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Abstract—Cloud cover presents a major challenge for geoscience
research of remote sensing images with thick clouds causing com-
plete obstruction with information loss while thin clouds blurring
the ground objects. Deep learning (DL) methods based on convo-
lutional neural networks (CNNs) have recently been introduced to
the cloud removal task. However, their performance is hindered by
their weak capabilities in contextual information extraction and
aggregation. Unfortunately, such capabilities play a vital role in
characterizing remote sensing images with complex ground objects.
In this work, the conventional cycle-consistent generative adversar-
ial network (CycleGAN) is revitalized from a feature enhancement
perspective. More specifically, a saliency enhancement (SE) module
is first designed to replace the original CNN module in CycleGAN to
re-calibrate channel attention weights to capture detailed informa-
tion for multi-level feature maps. Furthermore, a high-level feature
enhancement (HFE) module is developed to generate contextual-
ized cloud-free features while suppressing cloud components. In
particular, HFE is composed of both CNN- and transformer-based
modules. The former enhances the local high-level features by
employing residual learning and multi-scale strategies, while the
latter captures the long-range contextual dependencies with the
Swin transformer module to exploit high-level information from a
global perspective. Capitalizing on the SE and HFE modules, an
effective Cloud-Enhancement GAN, namely Cloud-EGAN, is pro-
posed to accomplish thin and thick cloud removal tasks. Extensive
experiments on the RICE and the WHUS2-CR datasets confirm
the impressive performance of Cloud-EGAN.
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I. INTRODUCTION

EARTH observation technology has facilitated the acquisi-
tion of remote sensing images. These images have been

successfully used to extract land surface information in many
critical applications, including object detection [1], [2], [3],
scene classification [4], [5], [6], and semantic segmentation [7],
[8], [9], [10]. However, such optical satellite images are in-
evitably susceptible to the atmospheric and illumination con-
ditions, which incurs degradation in image quality. In particular,
remote sensing images commonly suffer from the contamination
of cloud layers, significantly diminishing the signal quality ob-
tained by satellite sensors. Specifically, the cloud layers heavily
reduce the visibility and saturation of images, hindering the
subsequent image applications [11]. While thin-cloud-covered
regions still exhibit limited ground features, the contextual in-
formation beneath thick clouds is completely lost. Compared
with natural digital images, remote sensing images contain more
complex spatial structures and richer spectral information for
ground object characterization, making cloud removal more
challenging. Therefore, the development of efficient signal pro-
cessing algorithms is strongly desired to accurately recover the
genuine land surface information from remote sensing images
distorted by cloud layers. In the literature, existing cloud re-
moval methods can be classified into two approaches, namely
conventional methods based on hand-crafted features and deep
learning (DL)-based methods [12], [13], [14], [15], [16],
[17], [18].

Conventional methods, such as multitemporal dictionary
learning (MDL) [19], thin cloud removal using homomorphic fil-
ter (TCHF) [20], and signal transmission principles and spectral
mixture analysis (ST-SMA) [21], require hand-crafted features
to estimate the cloud distribution. In particular, MDL learned
dictionaries of cloud-covered and cloud-free regions separately
in the spectral domain whereas TCHF utilized a classic homo-
morphic filter in the frequency domain. Furthermore, ST-SMA
was developed based on signal transmission and spectral mixture
analysis. Despite their many advantages, these methods were
designed for thin cloud removal while overlooking the thick
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cloud scenarios. Moreover, their feasibility and performance are
typically limited by irregular cloud distribution and the choice
of hand-crafted features.

Driven by the rapid development of DL techniques, DL-based
cloud removal methods have attracted substantial research atten-
tion, owing to the superior performance of DL models in mining
representative features from remote sensing images [22]. Most
existing DL-based cloud removal methods in the literature were
built upon convolutional neural networks (CNNs) by exploiting
abstract and conceptual representations of remote sensing im-
ages. Generally speaking, DL-based networks for cloud removal
can be divided into two categories, namely the pure encoder–
decoder methods [11], [23], [24] and the generative adversarial
networks (GAN)-based networks [12], [25], [26], [27], [28],
[29], [30]. For the pure encoder–decoder networks, multiscale
features-CNN [23] explored the multiscale high-level features
to detect thin-cloud, thick-cloud, and no-cloud pixels simulta-
neously while residual learning and channel attention mecha-
nism [11] integrated residual connection with a channel attention
mechanism to capture details in different convolutional layers.
Furthermore, conditional variational autoencoders (CVAE) [24]
applied a probabilistic graphical model with CVAE to restore
cloud-free images according to the image degradation process.
The abovementioned encoder–decoder models employ the en-
coder to extract enriched features from remote sensing images,
while the decoder is exploited to interpret abstract information
before recovering the detailed information of cloud-free images.
However, these methods are handicapped by their weak feature
representation capability of CNNs. As a result, additional efforts
are required to enhance the feature representation capability of
CNNs to generate high-quality cloud-free images.

