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Abstract—Extracting laver aquaculture areas from remote sens-
ing images is very important for laver aquaculture monitoring and
scientific management. However, due to the large differences in
spectral features of laver aquaculture areas caused by factors such
as different growth stages and harvesting conditions, traditional
machine learning and deep learning methods face great challenges
in achieving accurate and complete extraction of raft laver aquacul-
ture areas. In this article, a reverse attention dual-stream network
(RADNet) is proposed for the extraction of laver aquaculture ar-
eas with weak spectral responses by comprehensively considering
both the aquaculture boundary and surrounding sea background
information. RADNet consists of a boundary stream and a seg-
mentation stream. Considering the weaker spectral responses of
certain laver aquaculture areas, we introduce a reverse attention
module in the segmentation stream to amplify the weaker responses
of inapparent laver aquaculture areas. To suppress the response of
nonboundary details in the boundary stream, we design a boundary
attention module, which is guided by high-level semantics from the
segmentation stream. The structural information of the laver aqua-
culture area learned from the boundary stream will be fed back to
the segmentation stream through a specially designed boundary
guidance module. The study is conducted in Haizhou Bay, China,
and is verified using a self-labeled GF-1 multispectral dataset. The
experimental results show that RADNet model performs better in
extracting inapparent laver aquaculture areas compared to SOTA
models.

Index Terms—Dual-stream network, raft aquaculture areas,
reverse attention.

I. INTRODUCTION

LAVER aquaculture is an important part of the coastal
marine economy and is of great significance to farmers and

fishermen in increasing their production and income. However,
the rapid growth of raft aquaculture areas has also caused ma-
rine ecological environmental problems, such as deterioration
of water quality due to inadequate water body exchange. In
addition, the scattered distribution of large-scale aquaculture

Manuscript received 22 December 2022; revised 6 March 2023 and 25 April
2023; accepted 29 May 2023. Date of publication 1 June 2023; date of current
version 15 June 2023. This work was supported in part by the National Natural
Science Foundation of China under Grant 42276185 and in part by the Shandong
Province Natural Science Foundation of China under Grant ZR2020MD096 and
Grant ZR2020MD099. (Corresponding author: Yan Lu.)

The authors are with the College of Computer Science and Engineering,
Shandong University of Science and Technology, Qingdao 266590, China
(e-mail: cuibinge@sdust.edu.cn; 2365855406@qq.com; 18865386835@163.
com; sdythl@126.com; luyan@sdust.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2023.3281823

floating ropes has created inconveniences for marine traffic and
port transportation [1]. Therefore, the dynamic monitoring of
raft aquaculture is important for the ecological environment
protection of near-coastal areas and the sustainable development
of the local aquaculture industry.

In recent years, scholars have performed much research on
the use of remote sensing technology to monitor aquaculture
areas. Wu et al. [1] proposed a constrained energy minimization
method based on orthogonal subspace projection to enhance
the aquaculture area features for accurate extraction of off-
shore aquaculture areas in complex water color backgrounds.
Cheng et al. [2] proposed a threshold segmentation method
combined with a gray-level co-occurrence matrix, which fused
spectral and texture features to achieve aquaculture area extrac-
tion from GF-2 images. However, these methods require manual
turning of parameters, and thus, their generalization ability
is weak, especially when applied to complex shallow marine
environments [3].

Deep convolutional neural networks can avoid frequent pa-
rameter tuning by learning deep features of the target object [4].
Liu et al. [5] introduced a richer convolutional feature [6]
network to efficiently extract the boundaries of raft aquaculture
areas in Sanduao, China. Cui et al. [7] improved the decoder
part of U-Net and proposed a pyramid upsampling and squeeze-
excitation structure to capture the context and edge information
of aquaculture areas, which effectively alleviated the adhesion
problem in laver aquaculture area extraction. Shi et al. [3]
proposed a homogeneous convolutional neural network (HCN)
for extracting raft aquaculture areas from GF-1 images, in which
a dual-scale structure (DS-HCN) was designed to integrate
high-level contextual information. Lu et al. [8] improved U-Net
by using an ASPP structure and introducing flow alignment
modules, which can correct the semantic misalignment and
reduce “adhesion” of aquaculture areas in the extraction results.
However, Liu’s method is prone to influence by the complex
shallow sea environment, and the boundaries of the extracted
aquaculture areas are easily broken. The boundaries of some
rafted laver aquaculture areas extracted by Cui’s method are
excessively smooth. When extracting aquaculture areas that are
not obvious in the images, Shi’s and Lu’s methods can easily
miss the aquaculture areas or extract incomplete areas.

