
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 5173

Individual Extraction of Street Trees From MLS
Point Clouds Based on Tree Nonphotosynthetic

Components Clustering
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Abstract—The individual extraction of street trees from mobile
laser point clouds is the prerequisite for their digital expression
and application. However, due to the complexity of urban road
environment and the diversity of street trees, especially the scenes
where adjacent trees are different in type, size, and crown over-
lap, accurate extraction of individual street trees is still difficult
to achieve. Therefore, in this article, a new method to extract
street trees individually from mobile laser scanning point clouds
is proposed. First, the ground and buildings are removed through
data preprocessing. Then, the artificial poles that may overlap
with street tree crowns are further removed by supervoxels region
growing, and the regions of interest (ROI) including street trees
and understory vegetation are selected. After that, the main branch
part (including trunk) of each tree is separated from the ROI by
nonphotosynthetic components clustering. Finally, based on the
individual clustering results of nonphotosynthetic components, the
remaining photosynthetic components in the ROI are segmented
individually, and the vegetation under the tree is removed through
gradual refinement to achieve the complete segmentation of in-
dividual trees. An urban area with a total road length of more
than 2.1 km, including six roads with different complexity, was
used to verify the effectiveness of the proposed method for the
individual extraction of street trees. The results show that the
proposed method can be effectively used for individual extraction of
street trees in different complexity scenes. Overall, the precision,
recall and F-score of street tree individual extraction are 94.5%,
97.4%, and 95.9%, respectively.

Index Terms—Clustering, mobile laser scanning (MLS)
point cloud, road environment, street tree extraction, tree
nonphotosynthetic components.
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I INTRODUCTION

A S a large proportion of urban features, street trees are
an important part of digital city construction and city

information model (CIM) building. The development of three-
dimensional (3-D) laser scanning, especially the mobile laser
scanning (MLS) technology, provides a data basis for the ac-
curate and detailed 3-D expression of street trees [1], [2], [3].
Individual extraction of street trees from scattered and disor-
dered laser point clouds is the prerequisite for their expression
and application.

Different from forest scenes that do not contain various
man-made objects, the focus of individual extraction of street
trees from road scenes is to accurately identify and distinguish
tree trunks and artificial pole-like objects, and reasonably seg-
ment the overlapping parts of tree crowns. Individual extraction
methods for forest trees based on trunk or treetop detection
[4], [5], such as the trunk detection via cylinder fitting and
treetop detection via local highest point finding, cannot be
applied directly to street trees. In recent years, many street tree
individual extraction methods orient to MLS point clouds have
been proposed. According to the different extraction strategies,
these methods can be divided into classification based methods
[6], [7], [8], [9], top-down segmentation methods [10], [11], [12],
and bottom-up segmentation methods [13], [14], [15], [16], [17].
In the classification based methods, the raw point cloud is first
classified by machine learning or deep learning, and then the tree
points obtained by classification are individually segmented via
certain segmentation or clustering algorithms (e.g., graph based
segmentation [7] and mean shift based clustering [8]). Both
top-down and bottom-up segmentation methods first remove
the easily identifiable non-tree objects (such as ground) via
simple data preprocessing, and then segment the street tree
individuals from the remaining objects through different strate-
gies. The top-down strategy is to cluster the remaining objects
into many large segments by Euclidean distance at first, then
identify and select the segments containing trees according to
their global characteristics (e.g., size, height, and shape), and
remove the mixed nontree objects (e.g., street lights and traffic
signs) to obtain tree individuals through some segmentation
method (e.g., voxel-based normalization cut [10] and coarse-
to-fine segmentation method [11]). Compared with the method
of classifying trees first and then segmenting them individually,
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Fig. 1. Common street tree scenes. (a) Common scene 1, little or no overlap between adjacent trees and between tree crowns and artificial pole-like objects.
(b) Common scene 2, large overlap between adjacent trees and between tree crowns and artificial pole-like objects. (c) Common scene 3, tree trunks are partially
or completely missing due to occlusion. (d) Common scene 4, shape, size and type of adjacent trees vary greatly, some trees have no obvious trunks, and there are
overlaps between tree crowns and between tree crowns and artificial pole-like objects.

this method of separating trees individually from objects con-
taining nontrees has higher requirements of the segmentation
algorithms. The bottom-up strategy first identifies and locates
the tree positions (represented by tree trunk [13], [14], [15], tree
trunk and branches [16], or the junction of trunk and branches
[17]) through local features from the remaining objects after
preprocessing, and then individually segments the tree points
via location-based region growing [13], [14], [15] or clustering
[16], [17].