Similar to the encoder–decoder methods, the GAN-based
models also consist of two parts, i.e., the generator and dis-
criminator [31]. Owing to its remarkable capability of modeling
the relationship between input and output data, GAN has gained
tremendous popularity in computer vision. For the cloud re-
moval task, conditional GAN (cGAN) [25] employed a simple
UNet-based structure as the generator while PatchGAN [32]
as the discriminator. Furthermore, a hybrid loss function us-
ing the structural similarity (SSIM) loss [33] was designed to
improve the SSIM of the generated images with the ground
truth. Recently, spatial attention GAN (SpAGAN) [27] was
proposed to remove clouds by integrating local-to-global spatial
attention to the generator whereas MSDA-CR [29] proposed
a grid network based on cloud-distortion-aware representation
learning to model the effects of cloud reflection and trans-
mission. In addition, AMGAN-CR [30] generated attention
maps through an attentive recurrent network and employed an
attentive residual network to remove clouds according to the
attention maps. These methods have improved the GAN-based
frameworks by enhancing the encoder or loss function design
through a single-directional mapping, i.e., from cloudy images
to cloud-free images.

Recently, the cycle-consistent GAN (CycleGAN) model [34]
has been widely applied to transfer image styles. CycleGAN at-
tempts to learn a bidirectional mapping between domains while
incorporating cycle-consistency loss and identity loss to effec-
tively retain the color composition and texture. CloudGAN [12]

introduced CycleGAN into cloud removal to learn the mapping
of feature representations between cloudy images and their
corresponding cloud-free images in a cyclic structure. In the
cloud removal task, it is also necessary to learn global color
composition and texture outside the cloud area before predicting
the objects under the cloud in the forward process. The reverse
stage in the cycle process can promote the learning of these
global representations in the forward process by restoring the
original cloud map. However, it suffers from blurred edges due to
its straightforward encoding structure and the lack of modeling
channel and spatial relationships. On this basis, SAR-to-optical
image translation using SSIM and perceptual loss-based Cy-
cleGAN [26] introduced the least squares loss function [35]
into the CycleGAN to improve its training stability in image
translation. Furthermore, multimodal GAN (MMGAN) [28] was
developed to generate multiple most likely cloud-free outputs
before selecting the best generated cloud-free images through
a perception-based image quality evaluator. Despite their many
advantages, these methods suffer from a poor performance in
reconstructing detailed features of remote sensing images as they
are straightforward extensions from models originally devised
for natural images. Compared with natural scene images, remote
sensing images exhibit more severe spectral heterogeneity and
more complex spatial relationships of ground objects [36], [37].
Typically, undesired cloud layers have various thicknesses, and
images are acquired under different lighting conditions [38].
As a result, the performance of those image restoration models
developed for natural scene images is usually poor if directly
applied to cloud removal. Furthermore, it is challenging for these
models to handle large-scale cloud removal tasks due to their
prohibitively expensive computational complexity.

To improve the representation capability of CNNs and GAN
with long-range contextual information, the newly developed
transformer has been introduced into the cloud removal tasks.
Empowered by its nonlocal attention mechanism, the trans-
former can establish long-range dependencies with impressive
scalability [39], [40]. For instance, SAR-enhanced cloud re-
moval with global-local fusion [15] added Swin transformer
layer [41] after each convolutional layer for cross-window
feature interaction. CloudTran [42] replaced the CNN-based
encoder with an axial transformer [43] to estimate the low-
resolution cloud-free images. However, the transformer is only
regarded as a feature extractor to exploit global information
while lacking the capability to fully extract enriched local
features. Compared with the transformer, CNN exploits and
aggregates enriched local features using the local receptive fields
in the convolutional layers [3], [10]. One trivial approach to take
advantage of both transformer and CNN is to directly construct
a dual-branch encoder to extract global and local information
by transformer and CNN, respectively [44], [45], [46], [47].
More recently, the authors in [48] and [49] proposed to use
CNN to extract multiscale features while exploring the ability
of transformer to enhance these multiscale features. In contrast,
Fang et al. [50] further integrated the Swin Transformer layers
and the convolutional layers by exploiting spatial attention after
each Swin Transformer layer. However, all methods aforemen-
tioned failed to explore the potential enhancement of high-level
semantic features provided by exploiting the synergy of CNN
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Fig. 1. (a) Overview of Cloud-EGAN framework. GX2Y and GY 2X are the two generators and DX and DY are the two discriminators. X , X̃ , Y , Ỹ represent
the authentic cloudy images, the generated cloudy images, the authentic cloud-free images, and the generated cloud-free images, respectively. (b) Discriminator
follows the PatchGAN structure. (c) Generator is based on the UNet framework with different output sizes from each SE block. Note that the two generators,
GX2Y and GY 2X , are designed with the same structure. Similarly, the two discriminators, DX and DY , have the same structure.

and transformer. Thus, it is of great practical interest to investi-
gate how to fill this gap by combining CNN and transformer in
the cloud removal task.