Thanks to the ability to effectively emphasize important fea-
tures of an image and suppress useless information, attention
mechanisms have now been combined with deep convolution
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Fig. 1. Raft laver aquaculture areas in RSI. (a) GF-1 RSIs acquired near the
coast of Lianyungang on February 17, 2017. The selected red and yellow box
regions in the left image are enlarged in the right image. Region (b) shows raft
laver aquaculture areas after harvesting. Region (c) shows raft laver aquaculture
areas with high suspended sediment concentrations.

neural networks to solve a variety of deep learning tasks.
Peng et al. [9] proposed a difference-enhanced dense-attention
convolution neural network, which can be used for end-to-end
change detection of bitemporal remote sensing images (RSIs).
Li et al. [10] proposed a graph-feature-enhanced selective as-
signment network (GSANet) for hyperspectral and multispec-
tral images fusion, in which an SFAM module was developed
for adaptive fusion of hyperspectral and multispectral infor-
mation. Shi et al. [11] proposed a centerness-aware network
for object detection in RSIs, in which the center of objects
with symmetrical shape is highlighted through the attention
mechanism. Sun et al. [12] proposed a multistructure KELM
algorithm with attention fusion strategy for HSI classification,
in which a weighted self-attention fusion strategy was proposed
for efficient fusion of multibranch KELM classification results.
Moreover, they also proposed a successive pooling attention
network for RSI segmentation, in which an SAPM module was
proposed to extract salient features of images [13]. In these
studies, the attention mechanism plays an important role in
identifying and highlighting more discriminating features.

Raft laver aquaculture areas are characterized by large quan-
tities, dense distribution, and complex spectra, as shown in
Fig. 1. These characteristics render it challenging to accurately
extract the aquaculture areas. In Fig. 1(a), most of the raft
laver aquaculture areas appear black and can be easily dis-
tinguished from the seawater background. However, some raft
laver aquaculture areas are not obvious in the RSIs, as shown
in the red and yellow boxes of Fig. 1(a). Inapparent raft laver
aquaculture areas have two main causes. First, affected by the
harvest of laver, the chlorophyll content in the laver aquaculture
area may be greatly reduced, narrowing the difference between
the spectral characteristics of the raft laver aquaculture area and
the surrounding seawater, as shown in Fig. 1(b). Second, in the
nearshore area, the concentration of suspended sediment is high,
which increases the reflectance of both the aquaculture area and
the surrounding seawater and reduces the spectral difference
between them, as shown in Fig. 1(c). The above factors hinder

the accurate extraction of inapparent rafted laver aquaculture
areas.

In this article, a reverse attention dual-stream network (RAD-
Net) was proposed for the extraction of rafted laver aquaculture
areas in complex marine environments. The reverse attention
mechanism proposed in [14] can amplify the weaker responses
of the target objects. Inspired by this finding, we designed
a reverse attention module (RAM) to learn features of both
inapparent aquaculture areas and obvious aquaculture areas
by suppressing features of seawater. In addition, considerable
research [15], [16], [17], [18], [19], [20], [21] has demonstrated
that dual-stream networks combining edge detection and seman-
tic segmentation effectively utilize the boundary information of
objects and significantly improve the boundaries of segmen-
tation results. To obtain an accurate boundary of the aquacul-
ture area, we designed a boundary attention module (BAM)
using global semantic information to avoid the interference of
nonboundary information on boundary extraction. Then, we
designed a boundary guidance module (BGM) to enhance the
boundary response of the semantic segmentation results of the
raft laver aquaculture area. To evaluate the performance of RAD-
Net for raft laver aquaculture area extraction, experiments on
the created GF-1 dataset were carried out. Compared with other
models, RADNet achieves higher F1-score and intersection over
union (IoU) values for raft laver aquaculture area extraction.

The main contributions of this article are presented as follows.
1) We designed a novel RAM to enhance the spectral re-

sponse of raft laver aquaculture areas, which was partic-
ularly beneficial for distinguishing aquaculture areas that
were not obvious in RSIs from the surrounding seawater.

2) We designed a BAM to suppress the response of non-
boundary details and designed a BGM to incorporate
the refined boundary information into the segmentation
stream to further restore the inherent shape of the laver
raft aquaculture areas.

3) This article collects and releases a new GF-1 RSI
dataset for aquaculture area extraction (https://github.
com/cuibinge/RAA_dataset.git). Specifically, the dataset
contains image blocks with pixel-level labels for laver
aquaculture area and seawater, covering 264 651 750 pix-
els in Haizhou Bay, Lianyungang, Jiangsu province,
China.