Different street tree individual extraction methods have their
own applicable scenes. We categorize common street tree scenes
into four types (see Fig. 1) based on the overlap between tree
individuals and their adjacent objects (adjacent trees and ar-
tificial pole-like objects), as well as tree shape characteristics
(differences in size and shape of crown and trunk integrity
in MLS points). These include: common Scene 1, where the
spacing between trees is large and there is little or no overlap
between trees and artificial pole-like objects; common Scene 2,
where the overlap between tree crowns is large and the artificial
pole-like objects and trees also overlap greatly; common Scene
3, where the tree trunks are partially or completely missing due
to the occlusion of other objects such as vehicles and green belts;
common Scene 4, where the shape, size and type of adjacent trees
vary greatly, there are trees without obvious trunks, and overlaps
also occur between tree crowns and between tree crowns and
artificial pole-like objects. For common Scene 1, since this scene
is simple and the geometric characteristics of trees and artificial
pole-like objects are obvious and easy to be distinguished, the
existing classification based methods, top-down and bottom-up
segmentation methods can all accurately extract the street tree
individuals in it. For common Scene 2 where there are serious
overlaps between trees and artificial pole-like objects, the ap-
plicability of the classification based method is not satisfactory
because the existing classification methods cannot accurately
distinguish the tree trunks and artificial vertical poles in this
scene. According to Luo et al. [18], the mIoU of the best
classification results of the existing deep learning methods for
artificial pole-like objects and trees are only 79.7% and 91.4%,
respectively. From Weinmann et al. [19], existing machine learn-
ing cannot distinguish between tree trunks and artificial vertical
poles, and as the same category, their classification precision and

recall are only 34.7% and 82.1%, respectively. The presence
of artificial pole-like objects in the tree crown, which lack
distinct shape differences from trees, makes it challenging for
existing top-down segmentation methods to accurately identify
and segment them. In the bottom-up segmentation methods, the
methods based on tree trunk recognition to locate tree positions
are easy to misidentify artificial vertical poles as tree trunks in
common Scene 2, thus affecting the results of individual tree
segmentation. The method based on branch and trunk matching
[17] can effectively identify the tree positions and can be used
in common Scene 2. For common Scene 3 with missing or
incomplete tree trunks, the bottom-up segmentation methods are
prone to missed extraction because the tree positions cannot be
identified, and the classification based or top-down segmentation
methods can achieve individual extraction of street trees in this
scene when there is small difference in tree size and there is
little overlap between trees and artificial pole-like objects. For
complex common Scene 4, the existing bottom-up segmentation
methods cannot locate trees without obvious trunks, the existing
top-down segmentation methods cannot accurately identify and
segment the Euclidean-clustered tree segments with large differ-
ences in tree size, shape and crown overlap, and the classification
based methods do not apply well because of the scene complex-
ity. To sum up, the existing methods for street trees individual
extraction from MLS point clouds are not universal enough to be
competent for the four common road scenes. In addition, there
is a lack of street tree individual extraction methods that can be
applied to the complex road scene as shown in common street
tree Scene 4.

To achieve individual extraction of street trees from various
common road scenes, in this article, a new method based on
non-photosynthetic components clustering is proposed for the
individual extraction of street trees from MLS point clouds.
The main contributions include: 1) a tree nonphotosynthetic
components clustering method based on intensity and density
of laser point is proposed, which can effectively identify the
basic shape of each street tree and locate its position, including
small trees without obvious trunks; and 2) a complete indi-
vidual tree segmentation method based on nonphotosynthetic
components and gradual refinement of understory vegetation
is proposed, which can effectively segment tree individuals
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Fig. 2. Technical flowchart of the proposed method.

with large differences in shape, size, and crown overlap, and
the understory vegetation and trunk holders can be effectively
removed in the segmentation results. The proposed method has
strong universality and is competent for different common road
scenes.

The rest of this article is organized as follows. We begin with
a detailed introduction of the proposed street tree individual
extraction method (see Section II). We then outline the experi-
mental data and the implementation of method validation (see
Section III), and discuss the effectiveness and advantages of the
proposed method (see Section IV). Finally, Section V concludes
this article.

II. METHOD

The proposed method mainly includes four processes (see
Fig. 2): 1) data preprocessing, 2) regions of interest (ROI) se-
lection, 3) street tree nonphotosynthetic components clustering,
and 4) street tree individual segmentation. In data preprocessing,
ground and buildings are removed. Then, the artificial poles that
may overlap with tree crowns are identified and further removed,
and the ROI including street trees and understory vegetation are
selected. After that, the nonphotosynthetic components in the
ROI are extracted and clustered to achieve individual separation
of main branch part (including trunk) of each tree. Finally,
based on the individual clustering results of nonphotosynthetic
components, the remaining photosynthesis components in the
ROI are segmented individually, the understory vegetation and
trunk holders are removed through gradual refinement, and the
individual trees are extracted after trunk completion.