Motivated by the aforementioned challenges, this work in-
troduces a CycleGAN-based model for thin and thick cloud
removal from two different enhancement perspectives. First,
the backbone is enhanced by a saliency enhancement (SE)
module to extract hierarchical discriminant features with
more saliency. Furthermore, in sharp contrast to the ex-
isting models that utilize CNN to enhance high-level fea-
tures [6], [9], [23], this work proposes to explore enriched
high-level features by jointly exploiting CNN and transformer.
The main contributions of this work can be summarized as
follows:

1) An SE module is utilized to generate enhanced hierarchi-
cal feature maps derived from each convolutional block
by recalibrating the attention weights of feature channels.
As a result, cloud-covered components and blurred edges
are reduced;

2) A high-level feature enhancement (HFE) module is de-
vised between the encoder and the decoder to effectively
explore and aggregate high-level features. Specifically,
HFE is composed of a CNN-based HFE (CHFE) module
and a transformer-based HFE (THFE) module. CHFE is
designed to exploit high-level local features to harvest suf-
ficient detailed information while THFE long-range con-
textual information. CHFE and THFE are integrated under
the cloud-enhancement GAN (Cloud-EGAN) framework

to retain the global features of the restored cloud-clear
images;

3) Extensive experimental results on the RICE and WHUS2-
CR datasets verify the superiority of Cloud-EGAN in seg-
regating clouds and preserving high-quality land surface
information.

The rest of this article is organized as follows. Section II elabo-
rates on the proposed model while extensive experimental results
are presented and analyzed in Section III. Finally, Section IV
concludes this article.

II. METHODOLOGY

In this work, a CycleGAN-based architecture with SE and
HFE modules in the generator is proposed to extract and ag-
gregate enhanced local and global features from remote sens-
ing images. In the following, an overview of the proposed
Cloud-EGAN is presented before each of its key components
is elaborated. Finally, hybrid loss functions employed in the
proposed model are devised.

A. Framework

As depicted in Fig. 1(a), the proposed Cloud-EGAN is de-
veloped based on CycleGAN that consists of two generators
GX2Y and GY 2X and two discriminators DX and DY . More
specifically, for a supervised cloud removal task, the authentic
cloudy image X serves as the input to the generator GX2Y

to reconstruct the predicted cloud-free image Ỹ that is then
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Fig. 2. Architecture of the SE module in (a) encoding and (b) decoding.

discriminated by DY with the authentic cloud-free image Y .
Meanwhile, according to the cyclic consistency principle, the
generator GY 2X is employed to generate the cloudy image X̃
from Ỹ . The same operation is performed on the input Y in the
Cloud-EGAN.

As illustrated in Fig. 1(b), the discriminators DX and DY

adopt a PatchGAN structure with stacked hierarchical convolu-
tional blocks to determine the authenticity of Ỹ . Furthermore,
the generator is developed based on an UNet architecture [51] by
capitalizing on symmetrical concatenations between an encoder
and a decoder, as shown in Fig. 1(c). Specifically, the generator
combines the SE and HFE modules while SE exploits hierar-
chical features by reassigning attention weights to feature maps
at each level. The resulting high-level feature maps are then fed
into the HFE module to further enhance feature representation
through the combination of CNN and transformer. After that,
a convolutional prediction head is utilized at the end of the
generator to recover cloud-clear images. More details about
the SE and HFE modules will be elaborated in the following
sections.

B. Saliency Enhancement

Following the classical channel attention mechanism [52],
the SE module adaptively exploits more salient features from
remote sensing images at multiple feature levels by assigning
learnable attention weights to feature channels. As a result, SE
can enhance information restoration from heavily cloudy regions
and generate high-quality cloud-free features.

Fig. 2(a) illustrates the encoding process in which uk ∈
RDk×Hk×Wk denotes the kth level feature map generated from
the first convolutional block (SE_Conv), where Dk is the chan-
nel dimension, Hk = H/2k and Wk = W/2k. Furthermore, a
global average pooling (GAP) layer as a channel descriptor is
applied to exploit enriched features and produce output zk

zk = G (uk) =
1

Hk ×Wk

Hk∑
i=1

Wk∑
j=1

uk(i, j) (1)

where G stands for the GAP function. After that, two 1× 1
SE_Conv blocks are utilized to compute the attention weights
through convolution operations with output sk ∈ RDk×1×1 be-
ing given by

sk = δ(W2 (W1(zk))) (2)

where W1 and W2 are parameters of the two convolutional
blocks and δ(· · · ) is the sigmoid function. Finally, the SE output
denoted by x̃k ∈ RDk×Hk×Wk is derived by multiplying sk

with uk

x̃k = sk � uk (3)

where � represents the point multiplication operation.
The decoding process depicted in Fig. 2(b) is similar to

Fig. 2(a) with the convolutional block (SE_Conv) being replaced
by an upsampling SE_Conv.