II. RELATED WORK

A. Multitask Learning

Multitask learning (MTL) improves model generalization and
robustness by sharing representations across multiple tasks [19].
In the context of deep learning, MTL is typically performed
via hard or soft parameter sharing [22]. Hard parameter sharing
means that multiple tasks share the same few hidden layers of the
network in the encoding part, and they start forking to perform
different tasks near the decoding part of the network, as shown
in Fig. 2(a). Soft parameter sharing means building independent
models for different tasks, but using a loss function to constrain
the distance between the individual model parameters, as shown
in Fig. 2(b). MTL has been widely utilized in various computer
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Fig. 2. Parameter sharing for MLT in deep neural networks. (a) Hard parameter
sharing. (b) Soft parameter sharing.

vision applications, including semantic segmentation [15], [16],
[17], [18], [19], [20], [21] and object detection [23].

Several approaches have been proposed to combine the se-
mantic segmentation task with the edge detection task to refine
the boundaries of the segmentation results [24], [25], [26],
[27]. Yu et al. [24] designed a multitask network that shares
a single encoder but uses different decoders to perform two
independent tasks. Jing et al. [25] designed a boundary–semantic
interaction module to achieve mutual guidance between the
boundary detection task and the semantic segmentation task.
To improve the detection performance for small and thin ob-
jects, Takikawa et al. [26] designed a dual-stream semantic
segmentation network, where the shape stream was dedicated
to processing boundary information and the learned boundaries
were applied as intermediate representations to help the regular
stream. Pan et al. [27] discovered that the pixels around the
boundary are easily misclassified. To emphasize the error-prone
boundary pixels, they designed an edge region detection module
and incorporated the detected edge regions into the semantic
segmentation task. Compared to single-task learning, MTL can
obtain additional useful information by mining the relationships
between two tasks, which often improves the performance of the
model.

B. Attention Mechanism

The attention mechanism is a method of shifting attention to
the most important regions of an image while ignoring irrelevant
regions [28]. Attention modules have been widely utilized in
various deep learning-based tasks, as they improve performance
by introducing a small number of network parameters [18].
Typical attention mechanisms include channel attention, spa-
tial attention, channel and spatial attention, self-attention, etc.
SENet [29] is the earliest work on the channel attention mech-
anism, which employed the squeeze-and-excitation (SE) block
to adaptively adjust the weight of the channels by modeling
the relationships among them. ECA-Net [30] replaced the FC
layer in the SE block using a one-dimensional convolution
capable of adaptively resizing the kernel to reduce the number
of network parameters. The spatial attention mechanism focuses
on generating attention weights from spatial patches of the
feature maps rather than the channels [37]. GENet [31] and
the reverse attention network (RAN) [14] are representatives of
spatial attention. Inspired by SENet, Hu et al. designed GENet
to capture remote spatial contextual information by providing
recalibration functions in the spatial domain. In the RAN, an
attention mask is designed to highlight the prediction of the

Fig. 3. System diagram of the RAN.

reverse object class, which is then subtracted from the origi-
nal prediction to correct errors in the confusion region of the
semantic segmentation [14]. The structure of reverse attention
in the RAN is shown in Fig. 3. Channel and spatial attention
mechanism combines the advantages of channel attention and
spatial attention [28]. The CBAM [32] and BAM [33] are typical
works that introduced channel and spatial attention to consider
effective information among channels and within channels. The
coordinate attention (CA) mechanism inherited the advantage of
channel attention methods that model interchannel relationships
and captured long-range dependencies with precise positional
information [34]. Self-attention mechanism has shown great po-
tential for capturing global context. DANet [36] captured global
dependence based on self-attentive mechanisms in spatial and
channel dimensions and achieved more accurate segmentation
results.

III. PROPOSED METHOD

In this section, we describe the overall structure of RADNet
and, then, describe in detail the functionality and structure of the
three proposed modules.

A. Overall Structure of RADNet

RADNet consists of a segmentation stream and a boundary
stream, as shown in Fig. 4.

The segmentation stream employs the classic U-codec struc-
ture of U-Net. It is worth noting that the double convolution
layers in the encoder is replaced by a residual structure with
batch normalization, as shown in Fig. 5. To enhance the model’s
ability to distinguish the inconspicuous raft laver aquaculture
areas from the background seawater, a RAM is designed to
replace the double convolution operation in each layer of the
U-Net decoder. Moreover, the last two layers of the decoder use
the BGM to incorporate the boundary map into the segmenta-
tion stream to enhance the boundary response of the raft laver
aquaculture areas.

The boundary stream is aimed at obtaining a refined boundary
map of the raft laver aquaculture areas. A 7× 7 convolution op-
eration is used to extract local features of the RSIs. Considering
that the two of boundary detection and semantic segmentation
tasks are closely related, the boundary stream and segmentation
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Fig. 4. Overview of the proposed RADNet. The input of the RADNet is a true color image after panchromatic multispectral fusion, and the output contains a
boundary detection map and a semantic segmentation map.

