gradually increased
with the growth and development of rape. When rape was just
sown, the plant volume was small, and the volume scattering
component Pv in the radar images was small. With the flowering
and silique growth of rape, the volume of rape increased, and
the volume scattering component Pv also increased. Notably,
during the rapid growth and flowering periods of rape (February
7, 2021 and March 15, 2021), the volume scattering component
Pv of plants increased significantly, and the RVIm-χ values also
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increased significantly. In the late stage of rape silique, the
photosynthetic organs of rape gradually changed from leaves
to rape siliques, the leaves began to shrink, the plant volume
decreased, and the RVIm-χ values also decreased. Overall, the
temporal variations in rape RVIm-χ values reflect the temporal
variations in rape plant characteristics.

B. Data From Different Times Have a Large Impact on the
RVI and DTW Threshold Classification Methods

Because of the effects of radar sensors, there was consider-
able coherent noise in the radar images. Increasing the number
of time-series SAR images involved in classification may not
improve the accuracy of remote sensing classification and rape
extraction, but it will reduce the speed and efficiency of remote
sensing classification. In this study, the RF method and Gini
index were used to evaluate the importance of the time series of
data and the optimal time series combination for rape extraction
was selected. Most of the data that highly contribute to fluctu-
ations in the overall accuracy of image classification and rape
extraction were from the rape seedling stage. On the one hand,
the plant characteristics of rape in the seedling stage are not
significantly different from those of other land cover types, and
rape is especially easily confused with bare land. On the other
hand, the rape seedling and bolting stages occur in winter and
early spring, and the differences in the characteristics of typical
land cover types are notable in the study region, especially those
for water and bare land. The above two factors have a combined
effect on the classification results, highlighting the influence
of SAR data from the rape seedling and bolting stages on the
classification accuracy of remote sensing and the accuracy of
rapeseed extraction. From a comprehensive perspective con-
sidering multiple factors, the acquisition of high-quality SAR
remote sensing images in the rape seedling and bolting stages has
a positive effect on both rape extraction and image classification.
Moreover, the greater the amount of data contained in time
series combinations is, the higher the overall accuracy of image
classification and rape extraction. If limited data are considered
in a time series combination, the features of rape and other
land cover types cannot be effectively distinguished; conversely,
considering too much data can introduce redundant information
and lead to increased classification errors.

C. Shortcomings of This Research and Future Plans

For the main area of rape production in southern Hunan
Province, the extraction of the regional rape planting area was
performed based on the RVIm-χ method and DTW threshold
classification. The proposed methods are generally applicable
to other main rapeseed-producing areas in China where remote
sensing images are affected by clouds, rain, and fog and contain
gaps in optical data. However, the method of regional rape area
extraction implemented in this study has certain shortcomings.
Rape plants are tall and densely distributed in the middle and
lower reaches of the Yangtze River in China. When RVIm-χ

is used in analyses of other crops, to effectively adapt to the
characteristics of crops in regional crop mapping, it may be
necessary to introduce a parameter [33]. Therefore, in future
research, more crop varieties and sowing methods need to be

considered, and verification of the accuracy and applicability
of the crop area extraction method based on RVIm-χ should
be performed over large study regions. In addition, it is also
possible to consider combining the RVIm-χ index with other
classification algorithms, such as machine learning algorithms,
in the future. The improvement of the extraction method may
effectively improve the classification accuracy.

VI. CONCLUSION

To obtain full-coverage and high-precision remote sensing
monitoring results for the rape planting area, the remote sens-
ing classification of rape planting areas was performed based
on a dual-polarization RVI, and the influence of time series
combination on the extraction accuracy of rape in South China
was further analyzed. First, based on m-χ compact polarimetric
decomposition, a dual-polarization RVI was constructed. Then,
for six counties in Hengyang and Yongzhou, the main rape-
producing areas in the middle and lower reaches of the Yangtze
River in China, based on the DTW and threshold classification
methods, Sentinel-1 remote sensing extraction of the regional
rape planting area was performed. Finally, an RF algorithm was
used to analyze and screen the optimal time series combination
of the extracted regional rape planting areas. The research results
showed that in a typical test area, based on the accuracy of
remote sensing classification and rape extraction obtained for
different time series combinations, RVIm-χ could be effectively
used to distinguish rape from other typical land cover types
when applied to Sentinel-1 dual-polarization data. Additionally,
high-quality SAR remote sensing images from the bolting stage
of rape enhanced the accuracy of both rape extraction and
image classification. It is easier to obtain high-precision rape
area extraction results by using time series combinations with
8 scenes with obvious features of rape plants, such as those
from the flowering stage, silique stage, and maturity stage. With
Sentinel-1 time series data from January 2, 2021, February 7,
2021, February 19, 2021, March 3, 2021, March 15, 2021, and
March 27, 2021, and based on the RVIm-χ standard time series
curves of typical land cover types constructed in the typical test
region, the proposed approach was extended to remote sensing
classification and rape planting area extraction in the whole
study area. Among the 94 rape sampling points selected in
the field, rape was correctly classified at 74 sampling points,
and the overall accuracy was 78.72%. Moreover, six ground
samples were used to verify the accuracy of the rape planting
area extraction results, and the rape F-1 score was 81.00%. The
above results indicated that the rape planting area extraction
method based on RVIm-χ and DTW threshold classification
yielded high accuracy in regional rape planting area extraction
and verified the regional expansion capability of the RVIm-χ

approach. This study can provide technical support for the
realization of full-coverage and high-precision remote sensing
monitoring in the main rape-producing areas in China.
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