C. High-Level Feature Enhancement

The HFE module is designed to learn enriched high-level
local and nonlocal features by combining CHFE and THFE, as
shown in Fig. 3. As a result, it is beneficial to further characterize
cloud-free representations and propagate contextual information
across the feature maps from a global perspective, which can
maintain the spatial structure of the restored features identical
to the ground truth.

More specifically, a residual learning module [53] and a
dilated convolutional module [54] are used in CHFE to process
high-level features in parallel. In particular, high-level features
F h ∈ RD×H

16 ×W
16 are fed into the residual learning module con-

taining three successive residual blocks named HFE_ResConv
to extract critical ground information while reducing the fea-
ture discrepancy between cloud-covered and cloud-free images.
Meanwhile, F h is passed through a convolutional block with
residual structure named HFE_Conv, and three dilated convolu-
tional blocks named HFE_DilatedConv with different dilation
rates to exploit multiscale contextual information while alleviat-
ing cloud-covered features. After that, the concatenated outputs
are further enhanced through an HFE_Conv block to restore the
original feature size. Finally, the outputs of the residual learning
module and dilated convolutional module are added together to
form refined feature maps F ∈ RD×H

16 ×W
16 .

Following the approach of the classical Swin transformer [41],
THFE splitsF into nonoverlapping patches in the patch partition
module before projecting the patches to an arbitrary dimension
D̂ using a linear embedding layer. The patches are then fed into a
successive Swin transformer block and a patch merging layer to
generate higher level feature representations. More specifically,
as depicted in Fig. 3(b), each successive Swin transformer block
consists of the residual architecture, four layer-normalization
(LN) layers, a window-based multihead self-attention (WMSA)
module, a shifted WMSA (SWMSA) module, and two multi-
layer perceptron (MLP) layers with GELU function.

The operation of successive Swin transformer blocks is shown
in Fig. 3(b). For each head of the WMSA and SWMSA, the input
features F S are fed into the Swin transformer block to calculate
the multihead self-attention (MSA) as follows:

QS = F SWQ,KS = F SWK , VS = F SWV (4)

and

Att(F S) = φ

(
QSKS

T

√
d

+BS

)
VS (5)

where QS , KS , and VS denote the projected query, key, and
value features, respectively while WQ, WK , and WV the cor-
responding parameter metrics. Furthermore, BS is the learn-
able relative position embedding term in the Swin transformer
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Fig. 3. Illustrations of (a) the HFE module, (b) successive Swin Transformer block, and (c) MSA, LN and MLP represent the LN layer and MLP layer,
respectively. WMSA and SWMSA are MSA modules with common and shifted windowing configurations, respectively. (a) HFE. (b) Swin transformer.
(c) Multihead self-attention.

whereasAtt(F S) represents the output of self-attention for each
head. In addition, φ(·) is the softmax function and d = D̂/4 is
the channel dimension for each head.

After that, the features of each 2× 2 neighboring patches
generated by the Swin transformer block are concatenated by
the patch merging layer. We denote by H/32, W/32, and 4D̂
the height, width, and channel after the patch merging layer,
respectively. Finally, after two Swin transformer blocks and the
reshape operation to maintain the same size as the input F h, the
output of the HFE module F̃ h ∈ RD×H

16 ×W
16 can be obtained.

D. Loss Functions

In this work, a novel hybrid loss function comprising the
adversarial loss Ladv, the cycle consistency loss Lcyc, the per-
ceptual loss Lper, and the identity loss Lid is introduced to
guide the training of our proposed model. It is notable that

Ladv is utilized to train both generators and discriminators, while
Lcyc, Lper, and Lid are employed for training the generators. The
expression of the hybrid loss function L can be formulated as
follows:

L = Ladv + λcycLcyc + λperLper + λidLid (6)

where λcyc, λper, and λid are adjustable weights of the three loss
components. More details about each loss function are provided
in the following sections.