A. Data Preprocessing

The purpose of data preprocessing is to remove the ground
and buildings that account for a large proportion of the raw
MLS point clouds. These objects usually connect with different
objects and occupy large storage space [12], [20], [21]. Their
removal can effectively reduce the complexity of data processing
and improve the efficiency of street tree individual extraction.
Here, the supervoxel-based region growing method proposed
by Li et al. [22] is used to remove the ground and buildings.
First, the raw point cloud [see Fig. 3(a)] is supervoxelized with

boundary preservation of different objects [see Fig. 3(b)]. Then,
the dimensional feature of each supervoxel is judged by principal
component analysis (PCA) [23], and nonvolumetric supervoxels
are taken as planer supervoxels to perform region growing [see
Fig. 3(c)]. Finally, the planar patch with a certain area and normal
direction parallel to the Z-axis is selected as the ground [gray
part in Fig. 3(d)], and the planar patches with certain areas and
normal directions perpendicular to the ground are selected as
building facades, and the buildings [see red parts in Fig. 3(d)]
are identified through facade occlusion analysis [22]. The result
after preprocessing is shown in Fig. 3(e).

The specific PCA-based supervoxel dimensional feature judg-
ment method is as follows. Let { p1, p2, . . . pk } be
the point set in one supervoxel, and aL, aP , aV represent
the degree of linear, planer and volumetric of the supervoxel,
respectively. Their calculation is

aL =
√

λ1−
√

λ2√
λ1

aP =
√

λ2−
√

λ3√
λ1

aV =
√

λ3√
λ1

⎫⎪⎪⎬
⎪⎪⎭

(1)

M = 1
k

k∑
i = 1

(pi − p̄) · (pi − p̄)T (2)

where λ1, λ2, λ3 (λ1 ≥ λ2 ≥ λ3) is the eigenvalues of
the covariance matrix M of the supervoxel point set, and
p̄ = 1

k

∑k
i=1 pi. The feature corresponding to the largest of aL,

aP , and aV is the dimensional feature of the supervoxel.

B. ROI Selection

We further select the ROI that only contain trees and un-
derstory vegetation as much as possible from the preprocess-
ing result to narrow the area where street trees are located.
Without the ground and buildings as connectors, most of the
nontree objects after preprocessing are usually dispersed and
independent [as shown in Fig. 3(e)], except that some artificial
pole-like objects may be overlapped in the tree crowns or con-
nected with street trees through the understory vegetation. In
order to remove the artificial pole-like objects overlapped with
street trees, we first reidentify the linear supervoxels from the
preprocessing result [see Fig. 4(a)] based on PCA, and grow
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Fig. 3. Data preprocessing based on supervoxels region growing. (a) Raw point cloud (colored by elevation). (b) Supervoxelization (different colors represent
different supervoxel individuals). (c) Region growing result of nonvolumetric supervoxels (distinguished by colors). (d) Extracted ground (grey) and buildings
(red). (e) Preprocessing result expressed by supervoxels.

the adjacent linear supervoxels with similar principal directions
(intersection angle less than 10°). At this time, the vertical and
horizontal poles of the artificial pole-like objects are divided into
independent parts with obvious boundaries with the surrounding
objects, as shown in Fig. 4(b). However, a vertical pole may
be divided into multiple segments due to crown occlusion and
the influence of attachments on the vertical pole. Then, we
merge the vertical pole segments more than a certain length
(1.0 m) and close to each other in horizontal (horizontal distance
between the two centers is less than 0.2 m) to optimize the linear
supervoxels growing results. After optimization, each artificial
vertical pole is divided into an independent individual. Since the
artificial vertical poles usually higher than tree trunks and the
artificial horizontal poles usually located at the upper end of the
artificial vertical poles, they can be identified [see Fig. 4(c)] and
removed according to the length and height characteristics. After
the removal of the artificial poles, there are spatial separations
between the artificial pole attachments and the tree crowns [see
Fig. 4(d)]. We cluster the remaining objects into many clusters
based on spatial connectivity through Euclidean clustering, and
select the ROI from them according to the principle that the
clusters including street trees are usually large in size. For areas
with many dense vegetation under the tree, we also remove the
non-street tree points close to the ground to further narrow the
ROI. The finally selected ROI is, as shown in Fig. 4(e).

C. Nonphotosynthetic Components Clustering

Although the artificial pole-like objects in the ROI have been
removed, the existing methods are still difficult to achieve ac-
curate segmentation of individual street trees in the scenes with
large differences in tree types, unclear boundaries of adjacent
crowns, and unobvious or missing tree trunks. To overcome the
shortcomings of the existing methods for identifying and locat-
ing street trees based on tree trunks, we propose an individual

clustering method of tree nonphotosynthetic components based
on the intensity and local density characteristics of point clouds,
and use the nonphotosynthetic components clustering results to
identify and locate each street tree.