Fig. 5. Residual structure of RADNet. “1×1” and “3×3” denote convolution
operations with convolution kernel sizes of 1 and 3, respectively. “BN” denotes
the batch normalization layer.

stream of RADNet share the same encoder. The BAM is pro-
posed to strengthen the features associated with the aquaculture
area boundaries. By receiving high-level semantic information
from the segmentation stream encoder, the BAM can effectively
suppress the texture information inside the aquaculture area and
the seawater. The output of the last BAM is fed to a sigmoid
layer for the boundary probability prediction of the aquaculture
area.

B. Reverse Attention Module

The structure of RAM is shown in Fig. 6. First, the feature
maps F l

in and F l+1
in from l + 1 and l layers are concatenated,

and then, convolution operations are performed to fuse the
information from different layers. The fused feature map M
is fed into two separate branches.

The first branch is trained to learn explicitly the knowledge of
seawater, which is the object to be excluded from the extraction
results of the aquaculture area. Following the work in [14], we
introduce a NEG operation for flipping the sign of the pixel
values of the input feature map. The flipped feature map will
undergo a 1× 1 convolution and 3× 3 convolution to learn
the features of the seawater. Last, we performed another NEG

operation to obtain the features of the nonseawater area in the
image. Mathematically, the feature map S of the nonseawater
area can be written as

S = NEG(C3×3 (C1×1(NEG(M)))) (1)

where C1×1(·) and C3×3(·) denote convolution operations with
kernel sizes of 1× 1 and 3× 3, respectively.

The second branch focuses on learning the features of the
inapparent part of the aquaculture area. First, a 1− σ layer
is used to obtain the reverse attention map. The pixel values
in the reverse attention map are small in areas with obvious
laver aquaculture features and large in areas with inapparent
laver aquaculture features and in seawater. Second, the reverse
attention map is multiplied by the nonseawater feature map S
to obtain a feature map Q that contains only the inapparent part
of the aquaculture area. Last, a residual connection is utilized to
combine the feature maps M and Q to obtain a salient feature
map of the intact aquaculture area, followed by a normalized
3× 3 convolution layer. The module output F out is calculated
as follows:

Q = S � (1− σ(M)) (2)

F out = C3×3(M +Q) (3)

where σ(·) denotes the sigmoid function.

C. Boundary Attention Module

Fig. 7 shows the detailed structure of the BAM. By sharing
semantic information from the segmentation stream encoder,
the BAM is designed to enhance the boundary responses in the
boundary feature map and refine the boundaries of the aquacul-
ture area. The BAM has two inputsBin andF in, whereBin is the
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Fig. 6. Structure of the RAM.

Fig. 7. Structure of the BAM.

boundary feature map from the previous layer of the boundary
stream, and F in is the high-level semantic feature map from
the last three layers of the segmentation stream encoder. First, a
residual block is applied to extract the rich edges in the feature
map Bin. Second, a boundary region attention map is generated
by feeding the feature map F in into a 1× 1 convolutional layer
with a sigmoid activation function. Third, we combined the
boundary region attention map with the edge response map using
the elementwise multiplication to highlight the edges around the
aquaculture area boundary. The module outputBout is calculated
as follows:

Bout = σ (C1×1 (F in))� res (Bin) (4)

where res(·) denotes the residual block [38].

D. Boundary Guidance Module

The specific structure of the BGM is shown in Fig. 8. The
BGM is designed to incorporate the boundary probability infor-
mation into the segmentation feature maps to enhance the bound-
aries of the aquaculture area. To selectively emphasize the fea-
ture maps with richer boundary information in the segmentation

stream, we introduce a feature map reweighting structure in the
BGM module. First, we combine the minus 0.5 operation with
the ReLU function to implement the max(0, x−0.5) operation,
where x is the pixel value in the boundary probability map P .
Then, the nonboundary information in the input feature mapsF in

is masked by an elementwise multiplication operation to obtain a
set of feature mapsF ′

in containing mainly boundary information.
Next, a global average pooling operation is performed in the
spatial dimension to evaluate the richness of aquaculture area
boundary details in each feature map of the segmentation stream,
and then, a weight vectorv is obtained using a Sigmoid function.
Finally, the aquaculture area feature maps are reweighted and fed
into the 1×1 convolution layer to obtain a set of aquaculture area
feature maps F ′′

in with overall enhanced boundary information.
The above process can be expressed as

F ′
in = max(0,P − 0.5)� F in (5)

v = σ(GAP(F ′
in)) (6)

F ′′
in = C1×1(v � F in) (7)

where GAP(·) denotes global average pooling.
Unlike the traditional residual network, BGM is more con-

cerned with learning detailed information around the boundary,
so it multiplies the boundary probability map P with the feature
maps F ′′

in in the residual branch. The module output F out is
calculated as follows:

F out = C3×3(F
′′
in � P + F in). (8)

E. Loss Function

Our proposed RADNet consists of a boundary stream and
a segmentation stream, and we apply different loss functions
to train them. Since boundary pixels are in the minority in the
aquaculture area image, boundary detection is a class imbalance
problem; thus, we choose the focal loss as the loss function of
the boundary stream. The loss function is expressed as follows:

Lb d r =

{
−α(1− h(x))γ lnh(x), y = 1

−(1− α)h(x)γ ln(1− h(x)), y = 0
(9)
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Fig. 8. Structure of the BGM.

where x is the input pixel, h(x) is the value predicted by the
network, and y is the value of the label. In this article, the label
value of the boundary pixels of the laver aquaculture area is 0,
and that of the other pixels is 1. α is a hyperparameter used to
balance the importance of aquaculture area boundary and non-
boundary samples, and γ is a hyperparameter used to smoothly
adjusts the rate at which easy examples are down-weighted. The
segmentation stream uses a binary cross-entropy function as the
loss function. The loss function is expressed as follows:

Lseg =

{
− lnh(x) , y = 1

− ln(1− h(x)) , y = 0.
(10)

We set a parameter β to balance Lbdr and Lseg. Thus, the total
loss of the network is expressed as follows:

Ltotal = Lseg + βLbdr. (11)

The procedure of our proposed method is summarized in
Algorithm 1. By combining the boundary detection and semantic
segmentation tasks, our proposed method effectively improves
the extraction results of raft laver aquaculture areas.

IV. EXPERIMENTS AND RESULTS

A. Experimental Data Preparation

In this article, GF-1 RSIs were collected and a dataset was
created to serve as the basis for the study. The study area was
selected from Haizhou Bay, Lianyungang, China, where numer-
ous raft laver aquaculture areas are distributed from November to
April each year. The GF-1 RSI was shot on 17 February 2017,
and the sensor is PMS2. We used the Pansharp algorithm to
fuse the red, green, and blue bands of the multispectral images,
which are more sensitive to the laver aquaculture area, with
the panchromatic images to supplement the detail information
(1.8 m spatial resolution after image fusion and resampling).

As shown in Fig. 9(a), the image contains more than 6000 raft
aquaculture areas and has been labeled by visual interpretation.
Fig. 9(b) and (c) shows a local zoom-in view of the selected
area and the corresponding ground truth map, respectively. In

Fig. 9. Location of the study area. (a) GF-1 RSI. (b) Local magnification of
the selected area in the red box. (c) Ground truth of the selected area in the
red box.

the ground truth map, white pixels indicate aquaculture areas
and black pixels indicate seawater. The fused RSI and ground
truth map are cropped to 128× 128 pixel patches, 30% of which
are selected as training and validation sets.

B. Implementation Details

The experiments were conducted on a server equipped with an
NVIDIA GeForce RTX 2080Ti GPU and Ubuntu 18.04.5 LTS
operating system. All models in this article were implemented
and trained based on the Keras framework. During training,
Adam.was chosen as the optimizer, the initial learning rate was
set to 1e-4, and the batch size was set to 4. In addition, the number
of training epochs was set to 150. The hyperparametersα, γ, and
β in the loss function were set to 0.1, 4, and 0.6, respectively.

C. Accuracy Evaluation

We evaluated the performance of the proposed RADNet, for
which we chose four commonly employed semantic segmenta-
tion metrics: 1) precision (user accuracy), 2) recall (producer
accuracy), 3) F1-score, and 4) IoU. The metrics are defined as
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Algorithm 1: Detail of RADNet.
Input: Remote sensing image I and ground truth; The
number of training epochs τ .

Output: Extraction results of aquaculture areas.
1: Normalize and clip the image I to obtain subimages

with size of 128× 128× 3;
2: for i = 1 to τ do
3: Encode each subimage to extract the multilevel

feature maps;
4: Get full-resolution feature maps for each subimage

using 7×7 convolution;
5: for t = 1 to 3 do
6: Feed the full-resolution feature maps and

higher-level feature maps into BAM;
7: Obtain boundary semantics enhanced

full-resolution feature maps via (4);
8: end for
9: Compute the boundary probability map P ;

10: for t = 1 to 4 do
11: Feed the higher-level feature maps and lower-level

feature maps into RAM;
12: Obtain reverse attention enhanced feature maps

via (1)–(3);
13: if t > 2 then
14: Feed the reverse attention enhanced feature

maps and boundary probability map into
BGM;

15: Obtain boundary-enhanced aquaculture area
feature maps via (5)–(8);

16: end if
17: end for
18: Compute the boundary Lbdr via (9);
19: Compute the segmentation Lseg via (10);
20: Compute the loss Ltotal via (11) and update

parameters of RADNet.
21: end for
22: Use the test dataset with the trained model to get

predicted aquaculture area maps.

follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1-score =
2× Precision × Recall

Precision + Recall
(14)

IoU =
TP

TP + FP + FN
(15)

where TP, FP, and FN represent the number of true positives,
false positives, and false negatives, respectively.