1) Adversarial Loss: The adversarial loss aims to make
the reconstructed cloud-free images close to the correspond-
ing ground truth. Adopting a structure similar to the classical
CycleGAN, we define the adversarial loss as

LX2Y
adv = Ey∼Pdata(y)[logDY (y)]

+ Ex∼Pdata(x)[log(1−DY (GX2Y (x))] (7)
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LY 2X
adv = Ex∼Pdata(x)[logDX(x)]

+ Ey∼Pdata(y)[log(1−DX(GY 2X(y))] (8)

where x and y are the input cloudy and cloud-free image sam-
ples, respectively. Furthermore, Pdata(x) and Pdata(y) represent
the distributions of cloudy and cloud-free images. The total
adversarial objectiveLadv is comprised ofLX2Y

adv andLY 2X
adv used

to train forward process and reverse process, respectively.
2) Cycle Consistency Loss: The cycle consistency loss mea-

sures the pixel-wise difference between the generated images
and their corresponding ground truth. It is adopted to reduce
blurring regions and keep the reconstructed images closer to
the ground truth. The cycle consistency loss takes the following
form:

Lcyc = Ex∼Pdata(x) [||GY 2X(GX2Y (x))− x||1]
+ Ey∼Pdata(y) [||GX2Y (GY 2X(y))− y||1] (9)

where GX2Y and GY 2X are the two generators in the Cloud-
EGAN and || · ||1 stands for the L1-norm of the enclosed
quantity.

3) Perceptual Loss: Based on the computation of losses in
pixel colors and edges, the perceptual loss [55] is introduced to
measure the consistency between convolutional outputs of the
ground truth and the restored images obtained by a pretrained
network, e.g., VGG19 pretrained on the ImageNet [56]. More-
over, the capability of extracting perceptual semantic features
via the convolutional layers can be evaluated. Mathematically,
the expression of the perceptual loss can be defined as

Lper =
∑
k

1

CkHkWk

[
Ex∼Pdata(x)||φk(x

′)− φk(x)||1

+Ey∼Pdata(y)||φk(y
′)− φk(y)||1

]
(10)

where φk denotes the feature map extracted from the kth layer
in the pretrained VGG19 network, and Ck, Hk, Wk denote the
number of channels, height, and width of the kth feature map,
respectively. Moreover, x′ and x represent the pixel intensities in
the original cloudy images and the generated cloudy images by
Cloud-EGAN, respectively. Meanwhile, y′ and y stand for the
pixel intensities in the ground truth cloud-free images and the
generated cloud-free images by Cloud-EGAN, respectively.

4) Identity Loss: The identity loss aims to retain the color
consistency between the input and the output. For the cloud
removal task, the clouds are expected to be eliminated in the gen-
erated cloud-free images and the cloud-free regions are expected
to remain unchanged in texture details and color compositions.
The proposed model can avoid color distortion in cloud-free
regions by applying identity loss. It can be formulated as follows:

Lid = Ex∼Pdata(x)[||GX2Y (x))− x||1]
+ Ey∼Pdata(y)[||GY 2X(y)− y||1]. (11)

III. EXPERIMENTAL RESULTS

In this section, experimental datasets will be first described.
After that, the parameter settings and evaluation metrics are

introduced before the comparisons with other DL-based models
are reported and analyzed.

A. Datasets

In this section, the proposed model is evaluated on the RICE
dataset [57] and the WHUS2-CR dataset [58]. Specifically, the
RICE dataset comprises two subdatasets named RICE1 and
RICE2. In particular, the RICE1 contains 500 pairs of cloud-
covered and cloud-free images from Google Earth, with the
ground resolution being 5 m/pixel. Most of the samples in RICE1
are thin clouds where the ground objects are mostly identifi-
able. In sharp contrast, the RICE2 dataset includes Landsat-8
images of 736 groups of the ground resolution 30 m/pixel. The
images in this dataset contain abundant thick clouds, where
the ground objects are hardly identifiable. Taking into account
the large discrepancy in terms of cloud thickness and image
resolution, we perform our evaluation on these two subdatasets
separately. Furthermore, in sharp contrast to MSDA-CR [29]
and CR-MSS [58] that utilize multispectral data as input, we
mainly focus on visible (RGB) bands in our evaluation. This is
because RGB images are more commonly available [11], [12],
[28], [59]. However, we also perform supplement experiments
to demonstrate that the proposed model can work well with
multispectral data by exploiting both RGB and near-infrared
(NIR) data.

The images in the RICE dataset are of size 512× 512 pixels
each. Moreover, the WHUS2-CR dataset involves 848 pairs of
Sentinel-2 image patches of size 256× 256 pixels. The acqui-
sition time lag of the cloud-covered images and their corre-
sponding cloud-free images is less than 10 days. Furthermore,
400 and 100 image pairs were chosen for training and testing
in the RICE1 dataset, respectively. In addition, 589 and 147
pairs were adopted as the training and testing set in the RICE2
dataset, respectively. For the WHUS2-CR dataset, 679 pairs
were obtained as training data, and the remaining 169 pairs were
reserved for testing. Some typical samples in the RICE1, RICE2,
and WHUS2-CR datasets are displayed in Fig. 4.