In the laser point cloud data, in addition to 3-D coordinates,
each laser point usually has an intensity attribute mainly re-
lated to the reflection characteristics of the object surface [24].
Although the intensity value is also affected by the scanning
distance and scanning angle [25], our research objects are street
trees, which are mostly arranged on both sides of the road in
parallel and have a small range of variation in scanning distance
and scanning angle in the MLS point cloud. In addition, due to
the complexity of objects in the road environment, few studies
on MLS have investigated the intensity correction [24]. The
existing applications that use MLS intensity do not address
intensity correction (such as [26], [27], [28], [29]). From the ROI
colored by intensity in Fig. 5(b), it can be seen that the original
uncorrected intensities have obvious differences between non-
photosynthetic and photosynthetic components, which allows
them to be roughly distinguished by a threshold. Therefore,
we first select the points whose intensity is greater than the
specified threshold Tinten as the nonphotosynthetic component
points of trees. Then, we calculate the local density of each
point in the nonphotosynthetic components. The local density
of a point p is inversely proportional to the average point spacing
of its k-nearest neighbors, as expressed as follows:

Dp =
k∑k

i=1 ||p− pi||
. (3)

As shown in Fig. 5(c), although the values of the maximum
local density vary greatly among different trees, these maximum
local densities are all located on the main branch part (including
trunks) of each tree, so the position of each tree can be detected
based on the spatial variation of the local density of nonphoto-
synthetic components.
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Fig. 4. ROI selection. (a) Preprocessing result expressed by supervoxels. (b) Region growing result of linear supervoxels (distinguished by colors). (c) Extracted
artificial poles (including vertical and horizontal poles). (d) Euclidean clustering result (distinguished by colors). (e) Selected ROI.

In order to individually separate the nonphotosynthetic com-
ponents of different trees while determining the tree positions,
we cluster each nonphotosynthetic point in turn according to
the order of local density from small to large. Specifically, for a
point Pi, find the point Pj that is closest to Pi and whose local
density is greater than Pi, then calculate the horizontal distance
Dxy

i,j between Pi and Pj , if Dxy
i,j < Tdis, Pi is clustered into Pj

to generate a cluster represented by Pj . The horizontal distance
threshold Tdis can be taken as a value that is slightly less than
the street tree spacing

Dxy
i,j =

√
(Pix − Pjx)

2 + (Piy − Pjy)
2 . (4)

After clustering, nonphotosynthetic points belonging to the
same tree are clustered together, as shown in Fig. 5(d). The de-
tailed process of extraction and clustering of nonphotosynthetic
components is shown in Fig. 6.

D. Individual Tree Segmentation

To achieve the individual segmentation of street trees, based
on the clustering results of nonphotosynthetic components, we
determine the cluster category of each separated photosynthetic
component point according to the order of elevation from small
to large. The cluster category of a photosynthetic component
point Pi is the same as that of Pj , which is the closest to Pi

among the clustered nonphotosynthetic components. After the
category of Pi is determined, add it to the corresponding cluster
and update the clustering result. As shown in Fig. 7(a), the ROI
segmentation result with proper individual crown boundaries
can be obtained.

Affected by the understory vegetation and the trunk holders,
each separated individual tree contains nontree components
[see Fig. 7(a)]. Here, these nontree components are gradually
removed by iterative slicing. As shown in Fig. 8(a), for the
segmentation result of each tree, starting from the 1/2 height
of the tree, slice downward along the Z-axis at an interval of
0.1 m, and calculate the length and center of the bounding box
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Fig. 5. Street tree nonphotosynthetic components clustering. (a) ROI including street trees. (b) Reflectance intensity distribution of ROI. (c) Nonphotosynthetic
components colored by density. (d) Clustered nonphotosynthetic components (distinguished by colors).

Fig. 6. Detailed process of extraction and clustering of nonphotosynthetic
components.

of the tree points on each slice. After slicing, take the center
of the bounding box with the smallest length among all slices
as the center of the cylinder top surface, and take half of this
bounding box length as the radius to establish a cylinder to cut
the tree points below this slice [as slice i shown in Fig. 8(a)].

The points inside the cylinder are retained and the points outside
the cylinder are deleted. Fig. 8(b) shows the first nontree points
removal result. Then, starting from the top surface of the cylinder
determined last time, slice down along the Z-axis and detect the
non-tree points that meet the removal conditions again. This
process is iterated until no point is removed. The individual
segmentation results of each tree after gradual refinement are
shown in Fig. 7(b), in which the understory vegetation and the
trunk holders can be well removed.

Some nontree column pole-like objects (see Fig. 9) may exist
in the segmented tree individuals due to insufficient removal
in the ROI selection. After refinement by iterative slicing [see
Fig. 9(d)], these individual pole-like objects appear markedly
distinct from street trees with significantly smaller bounding
box sizes. Therefore, we select and remove these nontree pole-
like objects according to their spatial size to further refine the
separated individuals.

To ensure the integrity of the extracted individual trees, we
finally check and complete the tree trunks in the extracted results.
In the ROI selection, we regard the vertical poles with a certain
height as artificial and remove them, which may also include
some tall and straight tree trunks. Therefore, some individual
trees extracted from the ROI may lack trunks, as shown in
Fig. 10. Therefore, we select the missing trunks from the ar-
tificial vertical poles based on the extracted individual trees
(crowns). Specifically, the thinnest position found by iterative
slicing is taken as the position of each tree to find the vertical
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Fig. 7. Individual segmentation of street trees. (a) Clustering of photosynthetic components. (b) Street tree individual extraction result.