We use IoU as an example to analyze the scientific basis
for choosing the above four metrics to assess the results of the
regional segmentation of aquaculture areas (15). The more the
aquaculture area is mistaken for seawater (FN) or seawater is

TABLE I
EVALUATION RESULTS OF DIFFERENT MODELS ON THE TEST SET

mistaken for aquaculture (FP), the lower the IoU value, and
vice versa. The scientific basis of the other three metrics can be
analyzed in a similar way. Thus, precision, recall, F1-score, and
IoU provide a visual representation of model performance.

D. Experimental Results

We performed aquaculture area extraction experiments on
the test set. The aquaculture areas extracted by RADNet are
shown in Fig. 10. The overall extraction results of the laver
aquaculture areas are very good. Most of the aquaculture areas
with inapparent spectral features can also be correctly identified.
Nevertheless, the extraction results of some aquaculture areas are
still slightly flawed. Specifically, several aquaculture areas are
partially missing, and there is an overextraction phenomenon at
the periphery of the aquaculture areas, as shown in blue and red
in Fig. 10(c).

E. Comparison With the Other Models

We compare the proposed RADNet with seven other seman-
tic segmentation networks, including U-Net [39], DeepLabv3+
[40], HRNet [41], DS-HCN [3], RaftNet [42], Improved U-
Net [8], D-ResUnet [43], FRCNet [44], and SAMALNet [45].
Among them, the latter six methods were proposed for aquacul-
ture area segmentation. Table I shows the quantitative results of
the above models on the test set. The proposed model clearly
outperforms the other models in terms of recall, F1-score, and
IoU. Deeplabv3+ ranked second in terms of recall, F1-score, and
IoU. The DS-HCN has the highest precision rate, but it has the
lowest recall rate, which reduces its F1-score and IoU.

To visually illustrate the advantages of RADNet over other
comparative models, some extraction results are shown in
Figs. 11 and 12. The study area in Figs. 11 and 12 contains both
inapparent aquaculture areas and obvious aquaculture areas.
For the obvious aquaculture areas, each model shows good
extraction results. However, for inapparent aquaculture areas,
the extraction results of other models have different types of
defects, including missing corners, adhesions, small fragments,
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Fig. 10. Visualization of aquaculture area extraction results on the test set. (a) Test image. (b) Ground truth. (c) Aquaculture area extraction results of RADNet.
The blue areas represent aquaculture area pixels that are missed by RADNet, and the red areas represent seawater pixels that are incorrectly extracted by RADNet.

Fig. 11. Visualization of aquaculture area extraction results for each model on test image 1. (a) Test image 1. (b) Ground truth. (c) U-Net. (d) HRNet.
(e) Deeplabv3+. (f) DS-HCN. (g) RaftNet. (h) Improved U-Net. (i) D-ResUnet. (j) FRCNet. (k) SAMALNet. (l) RADNet.

Fig. 12. Visualization of aquaculture area extraction results for each model on test image 2. (a) Test image 2. (b) Ground truth. (c) U-Net. (d) HRNet.
(e) Deeplabv3+. (f) DS-HCN. (g) RaftNet. (h) Improved U-Net. (i) D-ResUnet. (j) FRCNet. (k) SAMALNet. (l) RADNet.
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Fig. 13. Visualization of aquaculture area extraction results of the ablation experiment. (a) Test image. (b) Ground truth map. (c) Baseline. (d) With RAM.
(e) With RAM, BAM, and BGM.

TABLE II
ABLATION EVALUATION RESULTS ON THE TEST SET

holes, and complex boundary curves, as shown in the red boxes in
Figs. 11 and 12. RADNet learns the high-level semantic features
of seawater by introducing a RAM, which enables the network
to identify and recognize inapparent aquaculture areas.

V. EXPERIMENTS AND ANALYSIS

A. Ablation Study

We validate the effectiveness of each module in our proposed
model. The proposed RAM, BAM, and BGM are removed from
our model as the baseline. The quantitative experimental results
are shown in Table II. The introduction of RAM improved the
model by 1.12%, 2.93%, 0.019, and 3.11% in terms of precision,
recall, F1-score, and IoU, respectively, which indicates that
RAM can effectively improve the performance. After adding
the BAM and BGM, the precision, recall, F1 score, and IoU
of the model improved by 1.20%, 2.47%, 0.019, and 3.10%,
respectively, over the baseline. This finding indicates that op-
timizing the extracted aquaculture area boundaries and using
them to guide segmentation can help improve the accuracy of
aquaculture area extraction and identify inapparent aquaculture
area components. By combining the RAM, BAM, and BGM,
the performance of the model can be further improved.