B. Implementation Details

In the generator of the Cloud-EGAN, four convolutional
layers with a kernel size of 4× 4 and stride of 2 are utilized
in the encoder and decoder, with {32, 64, 128, 256} channels
for the former and {256, 128, 64, 32} for the latter. After that, a
convolutional layer with a kernel size of 4× 4, a stride of 1 and
3 channels is utilized to restore the cloud-free images with the
same size as the input. In the discriminator, four convolutional
layers with a kernel size of 4× 4 and a stride of 2 are exploited
with {64, 128, 256, 512} channels. Meanwhile, a convolutional
layer with a kernel size of 4× 4, a stride of 1, and a channel
number of 1 is used to discriminate whether the generated cloud-
free images are authentic or not. Notably, these convolutional
layers are followed by the instance normalization [34] and the
Leaky ReLU function [60] parameterized by 0.2, except for the
classifier in the decoder and the discriminator.

In Cloud-EGAN, the learning rateαwas initially set to 0.0001
before being decayed by half after every 20 epochs. Furthermore,
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Fig. 4. Typical image samples in the (a) RICE1, (b) RICE2 and (c) WHUS2-
CR datasets. The first and the second rows are cloud-covered images and cloud-
free images, respectively.

The batch size was set to 4. In addition, the Adam optimizer [61]
with default momentum parameters, i.e., β1 = 0.9 and β2 =
0.999 was adopted. Finally, λcyc, λper, and λid in the loss function
were set to 10, 1, and 9, respectively. All experiments were
implemented on a single NVIDIA GeForce RTX 3090 GPU
with 24-GB RAM.

The proposed Cloud-EGAN is compared against six state-of-
the-art DL-based cloud removal methods, namely cGAN [25],
CloudGAN [12], SpAGAN [27], CVAE [24], MSDA-CR [29],
and MMGAN [28].

C. Metrics

Two widely used metrics, SSIM [62] and peak signal-to-noise
ratio (PSNR) [63], were utilized for quantitative evaluation.
Specifically, SSIM is expressed as

SSIM =
2μxμy + C1

μx
2 + μy

2 + C1

2σxy + C2

σx
2 + σy

2 + C2
(12)

where μx, σx, and σxy represent the average, variance, and
covariance, respectively. C1 and C2 are constants for stabi-
lizing the division with a weak denominator. A larger SSIM
value stands for the greater similarity between the generated
cloud-free images and ground truth, which indicates a higher
quality of the generated cloud-free images. Moreover, PSNR is
defined as

PSNR = 20 log10
MAXI√

MSE
(13)

where

MSE =
1

M ×N

M∑
i=1

N∑
j=1

‖I(i, j)− J(i, j)‖2 (14)

and MAXI represents the possible maximum pixel value in the
generated cloud-free images I . Moreover, the generated cloud-
free image I and the corresponding ground-truth J are of size
M ×N × 3, and (i, j) represents the pixel index in I and J .

A larger PSNR value represents less image distortion in the
reconstructed cloud-free images.

Finally, we evaluated the computational complexity of the
proposed method using the following metrics, namely the float-
ing point operation count (FLOPs), the number of parame-
ters (M ), and the frames per second (FPS). More specifically,
FLOP is used to evaluate the model complexity whereas M
measures the memory requirement. In addition, FPS is used
to evaluate the execution speed. For computationally efficient
models, their FLOP and M should be small while FPS being
large.

D. Performance Comparison

As illustrated in Fig. 5, the results obtained by Cloud-
EGAN achieved lower spectral distortion and more significant
SSIM with the ground truth in the thin-cloud-covered scenar-
ios. Moreover, the results obtained by cGAN and CloudGAN
suffered from much loss of texture details with some blur-
ring areas while failing to thoroughly restore the land sur-
face information in the generated cloud-free images. Com-
pared with cGAN and CloudGAN, SpAGAN and MSDA-
CR showed better results with more explicit texture details.
However, some color distortions have been observed. As a
result, the color information of the ground surface could not
be fully restored. Finally, despite the fact that the results of
CVAE and MMGAN achieved color compositions similar to the
ground truth, some slightly-blurred edges were noticed in several
patches.

In contrast, Cloud-EGAN performed best among all methods
under evaluation in the thick-cloud-covered scenarios of the
RICE2 dataset, as shown in Fig. 6. It generated images with
better texture structures and color compositions. In comparison,
cGAN and CloudGAN could not remove clouds thoroughly,
which generated some edge-blurring and color-distortion ar-
eas in noncloudy regions. Moreover, the results obtained by
SpAGAN exhibited severe loss of details since the structure
information of ground scenarios could not be completely re-
covered. Furthermore, it was observed that the results of CVAE,
MSDA-CR, and MMGAN showed more spatial features similar
to the ground truth, though some slight color distortions were
observed.