Fig. 8. Gradually removal of nontree components by iterative slicing. (a) First slicing. (b) Second slicing.

pole that is closest to it in horizontal. If the horizontal distance is
less than the given threshold (such as 0.5 m), the found vertical
pole is regarded as the trunk of this tree.

So far, complete segmentation of individual street trees can
be realized.

III. EXPERIMENTS AND EVALUATIONS

A. Experimental Data

The point cloud of an urban area shown in Fig. 11 is used to
verify the feasibility and effectiveness of the proposed method.
This data is obtained by a mobile laser scanning system equipped
with RIEGL VUX-1UAV. This experimental area includes 6
roads with a total road length of about 2180 m and a total number

of scanning points of 95 283 454. The average spacing between
adjacent scanning points is about 3.1 cm. Different roads have
different scene complexity, and most roads have two or more
rows of trees on each side.

As for the first row of street trees on each side close to the
road centerline, although most of the street trees on Road 1
have trunk holders, these trees are small, the spacing between
adjacent trees is large, and the boundaries between tree crowns
and artificial pole-like objects (e.g., street lights and traffic signs)
are obvious, so they belong to simple common Scene 1. As there
are many vehicles parked on the roadside of Road 2, most of
the tree trunks on this road have different degrees of occlusion.
Compared with Road 1, the street trees on Road 2 are larger, and
there are overlaps between some tree crowns. Street trees on this
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Fig. 9. Nontree column pole-like objects identification and optimization. (a) Raw points. (b) Nonphotosynthetic components clustering. (c) Clustering of
photosynthetic components. (d) Refinement through iterative slicing.

Fig. 10. Tree trunk completion. (a) Raw points. (b) Nonphotosynthetic components clustering. (c) Individual segmentation of street trees. (d) Result after trunk
completion.

road belong to common Scene 3. The street trees on Road 3 are
similar to those on Road 1, with large spacing between trees and
little overlap with artificial poles, and there is no trunk holder
on this road. The street trees on Road 4 are large, with serious
overlap between tree crowns. Some street lights are seriously
mixed in the tree crowns, and the tree trunks are similar to
the artificial vertical poles. Therefore, street trees on this road
belong to common Scene 2. Street trees on Road 5 are similar
to those on Road 1 and Road 3, belonging to simple common
Scene 1. The street trees on Road 6 are the most complex.
Adjacent trees have different shapes and sizes, and there are
serious overlaps between adjacent tree crowns. Some trees do
not have obvious trunks, and even those with obvious trunks
still have trunk holders. In addition, the understory vegetation is
high and irregular, which seriously blocks the trunk. These trees
belong to the most complex common street tree Scene 4.

Blocked by the first row of street trees near the road center,
other trees on each roadside have different degrees of data
missing. In addition, compared with the first row of trees, these
trees are more different in type, shape, and spacing, which makes
them similar to common street tree Scene 4. Although there are
few artificial poles in these trees, it is still difficult to segment
them accurately.

Different roads and street tree scenes in the experimental area
can effectively verify the street tree individual extraction effect
of the proposed method.

B. Experimental Process

Taking the road as the unit, we individually extract the street
trees on each road in the experimental area.

First, the ground and buildings in the raw data are removed
through data preprocessing. The experimental parameters and
their values involved in this process are the same as those of Li
et al. [22].

Then, the ROI that contain street trees and understory veg-
etation are selected. In this step, the length thresholds used to
identify and remove artificial vertical and horizontal poles are
taken as 4.5 m and 1.5 m, respectively, the distance threshold of
Euclidean clustering is taken as 0.2 m, and the judgment thresh-
old of the size of the ROI cluster is set to 3 m× 3 m× 3 m.
These experimental parameters are set according to the geo-
metric characteristics of artificial poles and street trees in the
experimental area.

After that, the nonphotosynthetic components of street
trees are clustered. In this process, three empirically selected
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Fig. 11. MLS point cloud of the experimental area.

parameters are involved. The intensity threshold Tinten of select-
ing nonphotosynthetic component points is set to 20 000, the
number of nearest neighbor points for calculating local density
is taken as 50, and the horizontal distance threshold Tdis for
clustering is taken as 2.0 m.

Finally, complete individual segmentation and refinement
of street trees are realized. In this process, the threshold of
space size in horizontal for nontree column pole-like objects
recognition is set to 1 m× 1 m and the threshold of horizontal
distance for trunk completion is taken as 0.5 m according to their
geometry.

Our proposed method is implemented in C++. The experiment
is conducted on a computer with a 3.6 GHz CPU, 64 GB
RAM, and a 64-bit Windows 10 operating system. The total
time consumption for street trees individual extracting in the
experimental area is approximately 125 min. Specifically, the
time required for Road 1 to Road 6 is 19 min, 17 min, 14 min,
15 min, 27 min, and 33 min, respectively.