Fig. 14. Comparison of visualization of single-stream and dual-stream
structures in terms of prediction errors. (a) Test image. (b) Single-stream.
(c) dual-stream.

Fig. 13 shows the impact of the proposed three modules. The
extraction results of the baseline network are shown in Fig. 13(c).
The addition of the RAM greatly enhances the ability of the
model to extract inapparent aquaculture areas, as shown in the
red box in Fig. 13(d). However, there are still a few extracted
aquaculture areas with anfractuous or fragmented boundaries.
With the addition of the BAM and BGM to the model, the in-
tegrity and boundaries of the extracted aquaculture areas become
better, as shown in the red boxes in Fig. 13(e).

To further explore the advantages of dual-stream structures
over single-stream structures, we conduct ablation experiments
with the dual-stream structure and qualitatively compared the
prediction errors between the single-stream and dual-stream
structures, as shown in Fig. 14. As can be seen in the red boxes
in Fig. 14, the dual-stream structure has fewer prediction errors
near the boundary and the error boundary region looks narrower,
thus proving the advantage of the dual-stream structure. In other
words, although the dual-stream structure improves the accuracy
of aquaculture area segmentation less (as shown in the 2nd and
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Fig. 15. IoU and F1-score of RADNet with different hyperparameter values. (a) With different α values. (b) With different β values. (c) With different γ values.

8th rows of Table II), it can significantly improve the accuracy
of aquaculture area boundary extraction.

B. Hyperparameter Settings

We analyze the effects of parameters α, β, and γ in (9) and
(11) on the final extraction results. Fig. 15 shows the segmen-
tation performance of the proposed RADNet when the three
parameters α, β, and γ vary. As shown in Fig. 15(a), when the
value of α is greater than 0.1, the F1-score and IoU of the model
gradually decrease with increasing values of α. Therefore, the
value of the parameter α is set to 0.1 in this article. As shown in
Fig. 15(b), there is an overall upward trend in F1-score and IoU
as β increases from 0.1 to 0.6. When β = 0.6, the F1-score and
IoU reach their peaks. Similarly, it is obvious from Fig. 15(c)
that the performance of the proposed model increases and then
tends to decrease as the value of γ increases. Therefore, β and
γ were set to 0.6 and 4, respectively, in this article.

C. Model Visualization

To evaluate the effects of the three modules RAM, BAM,
and BGM, we visualize the input–output feature maps of the
relevant modules. We first map the corresponding feature maps
to grayscale maps with pixel values between 0 and 255, and
then use the applyColorMap() function in OpenCV to convert
the grayscale maps to RGB maps to get the activation heat
map of the aquaculture area. The color from yellow to red in
the heatmap indicates the activate value changing from low to
high, and aquamarine indicating no activation. Fig. 16 shows
the activation heatmaps of the RAM module for the two test
images. The activation area of the aquaculture area in the heat
map becomes larger and larger while the background noise of the
seawater is effectively suppressed. Fig. 17 shows the activation
heatmaps of the boundary of the aquaculture area. After applying
the BAM module, the boundary of the aquaculture area becomes
clearer and clearer, and the nonboundary texture activation is
gradually suppressed. The activation heatmaps of the aquacul-
ture area before and after the application of the BGM module is
given in Fig. 18. The activation value near the boundary of the
aquaculture area increases after applying the BGM module. This
indicates that the BGM can effectively improve the boundary
response of the aquaculture area.

Fig. 16. Activation heatmaps of the aquaculture area of the RAM module for
two test images. (a) Output feature map for the first RAM. (b) Output feature
map for the second RAM. (c) Output feature map for the third RAM. (d) Output
feature map for the fourth RAM.

Fig. 17. Activation heatmaps of the aquaculture area of the BAM module for
two test images. (a) Input feature map of the first BAM. (b) Output feature map
of the first BAM. (c) Output feature map of the second BAM. (d) Output feature
map of the third BAM.