For the WHUS2-CR dataset, as depicted in Fig. 7, the
color compositions and the texture details of the cloud-free
images generated by Cloud-EGAN were more similar to the
ground truth. In contrast, cGAN and CloudGAN showed the
worst performance due to their limited feature extraction ca-
pability. Compared with cGAN and CloudGAN, SpAGAN
and MSDA-CR obtained better results with more evident
backgrounds and details, but some color distortion scenes
remained in cloudless regions. Finally, the color tones in
the results of CVAE and MMGAN were visually close to
the ground truth. However, some contextual information was
lost, and clouds were not segregated thoroughly in these
models.

Quantitative results on the RICE1, RICE2, and WHUS2-CR
datasets are shown in Table I. Cloud-EGAN achieved higher
PSNR and SSIM values than other DL-based methods due to the
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Fig. 5. Visual comparison of cloud removal results obtained by different models in thin-cloud-covered scenarios of the RICE1 dataset. (a) Cloudy images,
(b) Ground Truth, (c) cGAN [25], (d) CloudGAN [12], (e) SpAGAN [27], (f) CVAE [24], (g) MSDA-CR [29], (h) MMGAN [28], and (i) Proposed Cloud-EGAN.

Fig. 6. Visual comparison of cloud removal results obtained by different models in thick-cloud-covered scenarios of the RICE2 dataset. (a) Cloudy images,
(b) Ground Truth, (c) cGAN [25], (d) CloudGAN [12], (e) SpAGAN [27], (f) CVAE [24], (g) MSDA-CR [29], (h) MMGAN [28], (i) Proposed Cloud-EGAN.
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Fig. 7. Visual comparison of cloud removal results obtained by different models in the WHUS2-CR dataset. (a) Cloudy images, (b) Ground Truth, (c) cGAN [25],
(d) CloudGAN [12], (e) SpAGAN [27], (f) CVAE [24], (g) MSDA-CR [29], (h) MMGAN [28], (i) Proposed Cloud-EGAN.

TABLE I
QUANTITATIVE RESULTS FOR PSNR AND SSIM VALUES

exploration and aggregation of enriched local and global features
in hierarchical and deep contextualized space. In particular,
the results labeled as Cloud-EGAN* were generated with the
proposed Cloud-EGAN using four input bands, i.e., RGB and
NIR. It is evident from Table I that the proposed Cloud-EGAN
can also work well in multispectral scene. Furthermore, it is
shown that the NIR band could indeed further improve the
performance of cloud removal. Therefore, the cloud-covered
and cloud-free regions could be more accurately characterized,
which aided in maintaining the recovered images close to the
ground truth.

E. Ablation Study

1) Cycle-Consistence: In order to evaluate the necessity of
cycle-consistence that requires two generators and discrimi-
nators, we conducted an ablation experiment as shown in the
second line from the bottom in Table II, which is the result
of the conventional GAN framework with only one generator-
discriminator pair. The experiment results showed that the
cycle-consistent mechanism enabled the generator to learn better
global representations to promote the prediction of the ground
objects of cloud-free areas.
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TABLE II
QUANTITATIVE RESULTS WITH DIFFERENT MODULES FOR THE GENERATOR

TABLE III
QUANTITATIVE RESULTS WITH DIFFERENT LOSS FUNCTIONS

TABLE IV
COMPARISON ON COMPUTATIONAL COMPLEXITY MEASURED BY A 256× 256

INPUT ON A SINGLE NVIDIA GEFORCE RTX 3090 GPU

2) Model Components: We compared the quantitative results
by eliminating various modules in the proposed Cloud-EGAN
framework, as shown in Table II. Note that the elimination of the
SE module by only utilizing the convolutional layers followed
by instance normalization and leaky ReLU function still follows
the same UNet-based architecture as Fig. 1(c). Inspection of
Table II reveals that integrating all feature enhancement mod-
ules resulted in the best performance in terms of both PSNR
and SSIM. Accordingly, this confirmed the benefits of these
modules in aggregating enriched contextualized features and
restoring ground surface information sufficiently. Notably, SE
can be further developed by other channel-based or spatial-based
attention modules. We provided a unique perspective on using
squeeze-and-excitation module [52] to enhance convolutional
networks comprehensively. Considering the versatility and com-
plexity, we finally chose this classical channel attention module
as the feature enhancement structure in this work. Moreover,