C. Evaluation Criterion

To quantitatively evaluate the extraction results, we calculated
the precision Pr, recall Re, and F-score f of the individual
extraction of street trees. The precision and recall indicate the

correctness and completeness of the extraction results, respec-
tively, and F-score is an overall indicator that combines the two

Pr = TP
TP+FP

Re =
TP

TP+FN
f = 2×TP

2×TP+FP+FN

⎫⎬
⎭ (5)

where TP represents the number of street trees that are correctly
segmented and extracted, FP indicates the number of street trees
that are wrongly segmented and extracted, and FN represents
the number of street trees that have not been segmented and
extracted. We divide the individual extraction results of a street
tree into the following three cases. If the tree trunk in the raw
data exists in the extraction result and more than 80% of the
crown points are correctly segmented, this tree is considered
to be correctly segmented and extracted. If the tree trunk in
the raw data is missing in the extraction result or the crown
points in the segmentation result are less than 80% of the original
data, this tree is considered not to be extracted. If more than
20% of other tree points are mixed in the segmentation result or
artificial objects that significantly affect the tree shape are mixed
in the segmentation result, this tree is considered to be wrongly
segmented and extracted.
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TABLE I
QUANTITATIVE EVALUATION OF STREET TREE INDIVIDUAL EXTRACTION

TABLE II
QUANTITATIVE EVALUATION OF STREET TREE INDIVIDUAL EXTRACTION IN DIFFERENT COMMON SCENES

D. Experimental Results

The individual extraction results of street trees in the exper-
imental area and some representative close-views are shown in
Fig. 12. Fig. 13 shows some wrongly segmented and extracted
street tree individuals. Among them, the segmentation result of
the street tree in Fig. 13(a) contains traffic light which affects the
crown shape, the trees in Fig. 13(b)–(f) are all under-segmented
due to the influence of adjacent trees (too small and too close),
and the trees in Fig. 13(g) and (h) are severely overlapped with
the understory vegetation, resulting in the insufficient removal
of these vegetation in the extraction results. Fig. 14 shows some
street trees that have not been segmented and extracted. Most
of these trees are too small to be detected when selecting the
regions of interest or are removed incorrectly when removing
the nontree column pole-like objects, as shown in Fig. 14(a),
(b), (d), (f), and (h). The street tree individual extraction results
in Fig. 14(c), (e), and (g) are all incomplete (lack of trunk or
crown is oversegmented) due to the serious data occlusion.

We quantify the individual extraction results of street trees
according to different road regions, as shown in Table I. Road _I
refers to the first row of street trees on both sides of the road (i.e.,
inter street trees), and Road _O refers to other street trees on each
road (outer street trees) except the first row. To avoid the serious
data missing due to occlusion, only one row of trees closest to the
road center except the first row on each road side is considered,
and the trees located inside the fence are not included.

To evaluate the application effect of our method in common
street tree scenes with different complexity, we classify the
different road regions in the experimental area according to the
common scenes, and calculate the individual extraction accuracy

of street trees in different common scenes. The results are shown
in Table II.

IV. DISCUSSION

A. Effectiveness of the Proposed Method

From the close-views of individual extraction of street trees
on different roads in Fig. 12, it can be seen that benefiting
from the effectiveness of street trees ROI selection based on
supervoxels region growing, the individual extraction results of
street trees are less affected by artificial pole-like objects such as
street lights and traffic signs. The proposed nonphotosynthetic
components clustering method based on intensity and density
can well separate the main branch part of each tree. Although
some leaf points are incorrectly identified as nonphotosynthetic
components, it does not significantly affect the final individual
extraction of the street trees. Since this method does not rely
on the tree trunks to identify and locate street trees, although
some trees do not have obvious trunks (e.g., some trees in the
close-view of Road 3 and Road 6 in Fig. 12), or the trunk of
some trees do not exist in the ROI due to their similarity to
artificial vertical poles (e.g., some trees in the close-view of the
clustered nonphotosynthetic components of Road 4 in Fig. 12),
the location and contour of these trees can still be effectively
separated, which allows these trees to be effectively identified
and segmented in the final individual extraction results. The
proposed individual tree segmentation and optimization method
can effectively remove the nontree components especially the
understory vegetation and artificial column pole-like objects. It
can be seen from the close-views in Fig. 12 that for the high
understory vegetation or trunk holders of some trees, although
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Fig. 12. Street tree individual extraction results and some representative close-views.
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Fig. 13. Some wrongly segmented and extracted street trees. (a) Road 1_I; (b) road 1_O; (c) road 2_O; (d) road 3_O; (e) and (f): Road 5_O; (g) and (h): Road
6_I. (I: Inner, the first row of street trees on both sides of the road, O: Outer, other street trees on each road except the first row).

some of them exist in the clustered nonphotosynthetic com-
ponents, these vegetation and trunk holders can be effectively
removed in the final extracted individual trees. And for the short
artificial column pole-like objects that exist in the ROI (e.g.,
close-view of Road 6 in Fig. 12), they can also be effectively
removed in the final results. In addition, the missing tree trunks
in the clustered nonphotosynthetic components (e.g., close-view
of Road 4) can still be completed in the final individual tree
extraction results.