Fig. 18. Activation heatmaps of the aquaculture area of the BGM module for
two test images. (a) Input feature map for the 1st BGM. (b) Output feature map
for the first BGM. (c) Output feature map for the second BGM.
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TABLE III
PARAMETERS AND INFERENCE TIME COMPARISON WITH DIFFERENT MODELS

D. Evaluation of Model Complexity

We compare the number of parameters and inference time
of RADNet with the compared models. The results are listed in
Table III. It can be seen that the number of parameters of our pro-
posed RADNet is somewhat more than HRNet, DeepLabv3+,
D-ResUnet, and FRCNet, and less than U-Net, DS-HCN, Raft-
Net, Improved U-Net, and SAMALNet. To obtain the inference
time of each model, a test image of size 512 × 512 is selected
and tested on the same computing platform. The inference time
of RADNet is shorter than that of HRNet and RaftNet and
longer than that of the other comparison models. Compared with
U-Net, RADNet reduces the number of convolutional kernels
from 1024 to 512 in the last layer of the encoder, which reduces
the number of network parameters to a large extent. Therefore,
the total number of parameters of RADNet is less than that
of U-Net, although the RAM, BAM, and BGM modules bring
some additional parameters. However, to avoid the “gradient
disappearance” phenomenon, RADNet adds a batch normaliza-
tion layer after each convolutional layer, which results in more
computation and memory access. Therefore, how to reduce the
inference time of the network as much as possible is the next
focus of our research.

E. Comparison With Other Attention Modules

We compare the proposed RAM module with several classic
attention methods, including SE block [29], efficient channel
attention (ECA) [30], convolutional block attention module
(CBAM) [32], and CA [34]. For a fair comparison, we replaced
the RAM in RADNet with other attention modules and calcu-
lated the efficiency and performance of the model. F1-score, IoU,
and FLoating-point OPerations (FLOPs) are used as metrics for
the evaluation. The results are shown in Table IV. It can be
seen that the performance and efficiency of SE, CBAM, and
ECA are comparable. The IoU of the CA module is slightly
higher than that of the first three attention modules due to the
consideration of the spatial dependence over long distances.
The RAM module significantly outperforms other comparative
models in two metrics, F1-score and IoU, mainly because the
features of seawater are fully exploited. However, the RAM is

TABLE IV
EVALUATION RESULTS OF DIFFERENT ATTENTION MODULES

slightly less efficient than the other comparison models due to
the inclusion of more operations.

VI. DISCUSSION

The spectral and textural features of different raft laver aqua-
culture areas vary significantly, posing a great challenge to the
accurate recognition of raft aquaculture areas. Differences in
laver growth stages, harvesting activities, suspended sediments,
and detrital algae are important factors contributing to the varia-
tion in image features of raft laver aquaculture areas. In addition,
during the growth of laver, the net curtain hanging laver needs to
be lifted above the sea surface from time to time to bask in the sun
to enhance photosynthesis and kill the attached algae. When the
net curtain is located below the sea surface, the effect of waves
or suspended matter may lead to inapparent spectral features
in some raft laver aquaculture areas. In RADNet, to overcome
the problem of large intraclass spectral variation of raft laver
aquaculture areas, the RAM first learns seawater features and
then enhances the features of inapparent raft laver aquaculture
areas by seawater masks. The experimental results showed that
RADNet was able to extract most of the raft laver aquaculture
areas intact, including those with inapparent spectral features.
This also leads to RAM having more parameters and increasing
the FLOPs of the model.

The strong absorption of solar radiation by seawater usually
results in a weak spectral feature of the target object. For such
a problem, we propose to enhance the features of the target
object indirectly by learning and suppressing the features of
the background, which is also inspired by the reverse attention
mechanism. Theoretically, this method can be applied to the
recognition of objects with weak spectral features in other fields.

Although RADNet has achieved better extraction results for
raft laver aquaculture areas, it still has two aspects that need
further improvement. One is that the inference speed of RADNet
is slower than classical deep learning models such as U-Net and
Deeplabv3+, and the second is that there is a slight overextrac-
tion near the boundary of the aquaculture area.

In recent years, generative models have developed rapidly
and have been successfully applied to tasks such as image en-
hancement and data augmentation. In our experiments, we also
found that the model does not perform as well in shallow waters
as in deep waters, which may be due to the higher sediment
concentration and smaller number of samples in shallow waters.
In the next work, we will try to use generative adversarial
networks to generate more samples of raft aquaculture areas
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in shallow water to improve the robustness and generalization
ability of the model.

VII. CONCLUSION

In this article, we proposed a novel network RADNet based
on reverse attention and boundary attention for the accurate
extraction of laver aquaculture areas from RSIs. RADNet simul-
taneously learns useful features for aquaculture area extraction
from both the target (aquaculture area) and background (sea-
water), significantly improving the detection rate and integrity
of inapparent aquaculture areas. RADNet uses a dual-stream
structure in which the segmentation stream uses RAM to obtain
the activation of all aquaculture areas, whereas the boundary
stream uses the BAM to enhance the boundary features of
the aquaculture areas and deactivate the surrounding seawater.
These two streams interact via the BGM to further expand the ac-
tivation of aquaculture areas within the boundary. Experiments
performed on the created dataset demonstrated that the proposed
RADNet significantly outperformed other models.
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