Fig. 8. Comparison of the feature maps via introducing SE and HFE in the
proposed Cloud-EGAN. Note that the brighter regions are paid higher attention
to during the training process, where more contextualized features will be
exploited. (a) Original image. (b) Feature map of the output through the first
convolutional block in the first SE module. (c) Feature map of the output through
the first SE module. (d) Feature map of the input of HFE. (e) Feature map of the
output through HFE.

the quantitative results without the SE modules were better than
those obtained without HFE. In other words, HFE plays a critical
role in cloud removal performance, further demonstrating the
necessity of enhancing high-level features for remote sensing
images. More specifically, THFE enables the model to learn
more global representations, facilitating the model to better
predict the objects under the cloudy area. As shown in Table II,
the results generated with THFE were better than those without
THFE. Similar observations regarding CHFE can be made in
Table II, which suggests models with CHFE can learn more
detailed representations.

3) Effectiveness of Adding Perceptual Loss: To evaluate the
effectiveness of the perceptual loss, we compared the proposed
hybrid loss function with the loss function in the classical
CycleGAN, as shown in Table III. The adjustable weights λcyc

and λid of the loss function in the classical CycleGAN were
set to 10 and 9, respectively. It is observed that there was a
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Fig. 9. Comparison of the training convergence of the classical CycleGAN and
Cloud-EGAN on the (a) RICE1 dataset, (b) RICE2 dataset, and (c) WHUS2-CR
dataset.

non-negligible improvement in terms of PSNR and SSIM after
incorporating perceptual loss.

F. Model Complexity Analysis

Table IV shows the complexity evaluation results of all meth-
ods conducted in our work. SPAGAN achieved the best perfor-
mance on these metrics since it only used simple CNN-based
modules while the generation performance is poor. Compared
to most other methods, the proposed Cloud-EGAN achieves
significantly improved performance with low computational
complexity by exploiting the convolution operations and the
high-efficient WMSA module. Meanwhile, we added more mod-
ules including the CHFE module and a THFE module to enhance
the high-level features. Therefore, the proposed Cloud-EGAN
achieved a better cloud removal performance at the cost of a
larger number of parameters and a lower inference speed.

G. Discussion

The experimental results have demonstrated that Cloud-
EGAN performs better than existing DL-based models in the
cloud removal task. This superior performance can be attributed
to the cyclic structure and the integration of the SE and HFE
modules. More specifically, Cloud-EGAN learns the mapping
of feature representations between cloudy images and the cor-
responding cloud-free images in a cyclic-consistent way, which
is conducive to strengthening the model capability of feature
representation. Moreover, the combination of SE and HFE can
effectively extract and aggregate contextual information, which
is conducive to generating high-quality cloud-free images simi-
lar to the ground truth. The effectiveness of introducing SE and
HFE can be validated from the feature maps shown in Fig. 8.
Notably, the informative feature details are further enhanced
through SE and HFE. As a result, cloud-removed scenes with
enriched ground information can be preserved in Cloud-EGAN.

In addition, we compared the training loss convergence us-
ing Cloud-EGAN and the classical CycleGAN on the RICE1,
RICE2, and WHUS2-CR datasets. It is observed in Fig. 9(a)–(c)
that Cloud-EGAN obtained better convergence performance
than CycleGAN due to the novel framework and the incorpora-
tion of the perceptual loss.

IV. CONCLUSION

In this work, a novel CycleGAN-based architecture, named
Cloud-EGAN, has been proposed to perform supervised cloud
removal tasks, which can effectively remove thin and thick
clouds while preserving spectral and spatial consistency with
the land surface. Compared with existing DL-based models
developed for removing clouds, the proposed Cloud-EGAN
utilizes a cyclic architecture while integrating the SE and HFE
modules to enhance the ability to identify remote sensing images
with complex ground objects. While the cyclic architecture is
designed to recalibrate the weights of hierarchical channels, the
integration of the SE and HFE modules is employed to further
aggregate local and global high-level contextualized features. As
a result, the proposed Cloud-EGAN can more effectively exploit
multilevel enriched features with more saliency to highlight
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ground information while suppressing cloud components and
blurred edges through the integration of CNN and transformer.
Extensive simulation results on the RICE and WHUS2-CR
datasets have confirmed the superior cloud removal performance
achieved by Cloud-EGAN as compared to existing DL-based
methods for removing thin and thick clouds.

There are several extensions of this study that can be fur-
ther explored. First, it is of great practical interest to further
investigate how to construct a more computationally efficient
model for various cloud-covered scenarios. Furthermore, it is
interesting to consider applying the proposed Cloud-EGAN
to large-scale remote sensing datasets, such as Sentinel-2 and
Landsat-9 images in an unsupervised or semisupervised manner.
Finally, end-to-end designs of cloud removal and other down-
stream tasks, such as semantic segmentation, will be explored
in future research.
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