As shown in the quantitative indicators presented in Tables I
and II, our method achieves high accuracy in individual ex-
traction of street trees for road scenes with varying complexity.
Overall, the precision, recall, and F-score are 94.5%, 97.4%, and
95.9%, respectively. As for street trees in different road regions
(inner and outer street trees), the extraction accuracy of the inner
trees is higher than that of the outer. The overall precision, recall
and F-score of the extraction of inner trees are 96.9%, 98.1%,
and 97.5%, respectively. And the corresponding indicators for
the outer street trees are 91.2%, 96.3%, and 93.7%, respectively.
This is primarily due to the more regular shapes, sizes, and
distribution patterns of inner street trees, as well as fewer in-
stances of occlusion in the raw data. In terms of the common
street tree scenes, our method can also achieve high-precision
individual extraction of street trees in different common scenes.
For simple common Scene 1, the precision, recall and F-score of
the extraction are 99.2%, 98.4% and 98.8%, respectively. For the
common Scene 2 with serious crown overlap, the corresponding
three indicators are 100%, 97.8%, and 98.9%, respectively. And
for the common Scene 3 with large data missing due to occlusion,

these corresponding three indicators are all 97.4%. Even for
the most complex common Scene 4, the extraction precision of
our method reaches 90.1%, the recall is 96.6%, and the overall
F-score reaches 93.2%.

As shown in Fig. 13, the typical wrongly extracted trees
suggest that the primary reason affecting the precision of our in-
dividual extraction method is undersegmentation caused by ad-
jacent small trees in close proximity. The spacing between these
trees is too small, which is smaller than the clustering threshold
we set in the nonphotosynthetic components clustering, so these
trees cannot be correctly segmented [e.g., Fig. 13(b)–(f)]. In
addition, our method cannot satisfactorily remove the understory
vegetation overlapping with the tree crown (e.g., Fig. 13(g) and
(h)). From the typical missed extracted trees in Fig. 14, the main
reason that affects the extraction recall of our method is that
the crown of some trees is too small. These trees are either
undetected in the ROI selection or mistakenly deleted during the
removal of nontree column pole-like objects [e.g., Fig. 14(a), (b),
(d), (f), and (h)]. What is more, the incompleteness of extracted
tree individuals caused by data missing due to occlusion is also
one of the main factors that affects the recall of our method [e.g.,
Fig. 14(c), (e), and (g)].

B. Comparison With Existing Methods

To verify the advantages of our method, we compared our
extraction accuracy with that of other existing methods, includ-
ing Wu2013 [13], Wu2016 [14], Li2016 [15], Teo2016 [11],
Zhong2017 [12], Xu2018 [6], Ning2022 [9], and Li2022 [17].
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Fig. 14. Some street trees that have not been segmented and extracted. (a) and (b): Road 1_O; (c) and (d): Road 2_O; (e) road 4_I; (f) road 5_I; (g) road 5_O;
(h) road 6_I. (I: Inner, the first row of street trees on both sides of the road, O: Outer, other street trees on each road except the first row).

TABLE III
COMPARISON OF STREET TREE INDIVIDUAL EXTRACTION BY DIFFERENT METHODS BASED ON MLS POINT CLOUDS

Since the individual extraction results of street trees are highly
related to the complexity of the scene where they are located, for
objective comparison, we map the scene type of each study to the
four common scenes defined in this article according to the street
tree scene complexity presented in it. Among them, although
there is some overlap between the adjacent crowns in the exper-
imental scenes of Zhong2017 [12], Xu2018 [6], and Ning2022
[9], the overlap between tree crowns and the artificial pole-like

objects is small, so they are divided into scenes between common
Scene 1 and Scene 2. Table III shows the detailed comparison
results.

It can be seen from the comparison results in Table III that
most of the experimental scenes corresponding to the methods
with a comprehensive accuracy F-score of more than 98%
are relatively simple common Scene 1 and Scene 2, such as
Wu2013 [13], Li2016_Scene1 [15], Teo2016 [11], Ning2022
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Fig. 15. Comparison of street tree individual extraction by different methods on complex common scenes.

[9], Li2022 [17], and ours on common Scene 1 and Scene 2. Even
though there are small differences between the specific accuracy
indicators of different methods (for example, the F-score of
our method on common Scene 1 is 98.8% and Wu2013 [13]
reaches the highest 99.6%), considering that the number of trees
in the experimental area and the complexity of the scene are not
identical, we believe that the extraction effects of these methods
on simple scenes such as common Scene 1 and Scene 2 are
equivalent and there is no significant difference. For common
Scene 3 with trunk missing, according to Li2016_Scene3 [15],
the method they proposed based on trunk detection and dual
growing fails to detect trees without trunk points, resulting in the
missing extraction of street trees in the final results. Therefore,
the recall of this method is only 92.9%. Since our method does
not rely on the detection of tree trunks, ours recall on common
Scene 3 has reached 97.4%. In terms of the precision, there is no
significant difference between the two methods, with precision
of 96.3% and 97.4%, respectively.

For complex common Scene 4, according to Teo2016 [11] and
Zhong2017 [12], their methods have the problems of missing
extraction and inaccurate segmentation if there are understory
vegetation and small trees, respectively. Therefore, both of them
are not competent for common Scene 4 where there is dense
vegetation under the trees and the tree sizes vary greatly. Among
other methods for comparison, Wu2013 [13], Wu 2016 [14], and
Li2016 [15] all use the trunk detection-based method to segment
and extract individual trees, while Li2022 [17] identifies and

locates each tree based on the junction of trunk and branches,
and Xu2018 [6] and Ning2022 [9] both use treetops as the basis
for the individual segmentation of each tree after classification.
Here, to compare the extraction results on complex common
Scene 4, we select Wu2013 [13], Li2022 [17], and Xu2018 [6] as
representative methods for street tree extraction based on trunk,
trunk-branches junction, and treetop detection to individually
segment and extract street trees in complex Road 6. Some com-
parison results with the proposed method are shown in Fig. 15,
and the extraction accuracy is shown in Table IV. It can be seen
that the method of detecting trunks at 1.2 m–1.4 m above the
ground of Wu2013 [13] cannot identify small trees without ob-
vious trunks, resulting in a recall of only 47.9%. In addition, due
to crown touching, the crowns of some small trees that have not
been located will be segmented onto adjacent trees, which affects
the precision of segmentation and extraction of the located trees
(only 62.4%). Compared to Wu 2013 [13], the method of Xu
2018 [6] can locate more trees, including some small trees, using
the treetop detection, which improves the recall of individual
tree extraction to 62.0% and the precision to 68.2%. Despite
this, there are still many small trees located under large trees
that cannot be accurately identified and segmented. The method
of identifying trunk-branch junctions in Li2022 [17] can further
improve the recognition rate of small trees. However, in the
final segmentation results, some tree trunks are incomplete due
to interference from trunk holders, resulting in a recall of only
73.7% (although the precision reaches 81.0%). Compared to
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TABLE IV
COMPARISON OF DIFFERENT METHODS ON COMPLEX ROAD 6

the above three methods, our tree detection and location method
based on the clustering results of nonphotosynthetic components
does not dependent on the characteristic positions such as tree
trunks and treetops, and can distinguish more small trees without
obvious trunks. In addition, the iterative slicing method for
optimizing understory vegetation ensures the integrity of the
tree trunks. The precision and recall of our method on complex
Road 6 have reached 94.1% and 96.5%, respectively.

In summary, compared with the existing methods, our method
can achieve the same accuracy as the existing methods in simple
common scenes, and for complex scenes where tree types,
sizes, and heights vary greatly, and there is dense understory
vegetation, our method has significant advantages in extracting
individual street trees.

V. CONCLUSION

In this article, a new method based on tree nonphotosynthetic
components clustering is proposed to extract street trees indi-
vidually from MLS point cloud data, the key steps of which
include data preprocessing, regions of interest selection, street
tree nonphotosynthetic components clustering, and street tree
individual segmentation.

The experiment on an urban area consisting of 6 roads with
different complex scenes demonstrated that: 1) by selecting
the regions of interest based on supervoxels region growing,
the artificial pole-like objects mixed in the tree crown can be
effectively removed, which provides a basis for the accurate
identification and segmentation of street tree individuals, 2)
the proposed non-photosynthetic components clustering method
based on intensity and density can well identify and segment the
main branch part of each street tree, even small trees without
obvious trunks and mixed in large trees can be truly identi-
fied and segmented, 3) the proposed complete individual tree
segmentation method based on nonphotosynthetic components
and gradual refinement can effectively segment tree individuals
and remove the nontree components especially the understory
dense vegetation and trunk holders. The main advantage of the
proposed method is that it can be applied to different complex
common street tree scenes. For scenes where there are different
degrees of overlap between street trees and between street trees
and artificial pole-like objects (common Scene 1 and Scene 2),
the comprehensive index F-score of the proposed method for
individual extraction of street trees exceeds 98%. For scenes
with tree trunk missing due to occlusion (common Scene 3),
the F-score also exceeds 97%. Even for complex scenes where
the types, sizes, and heights of adjacent trees vary greatly, and
there are overlaps between trees and high vegetation under trees
(common Scene 4), the precision, recall and F-score of our
method also reach 90.1%, 96.6%, and 93.2%, respectively.

However, the individual tree segmentation effect of our
method needs to be further improved for scenes where the
understory vegetation is too high to overlap with the upper tree
crowns, which is the focus of our future research.
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